Water Quality as an Indicator of Stream Restoration Effects—A Case Study of the Kwacza River Restoration Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrometric Measurements
2.3. Water Quality Sampling
2.4. Data Analysis
3. Results
3.1. Hydrological Characteristics
3.2. The Hydrochemical Characteristics of Water in the Kwacza River before and after Restoration
3.3. Changes in Water Quality Induced by Restoration Treatments
3.4. Ordination Analyses
3.5. Generalized Additive Model (GAM)
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Palmer, M.A.; Bernhardt, E.S.; Allan, J.D.; Lake, P.S.; Alexander, G.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.; Follstad Shah, J.; et al. Standards for ecologically successful river restoration. J. Appl. Ecol. 2005, 42, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Cavaillé, P.; Dumont, B.; Van Looy, K.; Floury, M.; Tabacchi, E.; Evette, A. Influence of riverbank stabilization techniques on taxonomic and functional macrobenthic communities. Hydrobiologia 2018, 807, 19–35. [Google Scholar] [CrossRef]
- Brown, L.E.; Dickson, N.E.; Carrivick, J.L.; Füreder, L. Alpine river ecosystem response to glacial and anthropogenic flow pulses. Freshw. Sci. 2015, 34, 1201–1215. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, D.; Milner, A.M.; Brown, L.E.; Dangles, O. Biodiversity under threat in glacier-fed river systems. Nat. Clim. Chang. 2012, 2, 361–364. [Google Scholar] [CrossRef] [Green Version]
- Carrea, C.; Anderson, L.V.; Craw, D.; Waters, J.; Burridge, C.P. The significance of past inters drainage connectivity for studies of diversity, distribution and movement of freshwater-limited taxa within a catchment. J. Biogeogr. 2014, 41, 536–547. [Google Scholar] [CrossRef]
- Mulholland, P.J. Regulation of nutrient concentrations in a temperate forest stream: Roles of upland, riparian, and instream processes. Limnol. Oceanogr. 1992, 37, 1512–1526. [Google Scholar] [CrossRef] [Green Version]
- Jolly, I.D.; McEwan, K.L.; Holland, K.L. A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology 2008, 1, 43–58. [Google Scholar] [CrossRef]
- Capderrey, C.; Datry, T.; Foulquier, A.; Claretand, C.; Malard, F. Invertebrate distribution across nested geomorphic features in braided-river landscapes. Freshw. Sci. 2013, 32, 1188–1204. [Google Scholar] [CrossRef]
- Hille, S.; Kristensen, E.A.; Graeber, D.; Riis, T.; Jørgensen, N.K.; Baattrup-Pedersen, A. Fast reaction of macroinvertebrate communities to stagnation and drought in streams with contrasting nutrient availability. Freshw. Sci. 2014, 33, 847–859. [Google Scholar] [CrossRef]
- Cha, S.M.; Ham, Y.S.; Ki, S.J.; Lee, S.W.; Cho, K.H.; Park, Y.; Kim, J.H. Evaluation of pollutants removal efficiency to achieve successful urban river restoration. Water Sci. Technol. 2009, 59, 2101–2109. [Google Scholar] [CrossRef] [PubMed]
- Glińska-Lewczuk, K.; Burandt, P.; Kujawa, R.; Kobus, S.; Obolewski, K.; Dunalska, J.; Grabowska, M.; Lew, S.; Chormański, J. Environmental factors structuring fish communities in floodplain lakes of the undisturbed system of the Biebrza River. Water 2016, 8, 146. [Google Scholar] [CrossRef]
- Bradford, T.M.; Morgan, M.J.; Lorenz, Z.; Hartley, D.M.; Hardy, C.M.; Oliver, R.L. Microeukaryote community composition assessed by pyrosequencing is associated with light availability and phytoplankton primary production along a lowland river. Freshw. Biol. 2013, 58, 2401–2413. [Google Scholar] [CrossRef]
- Ormerod, S.J. Restoration in applied ecology: Editor’s introduction. J. Appl. Ecol. 2003, 40, 44–50. [Google Scholar] [CrossRef]
- Law, A.; McLean, F.; Willby, N.J. Habitat engineering by beaver benefits aquatic biodiversity. Freshw. Biol. 2016, 61, 486–499. [Google Scholar] [CrossRef]
