Optimal Operation of Cascade Reservoirs for Flood Control of Multiple Areas Downstream: A Case Study in the Upper Yangtze River Basin
Abstract
:1. Introduction
2. Optimal Flood Control Reservoir Operation Model
2.1. Optimal Operation in the First Stage
2.1.1. Objective Function
2.1.2. Constraints for Model in the First Stage
2.2. Optimal Operation in the Second Stage
2.2.1. Objective Function
2.2.2. Constraints for the Model in the Second Stage
2.3. Optimization Algorithm
2.3.1. Dynamic Programming (DP)
2.3.2. Progressive Optimality Algorithm (POA)
3. Study Area
3.1. Introduction of Study Area
3.2. Data of Study Area
4. Application
4.1. Design Flood Hydrographs
4.2. Optimal Reservoir Operation Results
4.2.1. Operation Results of the Xiluodu and Xiangjiaba Reservoirs
4.2.2. Operation Results of the Three Gorges Reservoir
4.3. Comparisons with the Current Operation Rules of Xiluodu, Xiangjiaba and TGD in the Flood Season
5. Conclusions and Discussions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Webster, T.; Mcguigan, K.; Collins, K.; Macdonald, C. Integrated river and coastal hydrodynamic flood risk mapping of the lahave river estuary and town of Bridgewater, Nova Scotia, Canada. Water 2014, 6, 517–546. [Google Scholar] [CrossRef]
- Schnebele, E.; Cervone, G.; Kumar, S.; Waters, N. Real time estimation of the calgary floods using limited remote sensing data. Water 2014, 6, 381–398. [Google Scholar] [CrossRef]
- Morita, M. Flood risk impact factor for comparatively evaluating the main causes that contribute to flood risk in urban drainage areas. Water 2015, 6, 253–270. [Google Scholar] [CrossRef]
- Onyutha, C.; Willems, P. Uncertainties in flow-duration-frequency relationships of high and low flow extremes in lake victoria basin. Water 2013, 5, 1561–1579. [Google Scholar] [CrossRef]
- Assani, A.; Landry, R.; Labrèche, M.; Frenette, J.J.; Gratton, D. Temporal variability of monthly daily extreme water levels in the st. Lawrence river at the sorel station from 1912 to 2010. Water 2014, 6, 196–212. [Google Scholar] [CrossRef]
- Joo, J.; Lee, J.; Kim, J.H.; Jun, H.; Jo, D. Inter-event time definition setting procedure for urban drainage systems. Water 2013, 6, 45–58. [Google Scholar] [CrossRef]
- Keast, D.; Ellison, J. Magnitude frequency analysis of small floods using the annual and partial series. Water 2013, 5, 1816–1829. [Google Scholar] [CrossRef]
- Box, P.; Thomalla, F.; van den Honert, R. Flood risk in australia: Whose responsibility is it, anyway? Water 2013, 5, 1580–1597. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Guo, S.L.; Chang, F.J.; Liu, P.; Chen, A.B. Methodology that improves water utilization and hydropower generation without increasing flood risk in mega cascade reservoirs. Energy 2018, 143, 785–796. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, P.; Chen, X.; Wang, L.; Ai, X.; Feng, M.; Liu, D.; Liu, Y. Optimal operation of multi-reservoir systems considering time-lags of flood routing. Water Resour. Manag. 2016, 30, 523–540. [Google Scholar] [CrossRef]
- Chen, C.; Yuan, Y.; Yuan, X. An improved nsga-iii algorithm for reservoir flood control operation. Water Resour. Manag. 2017, 31, 4469–4483. [Google Scholar] [CrossRef]
- Chen, L.; Singh, V.; Huang, K. Bayesian technique for the selection of probability distributions for frequency analyses of hydrometeorological extremes. Entropy 2018, 20, 117. [Google Scholar] [CrossRef]
