Application of the 2D Depth-Averaged Model, FLATModel, to Pumiceous Debris Flows in the Amalfi Coast
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Mathematical Model
2.2. Study Area
3. Results
3.1. Preliminary Analysis for the Choice of the Resistance Law and Parameters Calibration
3.2. Numerical Simulations of the Pumice DF from Initiation to Deposit
- Scenario n. 1 (one dam-break wave): mobilization of the pumice deposits only from niche, N1;
- Scenario n. 2 (two dam-break waves merging together into a unique wave along the propagation channel): simultaneous mobilization of pumice deposits from niches N1 and N2;
- Scenario n. 3 (two subsequent dam-break waves): mobilization of pumice deposits from niche N1 and subsequent mobilization from niche N2.
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jakob, M.; Hungr, O.; Jakob, D.M. Debris-Flow Hazards and Related Phenomena; Springer: Berlin, Germany, 2005. [Google Scholar]
- Takahashi, T. Debris Flow: Mechanics, Prediction and Countermeasures, 2nd ed.; CRC Press: London, UK, 2014. [Google Scholar]
- Rickenmann, D. Debris-flow hazard assessment and methods applied in engineering practice. Int. J. Eros. Control Eng. 2016, 9, 80–90. [Google Scholar] [CrossRef]
- Midi, G.D.R. On dense granular flows. Eur. Phys. J. E 2004, 14, 341–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carravetta, A.; Fecarotta, O.; Martino, R.; Sabatino, C. Assessment of rheological characteristics of a natural Bingham-plastic mixture in turbulent pipe flow. J. Hydraul. Eng. 2010, 136, 820–825. [Google Scholar] [CrossRef]
- Sheng, L.T.; Kuo, C.Y.; Tai, Y.C.; Hsiau, S.S. Indirect measurements of streamwise solid fraction variations of granular flows accelerating down a smooth rectangular chute. Exp. Fluids 2011, 51, 1329. [Google Scholar] [CrossRef]
- Carravetta, A.; Conte, M.C.; Fecarotta, O.; Martino, R. Performance of slurry flow models in pressure pipe tests. J. Hydraul. Eng. 2015, 142, 06015020. [Google Scholar] [CrossRef]
- Sarno, L.; Carravetta, A.; Tai, Y.C.; Martino, R.; Papa, M.N.; Kuo, C.-Y. Measuring the velocity fields of granular flows—Employment of a multi-pass two-dimensional particle image velocimetry (2D-PIV) approach. Adv. Powder Tech. 2018. [Google Scholar] [CrossRef]
- Sarno, L.; Papa, M.N.; Villani, P.; Tai, Y.-C. An optical method for measuring the near-wall volume fraction in granular dispersions. Granul. Matter 2016, 18, 80. [Google Scholar] [CrossRef]
- Sarno, L.; Carleo, L.; Papa, M.N.; Villani, P. Experimental investigation on the effects of the fixed boundaries in channelized dry granular flows. Rock Mech. Rock Eng. 2018, 51, 203–225. [Google Scholar] [CrossRef]
- Luna, B.Q.; Remaître, A.; Van Asch, T.W.; Malet, J.P.; Van Westen, C.J. Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Eng. Geol. 2012, 128, 63–75. [Google Scholar] [CrossRef]
- Berti, M.; Simoni, A. DFLOWZ: A free program to evaluate the area potentially inundated by a debris flow. Comput. Geosci. 2014, 67, 14–23. [Google Scholar] [CrossRef]