- Kiffney, P.M.; Buhle, E.R.; Naman, S.M.; Pess, G.R.; Klett, R.S. Linking resource availability and habitat structure to stream organisms: An experimental and observational assessment. Ecosphere 2014, 5, 39. [Google Scholar] [CrossRef]
- Filoso, S.; Palmer, M. Assessing stream restoration effectiveness at reducing nitrogen export to downstream waters. Ecol. Appl. 2011, 21, 1989–2006. [Google Scholar] [CrossRef] [PubMed]
- Glińska-Lewczuk, K.; Bieniek, A.; Sowiński, P.; Obolewski, K.; Burandt, P.; Timofte, C.M. Variability of zinc content in soils in a postglacial river valley—A geochemical landscape approach. J. Elementol. 2014, 19, 361–376. [Google Scholar] [CrossRef]
- Obolewski, K.; Glińska-Lewczuk, K.; Bąkowska, M. From isolation to connectivity: The effect of floodplain lake restoration on sediments as habitats for macroinvertebrate communities. Aquat. Sci. 2018, 80, 4. [Google Scholar] [CrossRef]
- Paillex, A.; Castella, E.; zu Ermgassen, P.S.E.; Aldridge, D.C. Testing predictions of changes in alien and native macroinvertebrate communities and their interaction after the restoration of a large river floodplain (French Rhone). Fresw. Biol. 2015, 60, 1162–1175. [Google Scholar] [CrossRef]
- Bellos, D.; Sawidis, T. Chemical pollution monitoring of the River Pinios (Thessalia-Greece). J. Environ. Manag. 2005, 76, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Kersebaum, K.C.; Steidl, J.; Bauer, O.; Piorr, H.P. Modelling scenarios to assess the effects of different agricultural management and land use options to reduce diffuse nitrogen pollution into the river Elbe. Phys. Chem. Earth 2003, 28, 537–545. [Google Scholar]
- Kaushal, S.S.; Groffman, P.M.; Band, L.E.; Elliott, E.M.; Shields, C.A.; Kendall, C. Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environ. Sci. Technol. 2011, 45, 8225–8232. [Google Scholar] [CrossRef] [PubMed]
- Newcomer Johnson, T.A.; Kaushal, S.S.; Mayer, P.M.; Smith, R.M.; Sivirichi, G.M. Nutrient Retention in Restored Streams and Rivers: A Global Review and Synthesis. Water 2016, 8, 116. [Google Scholar] [CrossRef]
- Hein, T.; Baranyi, C.; Reckendorfer, W.; Schiemer, F. The impact of surface water exchange on the nutrient and particle dynamics in side-arms along the River Danube, Austria. Sci. Total Environ. 2004, 328, 207–218. [Google Scholar] [PubMed]
- Glińska-Lewczuk, K. Oxbow lakes as biogeochemical barriers for nutrient outflow from agricultural areas. In Dynamics and Biogeochemistry of River Corridors and Wetlands; Heathwaite, L., Webb, B., Rosenberry, D., Weaver, D., Hayashi, M., Eds.; IAHS: London, UK, 2005; Volume 294, pp. 55–68. [Google Scholar]
- Ward, J.V.; Stanford, J.A. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regul. River Res. Manag. 2009, 11, 105–119. [Google Scholar] [CrossRef]
- Schönbrunner, I.M.; Preiner, S.; Hein, T. Impact of drying and re-flooding of sediment on phosphorus dynamics of river-floodplain systems. Sci. Total Environ. 2012, 432, 329–337. [Google Scholar] [PubMed]
- Prus, P.; Popek, Z.; Pawlaczyk, P. Good practices for maintaining rivers. WWF Polska 2017. Available online: http://www.kp.org.pl/pdf/2017-08-01_dobre_praktyki_utrzymania_rzek.pdf (accessed on 21 August 2018).
- Manual of River Restoration Techniques, 1st ed.; The River Restoration Centre: Silsoe, UK, 1999; Available online: http://www.therrc.co.uk/MOT/Low-res/1999_Edition_1.pdf (accessed on 17 August 2018).
- Manual of River Restoration Techniques, Update 1; The River Restoration Centre: Silsoe, UK, 2002; Available online: http://www.therrc.co.uk/MOT/Low-res/2002_Update_1.pdf (accessed on 17 August 2018).