- Chen, L.; Singh, V.P. Entropy-based derivation of generalized distributions for hydrometeorological frequency analysis. J. Hydrol. 2018, 557, 699–712. [Google Scholar] [CrossRef]
- Narasaiah, M.L. Microcredit and Agricultural Development; Discovery Publish House: New Delhi, India, 2007. [Google Scholar]
- Liu, X.; Chen, L.; Zhu, Y.; Singh, V.P.; Qu, G.; Guo, X. Multi-objective reservoir operation during flood season considering spillway optimization. J. Hydrol. 2017, 552, 554–563. [Google Scholar] [CrossRef]
- Yazdi, J.; Neyshabouri, S.A.A.S. Optimal design of flood-control multi-reservoir system on a watershed scale. Nat. Hazards 2012, 63, 629–646. [Google Scholar] [CrossRef]
- Lee, S.Y.; Hamlet, A.F.; Fitzgerald, C.J.; Burges, S.J. Optimized flood control in the columbia river basin for a global warming scenario. J. Water Resour. Plan. Manag. ASCE 2009, 135, 440–450. [Google Scholar] [CrossRef]
- Qi, Y.; Yu, J.; Li, X.; Wei, Y.; Miao, Q. Reservoir flood control operation using multi-objective evolutionary algorithm with decomposition and preferences. Appl. Soft Comput. 2017, 50, 21–33. [Google Scholar] [CrossRef]
- Li, X.; Guo, S.; Liu, P.; Chen, G. Dynamic control of flood limited water level for reservoir operation by considering inflow uncertainty. J. Hydrol. 2010, 391, 126–134. [Google Scholar] [CrossRef]
- Chen, J.; Guo, S.; Li, Y.; Liu, P.; Zhou, Y. Joint operation and dynamic control of flood limiting water levels for cascade reservoirs. Water Resour. Manag. 2013, 27, 749–763. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, S.; Liu, P.; Xu, C. Joint operation and dynamic control of flood limiting water levels for mixed cascade reservoir systems. J. Hydrol. 2014, 519, 248–257. [Google Scholar] [CrossRef]
- He, X.; Zhang, L.; Liu, L. Study on flood control operation of jinsha river cascade reservoirs combined with the three gorges along the yangtze river. Mater. Sci. Eng. 2017, 199, 012032. [Google Scholar]
- Sahoo, B. Field application of the multilinear muskingum discharge routing method. Water Resour. Manag. 2013, 27, 1193–1205. [Google Scholar] [CrossRef]
- Khan, M.H. Muskingum flood routing model for multiple tributaries. Water Resour. Res. 1993, 29, 1057–1062. [Google Scholar] [CrossRef]
- Gill, M.A. Flood routing by the muskingum method. J. Hydrol. 1978, 36, 353–363. [Google Scholar] [CrossRef]
- Yeh, W.W.G. Reservoir management and operations models: A state-of-the-art review. Water Resour. Res. 1985, 21, 1797–1818. [Google Scholar] [CrossRef]
- Choudhury, P. Reservoir flood control operation model incorporating multiple uncontrolled water flows. Lakes Reserv. Res. Manag. 2010, 15, 153–163. [Google Scholar] [CrossRef]
- Hall, W.A.; Butcher, W.S.; Esogbue, A. Optimization of the operation of a multiple-purpose reservoir by dynamic programming. Water Resour. Res. 1968, 4, 471–477. [Google Scholar] [CrossRef]
- Loucks, D.P.; Sigvaldason, O.T. Multiple-Reservoir Operation in North America; American Society of Civil Engineers (ASCE): Reston, VA, USA, 1982; pp. 711–728. [Google Scholar]
- Labadie, J.W. Optimal operation of multireservoir systems: State-of-the-art review. J. Water Resour. Plan. Manag. 2004, 130, 93–111. [Google Scholar] [CrossRef]
- Butcher, W.S. Stochastic dynamic programming for optimum reservoir operation. Water Resour. Bull. 1971, 7, 115–123. [Google Scholar] [CrossRef]
- Yeh, W.W.G.; Becker, L.; Chu, W.-S. Real-time hourly reservoir operation. J. Water Resour. Plan. Manag. Div. Am. Soc. Civ. Eng. 1979, 105, 187–203. [Google Scholar]