- Hürlimann, M.; McArdell, B.W.; Rickli, C. Field and laboratory analysis of the runout characteristics of hillslope debris flows in Switzerland. Geomorphology 2015, 232, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Chae, B.G.; Park, H.J.; Catani, F.; Simoni, A.; Berti, M. Landslide prediction, monitoring and early warning: A concise review of state-of-the-art. Geosci. J. 2017, 21, 1033–1070. [Google Scholar] [CrossRef]
- Coviello, V.; Capra, L.; Vázquez, R.; Márquez-Ramírez, V.H. Seismic characterization of hyperconcentrated flows in a volcanic environment. Earth Surf. Proc. Land. 2018. [Google Scholar] [CrossRef]
- Capra, L.; Sulpizio, R.; Márquez-Ramirez, V.H.; Coviello, V.; Doronzo, D.M.; Arambula-Mendoza, R.; Cruz, S. The anatomy of a pyroclastic density current: The 10 July 2015 event at Volcán de Colima (Mexico). Bull. Volcanol. 2018, 80, 34. [Google Scholar] [CrossRef]
- Savage, S.B.; Hutter, K. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 1989, 199, 177–215. [Google Scholar] [CrossRef]
- Iverson, R.M. The physics of debris flows. Rev. Geophys. 1997, 35, 245–296. [Google Scholar] [CrossRef] [Green Version]
- Fraccarollo, L.; Papa, M.N. Numerical simulation of real debris-flow events. Phys. Chem. Earth Part B 2000, 25, 757–763. [Google Scholar] [CrossRef]
- Medina, V.; Hürlimann, M.; Bateman, A. Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the iberian peninsula. Landslides 2008, 5, 127–142. [Google Scholar] [CrossRef]
- Sarno, L.; Martino, R.; Papa, M.N. Discussion of “Uniform flow of modified bingham fluids in narrow cross sections” by Alessandro Cantelli. J. Hydraul. Eng. 2011, 137, 621–621. [Google Scholar] [CrossRef]
- Sarno, L.; Carravetta, A.; Martino, R.; Tai, Y.-C. The pressure coefficient in dam-breaks flows of dry granular matter. J. Hydraul. Eng. 2013, 139, 1126–1133. [Google Scholar] [CrossRef]
- De Saint-Venant, A.B. Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leurs lits. C. R. Acad. Sci. 1871, 73, 148–154. [Google Scholar]
- Savage, S.B.; Hutter, K. The dynamics of avalanches of granular materials from initiation to run-out. Acta Mech. 1991, 86, 201–223. [Google Scholar] [CrossRef]
- Gray, J.M.N.T.; Wieland, M.; Hutter, K. Gravity driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. Lond. A 1999, 455, 1841–1874. [Google Scholar] [CrossRef]
- Sarno, L.; Papa, M.N.; Martino, R. Dam-break flows of dry granular materials on gentle slopes. In Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Padova, Italy, 14–17 June 2011; pp. 503–512. [Google Scholar]
- Laigle, D.; Coussot, P. Numerical modelling of mudflows. J. Hydraul. Eng. 1997, 123, 617–623. [Google Scholar] [CrossRef]
- Martino, R.; Papa, M.N. Variable-Concentration and boundary effects on debris flow discharge predictions. J. Hydraul. Eng. 2008, 134, 1294–1301. [Google Scholar] [CrossRef]
- Medina, V. Debris Flows and General Steep Slope Shallow Water Flows Numerical Simulation. Ph.D. Thesis, UPC, Barcellona, Spain, 2010. [Google Scholar]
- Papa, M.N.; Sarno, L.; Ciervo, F.; Barba, S.; Fiorillo, F.; Limongiello, M. Field surveys and numerical modeling of pumiceous debris flows in Amalfi Coast (Italy). Int. J. Eros. Control Eng. 2016, 9, 179–187. [Google Scholar] [CrossRef]
- Voellmy, A. Uber die Zerstörungskraft von Lawinen. Schweiz. Bauztg. 1955, 73, 212–217. [Google Scholar]