- Tuck, J. Environmentally Sustainable River Restoration Techniques. 2008. Available online: https://www.wcmt.org.uk/sites/default/files/migrated-reports/441_1.pdf (accessed on 17 August 2018).
- Roni, P.; Hanson, K.; Beechie, A. Global review of the physical and biological effectiveness of stream habitat rehabilitation techniques. N. Am. J. Fish Manag. 2008, 28, 856–890. [Google Scholar] [CrossRef]
- Pana, B.; Yuan, J.; Zhang, X.; Wang, Z.; Lu, J.; Yang, W.; Chen, J.; Li, Z.; Zhao, N.; Xu, M. A review of ecological restoration techniques influvial rivers. Int. J. Sediment Res. 2016, 31, 110–119. [Google Scholar] [CrossRef]
- Bukaveckas, P.A. Effects of channel restoration on water velocity, transient storage, and nutrient uptake in a channelized stream. Environ. Sci. Technol. 2007, 41, 1570–1576. [Google Scholar] [CrossRef] [PubMed]
- Viswanathana, V.C.; Molson, J.; Schirmer, M. Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland. Sci. Total Environ. 2015, 532, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Davis, N.M.; Weaver, V.; Parks, K.; Lydy, M.J. An assessment of water quality, physical habitat, and biological integrity of an urban stream in Wichita, Kansas, prior to restoration improvements (phase I). Arch. Environ. Contam. Toxicol. 2003, 44, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.J.; Fletcher, T.D.; Ladson, A.R. Stream restoration in urban catchments through redesigning stormwater systems: Looking to the catchment to save the stream. J. N. Am. Benthol. Soc. 2005, 24, 690–705. [Google Scholar] [CrossRef]
- Zuraini, Z.; Sanjay, G.; Shariff, N.M. Effective microorganisms (EM) technology for water quality restoration and potential for sustainable water resources and management. In Proceedings of the International Congress on Environmental Modelling and Software, Ottawa, ON, Canada, 5–8 July 2010; Available online: https://scholarsarchive.byu.edu/iemssconference/2010/all/142 (accessed on 24 August 2018).
- Purcell, A.H. A Long-Term Post Project Evaluation of an Urban Stream Restoration Project (Baxter Creek, El Cerrito, California); Water Resources Center Archives; University of California: Berkeley, CA, USA, 2004; Available online: http://repositories.edlib.org/wrca/restoration/purcell (accessed on 24 August 2018).
- Kaushal, S.S.; Groffman, P.M.; Mayer, P.M.; Striz, E.; Gold, A.J. Effects of stream restoration on denitrification in an urbanizing watershed. Ecol. Appl. 2008, 18, 789–804. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, A.W.; Korte, T.; Sundermann, A.; Januschke, K.; Haase, P. Macrophytes respond to reach-scale river restorations. J. Appl. Ecol. 2012, 49, 202–212. [Google Scholar] [CrossRef]
- Ebina, J.; Tsutsui, T.; Shisai, T. Simultaneous determination of total nitrogen and total phosphorous in water using peroxodisulfate oxidation. Water Res. 1983, 17, 1721–1726. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 17th ed.; American Public Health Association (APHA): Washington, DC, USA, 1989. [Google Scholar]