- Yakowitz, S. Dynamic programming applications in water resources. Water Resour. Res. 1982, 18, 673–696. [Google Scholar] [CrossRef]
- Kelman, J.; Stedinger, J.R.; Cooper, L.A.; Hsu, E.; Sun-Quan, Y. Sampling stochastic dynamic programming applied to reservoir operation. Water Resour. Res. 1990, 26, 447–454. [Google Scholar] [CrossRef]
- Heidari, M.; Chow, V.T.; Kokotović, P.V.; Meredith, D.D. Discrete differential dynamic programing approach to water resources systems optimization. Water Resour. Res. 1971, 7, 273–282. [Google Scholar] [CrossRef]
- Chow, V.T.; Cortes-Rivera, G. Application of DDDP in Water Resources Planning; University of Illinois at Urbana-Champaign. Water Resources Center: Saint Paul, MN, USA, 1974. [Google Scholar]
- Cheng, C.T.; Wang, S.; Chau, K.W.; Wu, X.Y. Parallel discrete differential dynamic programming for multireservoir operation. Environ. Model. Softw. 2014, 57, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Larson, R.E.; Korsak, A.J. A Dynamic Programming Successive Approximations Technique with Convergence Proofs; Pergamon Press, Inc.: Oxford, UK, 1970; pp. 245–252. [Google Scholar]
- Erkmen, I.; Karatas, B. Short-term hydrothermal coordination by using multi-pass dynamic programming with successive approximation. In Proceedings of the Mediterranean Electrotechnical Conference (MELECON ’94), Antalya, Turkey, 12–14 April 1994; Volume 923, pp. 925–928. [Google Scholar]
- Liu, P.; Cai, X.M.; Guo, S.L. Deriving multiple near-optimal solutions to deterministic reservoir operation problems. Water Resour. Res. 2011, 47, 20. [Google Scholar] [CrossRef]
- Howson, H.R.; Sancho, N.G.F. A new algorithm for the solution of multi-state dynamic programming problems. Math. Program. 1975, 8, 114–116. [Google Scholar] [CrossRef]
- Turgeon, A. Optimal short-term hydro scheduling from the principle of progressive optimality. Water Resour. Res. 1981, 17, 481–486. [Google Scholar] [CrossRef]
- Guo, S.L.; Chen, J.H.; Li, Y.; Liu, P.; Li, T.Y. Joint operation of the multi-reservoir system of the three gorges and the qingjiang cascade reservoirs. Energies 2011, 4, 1036–1050. [Google Scholar] [CrossRef]
- Chen, L.; Singh, V.P.; Guo, S.L.; Hao, Z.C.; Li, T.Y. Flood coincidence risk analysis using multivariate copula functions. J. Hydrol. Eng. 2012, 17, 742–755. [Google Scholar] [CrossRef]
- Chen, L.; Ye, L.; Singh, V.; Asce, F.; Zhou, J.; Guo, S. Determination of input for artificial neural networks for flood forecasting using the copula entropy method. J. Hydrol. Eng. 2014, 19, 217–226. [Google Scholar] [CrossRef]
- Chen, L.; Singh, V.P.; Guo, S.; Zhou, J.; Zhang, J. Copula-based method for multisite monthly and daily streamflow simulation. J. Hydrol. 2015, 528, 369–384. [Google Scholar] [CrossRef]
- Nezhikhovsky, R.A. Channel Network of the Basin and Runoff Formation; Hydrometeorological Publishing: Leningrad, Russia, 1971. [Google Scholar]
- Yue, S.; Ouarda, T.B.M.J.; Bobée, B.; Legendre, P.; Bruneau, P. Approach for describing statistical properties of flood hydrograph. J. Hydrol. Eng. 2002, 7, 147–153. [Google Scholar] [CrossRef]
- Chen, L.; Guo, S.L.; Yan, B.W.; Liu, P.; Fang, B. A new seasonal design flood method based on bivariate joint distribution of flood magnitude and date of occurrence. Hydrol. Sci. J. 2010, 55, 1264–1280. [Google Scholar] [CrossRef] [Green Version]
- Serinaldi, F.; Grimaldi, S. Synthetic design hydrographs based on distribution functions with finite support. J. Hydrol. Eng. 2011, 16, 434–446. [Google Scholar] [CrossRef]