- Bartelt, P.; Salm, B.; Gruber, U. Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J. Glaciol. 1999, 45, 242–254. [Google Scholar] [CrossRef]
- Bouchut, F.; Westdickenberg, M. Gravity driven shallow water models for arbitrary topography. Comm. Math. Sci. 2004, 2, 359–389. [Google Scholar] [CrossRef] [Green Version]
- Pudasaini, S.; Wang, Y.; Hutter, K. Rapid motions of free-surface avalanches down curved and twisted channels and their numerical simulation. Philos. Trans. R. Soc. A 2005, 363, 1551–1571. [Google Scholar] [CrossRef] [PubMed]
- Toro, E.F.; Spruce, M.; Speares, W. Restoration of the contact surface in the Harten-Lax-van Leer Riemann Solver. Shock Waves 1994, 4, 25–34. [Google Scholar] [CrossRef]
- Cascini, L.; Ferlisi, S.; Vitolo, E. Individual and societal risk owing to landslides in the Campania region (Southern Italy). Georisk 2008, 2, 125–140. [Google Scholar] [CrossRef]
- Papa, M.N.; Trentini, G.; Carbone, A.; Gallo, A. An integrated approach for debris flow hazard assessment—A case study on the Amalfi Coast–Campania, Italy. In Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, Padova, Italy, 14–17 June 2011. [Google Scholar]
- Papa, M.N.; Medina, V.; Ciervo, F.; Bateman, A. Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems. Hydrol. Earth Syst. Sci. 2013, 17, 4095–4107. [Google Scholar] [CrossRef] [Green Version]
- Fiorillo, F.; Wilson, R.C. Rainfall induced debris flows in pyroclastic deposits, Campania (southern Italy). Eng. Geol. 2004, 75, 263–289. [Google Scholar] [CrossRef]
- Iamarino, M.; Terribile, F. The importance of andic soils in mountain ecosystems: A pedological investigation in Italy. Eur. J. Soil Sci. 2008, 59, 1284–1292. [Google Scholar] [CrossRef]
- Crosta, G.B.; Dal Negro, P. Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: The Sarno 1998 event. Nat. Hazard Earth Syst. 2003, 3, 53–69. [Google Scholar] [CrossRef]
- Hungr, O.; Evans, S.G. Rock avalanche runout prediction using a dynamic model. In Proceedings of the 7th. International Symposium on Landslides, Trondheim, Norway, 17–21 June 1996; Volume 11, pp. 233–238. [Google Scholar]
- Rickenmann, D.; Koch, T. Comparison of debris flowmodeling approaches. In Proceedings of the 1st International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, San Francisco, CA, USA, 7–9 August 1997; pp. 576–585. [Google Scholar]
- Hürlimann, M.; Rickenmann, D.; Medina, V.; Bateman, A. Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Eng. Geol. 2008, 102, 152–163. [Google Scholar] [CrossRef]
- Miura, K.; Maeda, K.; Toki, S. Method of measurement for the angle of repose of sands. Soils Found. 1997, 37, 89–96. [Google Scholar] [CrossRef]
- Hungr, O.; Evans, S.G.; Hutchinson, I. A Review of the Classification of Landslides of the Flow Type. Environ. Eng. Geosci. 2001, 7, 221–238. [Google Scholar] [CrossRef]
- Pouliquen, O. Scaling laws in granular flows down rough inclined planes. Phys. Fluids 1999, 11, 542–548. [Google Scholar] [CrossRef]
- Crosta, G.B.; Imposimato, S.; Roddeman, D. Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface. J. Geophys. Res.-Earth 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Sarno, L. Depth-Averaged Models for Dry Granular Flows. Ph.D. Thesis, University of Napoli “Federico II”, Napoli, Italy, 2013. [Google Scholar]