- Ter Braak, C.J.F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 1986, 67, 1167–1179. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Śmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination, version 4.5; Microcomputer Power: Ithaca, NY, USA, 2002. [Google Scholar]
- Roberts, B.J.; Mulholland, P.J.; Houser, J.N. Effects of upland disturbance and instream restoration on hydrodynamics and ammonium uptake in headwater streams. J. N. Am. Benthol. Soc. 2007, 26, 38–53. [Google Scholar] [Green Version]
- Weigelhofer, G.; Fuchsberger, J.; Teufl, B.; Welti, N.; Hein, T. Effects of Riparian Forest Buffers on In-Stream Nutrient Retention in Agricultural Catchments. J. Environ. Qual. 2012, 41, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.A.; Menninger, H.L.; Bernhardt, E. River restoration, habitat heterogeneity and biodiversity: A failure of theory or practice? Freshw. Biol. 2010, 55, 205–222. [Google Scholar] [CrossRef]
- Beechie, T.J.; Sear, D.A.; Olden, J.D.; Pess, G.R.; Buffington, J.M.; Moir, H.; Roni, P.; Pollock, M.M. Process-based principles for restoring river ecosystems. BioScience 2010, 60, 209–222. [Google Scholar] [CrossRef]
- Mainstone, C.P.; Parr, W. Phosphorus in rivers—Ecology and management. Sci. Total. Environ. 2002, 282–283, 25–47. [Google Scholar] [CrossRef]
- Evans, D.J.; Johnes, P.J. Physico-chemical controls on phosphorus cycling in two lowland streams. Part 1—The water column. Sci. Total Environ. 2004, 329, 145–163. [Google Scholar] [CrossRef] [PubMed]
- Haggard, B.E.; Soerens, T.S. Sediment phosphorus release at a small impoundment on the Illinois River, Arkansas and Oklahoma, USA. Ecol. Eng. 2006, 28, 280–287. [Google Scholar] [CrossRef]
- Obolewski, K.; Glińska-Lewczuk, K.; Ożgo, M.; Astel, A. Connectivity restoration of floodplain lakes: An assessment based on macroinvertebrate communities. Hydrobiologia 2016, 774, 23–27. [Google Scholar] [CrossRef]
- Fernandes, J.D.F.; de Souza, A.L.; Tanaka, M.O. Can the structure of a riparian forest remnant influence stream water quality? A tropical case study. Hydrobiologia 2014, 724, 175–185. [Google Scholar] [CrossRef]
- Feld, C.K.; Birk, S.; Bradley, D.C.; Hering, D.; Kail, J.; Marzin, A.; Melcher, A.; Nemitz, D.; Pedersen, M.L.; Pletterbauer, F.; et al. From natural to degraded rivers and back again: A test of restoration ecology theory and practice. Adv. Ecol. Res. 2011, 44, 199–209. [Google Scholar]
- Uowolo, A.L.; Binkley, D.; Carol, A.E. Plant diversity in riparian forests in northwest Colorado: Effects of time and river regulation. For. Ecol. Manag. 2005, 218, 107–114. [Google Scholar] [CrossRef]
- Johnson, E.S.; Bell, K.P.; Leahy, J.E. Disamenity to amenity: Spatial and temporal patterns of social response to river restoration progress. Landsc. Urban Plan. 2018, 169, 208–219. [Google Scholar] [CrossRef]
- Milano, M.; Chèvre, N.; Reynard, E. Assessing watercourse quality: Challenges in implementing European and Swiss legal frameworks. Environ. Sci. Pollut. Res. 2018, 25, 805–823. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.J.; Crymble, S. Water quality considerations in developing a new resource for water supply within the midlands of England. Water Sci. Technol. 1998, 38, 201–208. [Google Scholar] [CrossRef]
Stressor | Enhancement Operation | Design Rationale | Application | References |
---|---|---|---|---|
Shadowing of the water table in the river, poor light conditions | Partial removal of trees along river banks Local widening of the riverbed | Improvement of light conditions (up to 50%) | Skerne River (UK) | [28,29,30] |
Shallowing of the river channel | Wooden bars Double groynes | Dredging with the use of wooden bars, and single and double groynes | Avon River (UK) Lewis and Clark River (USA) | [29,30,31] |
Straight and channelized river channel with low heterogeneity of habitats | Wooden bars Single and double groynes | Diversification of the midstream | Skerne and Cole Rivers (UK) Mokelumne River, American River, Yuba River (USA) Lawrence River | [29,30,31] |
Mid-riverbed stone islands | Diversification of the shoreline (alternate concave and convex shores) | Skerne River | [29,30,31,32] | |
Water pollution | By-pass creation, reconnection of former meanders | Forming riverbed sections parallel to the “old” riverbed, restoring connections with an oxbow lake | Cole River (UK) | [29,30] |
Bioengineering structures, introducing macrophyte species | Introduction of native plants along the stream and bioengineering structures to stabilize the stream channel and reduce stream bank erosion and sediment loads in the stream. Introduction of macrophytes which are capable of assimilating chemical elements | Avone, Marden, and Kennet Rivers (UK) | [28,33] |
River | Unit | Total Area | Arable Land | Grassland | Forests | Water |
---|---|---|---|---|---|---|
Kwacza | km2 | 85.00 | 29.08 | 27.81 | 26.82 | 1.30 |
% | 100 | 34.21 | 32.71 | 31.55 | 1.53 | |
Słupia | km2 | 1623.00 | 775.73 | 107.82 | 703.85 | 35.60 |
% | 100 | 47.79 | 6.64 | 43.37 | 2.20 |
Parameters | Cross-Sections | |||
---|---|---|---|---|
K1 (A = 63 km2) | K10 (A = 85 km2) | |||
T+0 | T+6 | T+0 | T+6 | |
Streamflow Qmean (m3·s−1) | 0.41 | 0.38 | 0.55 | 0.48 |
low flow Ql (m3·s−1) | 0.07 | 0.09 | 0.09 | 0.12 |
high flow Qh (m3·s−1) | 1.53 | 1.40 | 1.39 | 1.45 |
Volume V (106·m3·year−1) | 12.93 | 11.98 | 17.34 | 15.14 |
Overland flow q (L·s−1·km−2) | 6.55 | 6.10 | 6.51 | 5.68 |
Parameters | Słupia River | Kwacza River | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T+0 N = 6 | T+6 N = 6 | Before Restoration T+0 N = 60 | After Restoration T+6 N = 60 | |||||||||
Mean ± SD | Range | cv | Mean ± SD | Range | cv | Mean ± SD | Range | cv | Mean ± SD | Range | cv | |
Tw, °C | 9.5 ± 5.5 | 4.5–16.9 | 59 | 9.5 ± 5.3 | 4.6–17.1 | 55 | 9.8 ± 4.5 | 5.5–16.2 | 46 | 9.9 ± 4.6 | 5.6–16.4 | 46 |