- Sarno, L.; Carravetta, A.; Martino, R.; Tai, Y.-C. A two-layer depth-averaged approach to describe the regime stratification in collapses of dry granular columns. Phys. Fluids 2014, 26, 103303. [Google Scholar] [CrossRef]
- Sarno, L.; Carravetta, A.; Martino, R.; Papa, M.N.; Tai, Y.-C. Some considerations on numerical schemes for treating hyperbolicity issues in two-layer models. Adv. Water Resour. 2017, 100, 183–198. [Google Scholar] [CrossRef]
- Tai, Y.C.; Kuo, C.Y. A new model of granular flows over general topography with erosion and deposition. Acta Mech. 2008, 199, 71–96. [Google Scholar] [CrossRef]
- Tai, Y.C.; Kuo, C.Y.; Hui, W.H. An alternative depth-integrated formulation for granular avalanches over temporally varying topography with small curvature. Geophys. Geoastrophys. Fluid 2012, 106, 596–629. [Google Scholar] [CrossRef]
- Iverson, R.M.; Ouyang, C. Entrainment of bed material by Earth-surface mass flows: Review and reformulation of depth-integrated theory. Rev. Geophys. 2015, 53, 27–58. [Google Scholar] [CrossRef] [Green Version]
SIM | Scenario | Mobilized Volume from N1 (m3) | Mobilized Volume from N2 (m3) | Vdep (m3) | Enorm (-) | Ē (m) | E90% (m) |
---|---|---|---|---|---|---|---|
SIM-1-1 | 1 | 146 | 0 | 105 | 0.305 | 0.093 | 0.333 |
SIM-1-2 | 1 | 160 | 0 | 117 | 0.256 | 0.078 | 0.269 |
SIM-1-3 | 1 | 170 | 0 | 125 | 0.234 | 0.072 | 0.237 |
SIM-1-4 | 1 | 180 | 0 | 133 | 0.222 | 0.068 | 0.217 |
SIM-1-5 | 1 | 190 | 0 | 144 | 0.227 | 0.070 | 0.214 |
SIM-1-6 | 1 | 200 | 0 | 150 | 0.243 | 0.074 | 0.225 |
SIM-2-1 | 2 | 106 | 40 | 97 | 0.355 | 0.108 | 0.404 |
SIM-2-2 | 2 | 120 | 40 | 110 | 0.285 | 0.087 | 0.306 |
SIM-2-3 | 2 | 130 | 40 | 119 | 0.249 | 0.076 | 0.258 |
SIM-2-4 | 2 | 140 | 40 | 127 | 0.229 | 0.070 | 0.228 |
SIM-2-5 | 2 | 150 | 40 | 137 | 0.221 | 0.067 | 0.208 |
SIM-2-6 | 2 | 160 | 40 | 145 | 0.229 | 0.070 | 0.215 |
SIM-3-1 | 3 | 140 | 40 | 130 | 0.221 | 0.068 | 0.208 |
SIM-3-2 | 3 | 140 | 50 | 137 | 0.208 | 0.064 | 0.195 |
SIM-3-3 | 3 | 140 | 60 | 145 | 0.218 | 0.067 | 0.219 |
SIM-3-4 | 3 | 140 | 70 | 154 | 0.249 | 0.076 | 0.246 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papa, M.N.; Sarno, L.; Vitiello, F.S.; Medina, V. Application of the 2D Depth-Averaged Model, FLATModel, to Pumiceous Debris Flows in the Amalfi Coast. Water 2018, 10, 1159. https://doi.org/10.3390/w10091159
Papa MN, Sarno L, Vitiello FS, Medina V. Application of the 2D Depth-Averaged Model, FLATModel, to Pumiceous Debris Flows in the Amalfi Coast. Water. 2018; 10(9):1159. https://doi.org/10.3390/w10091159
Chicago/Turabian StylePapa, Maria Nicolina, Luca Sarno, Francesco Saverio Vitiello, and Vicente Medina. 2018. "Application of the 2D Depth-Averaged Model, FLATModel, to Pumiceous Debris Flows in the Amalfi Coast" Water 10, no. 9: 1159. https://doi.org/10.3390/w10091159
APA StylePapa, M. N., Sarno, L., Vitiello, F. S., & Medina, V. (2018). Application of the 2D Depth-Averaged Model, FLATModel, to Pumiceous Debris Flows in the Amalfi Coast. Water, 10(9), 1159. https://doi.org/10.3390/w10091159