EC, µS·cm−1 | 326 ± 10 | 312–336 | 5 | 295 ± 0.049 | 288–301 | 2 | 363 ± 10 | 360–364 | 2 | 369 ± 14 | 368–372 | 1 |
pH | 7.17 ± 0.31 | 6.80–7.70 | 4 | 7.24 ± 0.17 | 7.05–7.54 | 2 | 7.73 ± 0.08 | 7. 51–7.90 | 2 | 7.52 ± 0.18 | 7.43–7.68 | 1 |
Chl-a, µg·L−1 | 16.2 ± 10.9 | 1.9–24.7 | 68 | 16.6 ± 11.4 | 1.9–24.7 | 69 | 9.7 ± 4.0 | 1.9–23.6 | 28 | 12.6 ± 2.7 | 10.1–41.7 | 62 |
DO, mg·L−1 | 8.2 ± 12 | 6.7–9.7 | 14 | 8.1 ± 0.8 | 7.1–9.0 | 10 | 4.4 ± 1.8 | 4.0–5.7 | 58 | 7.2 ± 3.2 | 3.6–13.7 | 63 |
DO, % | 82.5 ± 11.9 | 67.8–98.2 | 14 | 76.7 ± 7.5 | 67.0–84.7 | 10 | 55.0 ± 40.7 | 28.0–114.0 | 69 | 69.8 ± 34.6 | 26.0–99.3 | 74 |
COD, mg·L−1 | 15.4 ± 2.62 | 13.6–17.2 | 17 | 14.5 ± 2.7 | 12.4–15.9 | 19 | 26.8 ± 15.6 | 12.8–43.6 | 68 | 24.9 ± 17.0 | 14.0–44.4 | 58 |
TDS, g·L−1 | 0.23 ± 0.01 | 0.22–0.23 | 4 | 0.20 ± 0.00 | 0.18–0.21 | 4 | 0.24 ± 0.00 | 0.24–0.24 | 2 | 0.24 ± 0.01 | 0.24–0.25 | 1 |
NO2−-N, mg·L−1 | 0.01 ± 0.01 | 0.00–0.01 | 7 | 0.01 ± 0.01 | 0.00–0.01 | 5 | 0.04 ± 0.03 | 0.01–0.06 | 11 | 0.05 ± 0.05 | 0.01–0.09 | 7 |
NO3−-N, mg·L−1 | 0.14 ± 0.01 | 0.12–0.16 | 10 | 0.14 ± 0.01 | 0.12–0.15 | 9 | 0.93 ± 0.35 | 0.81–1.00 | 11 | 0.35 ± 0.31 | 0.32–0.51 | 13 |
NH4+-N, mg·L−1 | 0.22 ± 0.18 | 0.04–0.52 | 82 | 0.24 ± 0.14 | 0.11–0.49 | 59 | 0.72 ± 0.10 | 0.68–0.83 | 81 | 0.38 ± 0.09 | 0.25–0.52 | 81 |
PO43−-P, mg·L−1 | 0.14 ± 0.04 | 0.09–0.18 | 30 | 0.14 ± 0.03 | 0.10–0.18 | 22 | 0.30 ± 0.07 | 0.24–0.61 | 23 | 0.29 ± 0.07 | 0.25–0.37 | 22 |
TP, mg·L−1 | 0.39 ± 0.16 | 0.13–0.52 | 40 | 0.41 ± 0.06 | 0.31–0.49 | 15 | 1.12 ± 0.37 | 0.83–1.54 | 29 | 1.17 ± 0.34 | 0.95–1.56 | 33 |
Ca2+, mg·L−1 | 48.7 ± 2.4 | 47.0–50.4 | 5 | 50.7 ± 2.40 | 48.3–51.2 | 4 | 55.0 ± 3.4 | 53.0–59.0 | 2 | 61.0 ± 1.3 | 60.2–62.5 | 6 |
Na+, mg·L−1 | 9.6 ± 0.0 | 9.6–9.6 | 0 | 9.5 ± 0.1 | 9.8–9.7 | 1 | 8.9 ± 0.3 | 8.7–9.2 | 4 | 8.7 ± 0.3 | 8.3–8.9 | 3 |
K+, mg·L−1 | 2.4 ± 0.4 | 2.1–2.7 | 18 | 2.5 ± 0.5 | 2.0–2.9 | 19 | 2.6 ± 0.2 | 2.4–2.7 | 4 | 2.5 ± 0.1 | 2.4–2.6 | 6 |
Mg2+, mg·L−1 | 5.7 ± 1.1 | 5.1–6.6 | 18 | 6.3 ± 1.1 | 5.6–6.9 | 17 | 6.3 ± 1.2 | 5.3–7.6 | 7 | 6.7 ± 0.5 | 6.3–7.2 | 19 |
Cl−, mg·L−1 | 21.2 ± 9.5 | 18.0–29.9 | 45 | 24.4 ± 10.0 | 14.1–33.6 | 41 | 24.2 ± 14.9 | 13.7–34.8 | 35 | 34.9 ± 9.8 | 21.0–41.8 | 62 |
Structure | Parameters | U | Z | P |
---|---|---|---|---|
Single semi-palisade | EC | 1489.5 | −5.33 | 0.0001 |
pH | 401.0 | 11.55 | 0.0001 | |
NO3−-N | 987.4 | 6.47 | 0.001 | |
Bank protection with trunks | pH | 307.6 | 8.04 | 0.001 |
EC | 298.2 | −7.24 | 0.05 | |
River bar | NH4+-N | 941.5 | −2.74 | 0.01 |
pH | 321.0 | 9.55 | 0.001 | |
DO | 1362.0 | −5.79 | 0.0001 | |
Single groynes | Cl− | 1644.5 | −4.77 | 0.0001 |
pH | 334.6 | 9.87 | 0.001 | |
EC | 254.4 | −6.87 | 0.0001 | |
PO43−-P | 372.0 | 3.37 | 0.05 | |
Double groynes | pH | 355.0 | 9.99 | 0.001 |
NO3−-N | 1616.5 | 4.87 | 0.0001 | |
NH4+-N | 957.2 | −2.99 | 0.01 | |
Stone islands | DO | 1324.0 | −5.11 | 0.0001 |
EC | 888.7 | −4.44 | 0.001 | |
Double semi-palisade | NO3−-N | 1616.5 | 4.87 | 0.00 |
NH4+-N | 1018.4 | −3.99 | 0.0001 | |
EC | 844.4 | −4.14 | 0.001 | |
Chl-a | 944.5 | −2.32 | 0.01 | |
By-pass | pH | 387.1 | 10.21 | 0.0001 |
EC | 688.7 | −1.44 | 0.05 | |
DO | 1205.8 | −5.09 | 0.001 | |
NO3−-N | 1316.5 | 2.87 | 0.0001 | |
NH4+-N | 1106.0 | 3.79 | 0.0001 | |
PO43−-P | 387.5 | 3.55 | 0.05 | |
Insolation | DO | 1302.6 | −5.91 | 0.0001 |
Chl-a | 1105.5 | −3.87 | 0.01 | |
No treatment | - |
Load | Loss of Chemical Elements from the Catchment Per Unit Area (kg·year−1·km−2) | Loss of Chemical Elements from the Kwacza River Catchment (tonnes·year−1) | Difference in % | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Kwacza K1 (A = 63 km2) | Kwacza K10 (A = 85 km2) | Kwacza K1 | Kwacza K10 | K1–K10 | K1–K10 | |||||
T+0 | T+6 | T+0 | T+6 | T+0 | T+6 | T+0 | T+6 | T+0 | T+6 | |
TDS | 116 | 108 | 86 | 80 | 7.308 | 6.804 | 7.310 | 6.800 | 100 | 100 |
NO2-N | 0.02 | 0.03 | 0.01 | 0.02 | 0.001 | 0.002 | 0.001 | 0.002 | 100 | 100 |
NO3-N | 0.45 | 0.36 | 0.33 | 0.12 | 0.028 | 0.023 | 0.028 | 0.010 | 100 | 43 |
NH4-N | 0.15 | 0.17 | 0.26 | 0.13 | 0.009 | 0.011 | 0.022 | 0.011 | 244 | 100 |
PO4-P | 0.15 | 0.13 | 0.11 | 0.10 | 0.009 | 0.008 | 0.009 | 0.009 | 100 | 105 |
TP | 0.54 | 0.53 | 0.40 | 0.39 | 0.034 | 0.033 | 0.034 | 0.033 | 100 | 100 |
Cl− | 11.7 | 15.8 | 12.9 | 11.7 | 0.737 | 0.995 | 1.097 | 0.995 | 149 | 100 |
Ca2+ | 26.6 | 27.5 | 18.4 | 20.4 | 1.676 | 1.733 | 1.564 | 1.734 | 93 | 100 |
Na+ | 4.3 | 3.9 | 3.2 | 2.9 | 0.271 | 0.246 | 0.272 | 0.247 | 100 | 100 |
K+ | 1.2 | 1.1 | 0.9 | 0.8 | 0.076 | 0.069 | 0.077 | 0.068 | 101 | 99 |
Mg2+ | 3.0 | 3.0 | 2.3 | 2.2 | 0.189 | 0.189 | 0.196 | 0.187 | 104 | 99 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrozińska, N.; Glińska-Lewczuk, K.; Burandt, P.; Kobus, S.; Gotkiewicz, W.; Szymańska, M.; Bąkowska, M.; Obolewski, K. Water Quality as an Indicator of Stream Restoration Effects—A Case Study of the Kwacza River Restoration Project. Water 2018, 10, 1249. https://doi.org/10.3390/w10091249
Mrozińska N, Glińska-Lewczuk K, Burandt P, Kobus S, Gotkiewicz W, Szymańska M, Bąkowska M, Obolewski K. Water Quality as an Indicator of Stream Restoration Effects—A Case Study of the Kwacza River Restoration Project. Water. 2018; 10(9):1249. https://doi.org/10.3390/w10091249
Chicago/Turabian StyleMrozińska, Natalia, Katarzyna Glińska-Lewczuk, Paweł Burandt, Szymon Kobus, Wojciech Gotkiewicz, Monika Szymańska, Martyna Bąkowska, and Krystian Obolewski. 2018. "Water Quality as an Indicator of Stream Restoration Effects—A Case Study of the Kwacza River Restoration Project" Water 10, no. 9: 1249. https://doi.org/10.3390/w10091249
APA StyleMrozińska, N., Glińska-Lewczuk, K., Burandt, P., Kobus, S., Gotkiewicz, W., Szymańska, M., Bąkowska, M., & Obolewski, K. (2018). Water Quality as an Indicator of Stream Restoration Effects—A Case Study of the Kwacza River Restoration Project. Water, 10(9), 1249. https://doi.org/10.3390/w10091249