- Vandenberghe, S.; Berg, M.J.; Gräler, B.; Petroselli, A.; Grimaldi, S.; De Baets, B.; Verhoest, N.E.C. Joint return periods in hydrology: A critical and practical review focusing on synthetic design hydrograph estimation. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 6781–6828. [Google Scholar] [CrossRef]
- Graeler, B.; van den Berg, M.J.; Vandenberghe, S.; Petroselli, A.; Grimaldi, S.; De Baets, B.; Verhoest, N.E.C. Multivariate return periods in hydrology: A critical and practical review focusing on synthetic design hydrograph estimation. Hydrol. Earth Syst. Sci. 2013, 17, 1281–1296. [Google Scholar] [CrossRef] [Green Version]
- Brunner, M.I.; Viviroli, D.; Sikorska, A.E.; Vannier, O.; Favre, A.C.; Seibert, J. Flood type specific construction of synthetic design hydrographs. Water Resour. Res. 2017, 53, 1390–1406. [Google Scholar] [CrossRef] [Green Version]
- GONG. Flooding 1990s along the yangtze river, has it concern of global warming? J. Geogr. Sci. 2001, 11, 43–52. [Google Scholar] [CrossRef]
- Wang, L.N.; Chen, X.H.; Shao, Q.X.; Li, Y. Flood indicators and their clustering features in wujiang river, south china. Ecol. Eng. 2015, 76, 66–74. [Google Scholar] [CrossRef]
- Huang, K.; Lu, C.; Zhou, J.; Zhang, J.; Singh, V.P. Flood hydrograph coincidence analysis for mainstream and its tributaries. J. Hydrol. 2018, 565, 341–353. [Google Scholar] [CrossRef]
- Chen, L.; Singh, V.P.; Guo, S.; Zhou, J.; Zhang, J.; Liu, P. An objective method for partitioning the entire flood season into multiple sub-seasons. J. Hydrol. 2015, 528, 621–630. [Google Scholar] [CrossRef]
- Chen, L.; Singh, V.P.; Guo, S.L.; Fang, B.; Liu, P. A new method for identification of flood seasons using directional statistics. Hydrol. Sci. J. 2013, 58, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Li, T.; Liu, R.; Chen, J.; Li, J.; Zhang, A.; Wang, G. A service-oriented architecture for ensemble flood forecast from numerical weather prediction. J. Hydrol. 2015, 527, 933–942. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, L.; Singh, V.P.; Cao, W.; Wang, D. Erratum to: Determination of the distribution of flood forecasting error. Nat. Hazards 2015, 75, 2065. [Google Scholar] [CrossRef]
- Chen, L.; Singh, V.P.; Lu, W.; Zhang, J.; Zhou, J.; Guo, S. Streamflow forecast uncertainty evolution and its effect on real-time reservoir operation. J. Hydrol. 2016, 540, 712–726. [Google Scholar] [CrossRef]
- Huang, K.; Chen, L.; Wang, Q.; Dai, L.; Zhou, J.; Singh, V.P.; Huang, M.; Zhang, J. Risk analysis of flood control reservoir operation considering multiple uncertainties. J. Hydrol. 2018. [Google Scholar] [CrossRef]
- Chen, J.; Zhong, P.A.; Zhao, Y.F. Research on a layered coupling optimal operation model of the three gorges and gezhouba cascade hydropower stations. Energy Convers. Manag. 2014, 86, 756–763. [Google Scholar] [CrossRef]
Dam | Drainage Area (104 km2) | Normal Water Level (m) | Flood Control Water Level (m) | Dead Water Level (m) | Regulating Storage Capacity (Billion m3) | Flood Control Reservoir Capacity (Billion m3) |
---|---|---|---|---|---|---|
Xiluodu | 45.4 | 600 | 560 | 540 | 6.5 | 4.7 |
Xiangjiaba | 45.9 | 380 | 370 | 370 | 0.9 | 0.9 |
TGD | 100 | 175 | 145 | 145 | 16.5 | 2.2 |
Months | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Runoff (m3/s) | 1660 | 1420 | 1350 | 1540 | 2320 | 5080 | 9580 | 10,200 | 10,000 | 6540 | 3450 | 2180 |
Volume (108 m3) | 44.5 | 34.7 | 36.2 | 39.8 | 62.1 | 132 | 257 | 274 | 260 | 175 | 89.5 | 58.3 |
Percentage (%) | 3.04 | 2.38 | 2.47 | 2.72 | 4.25 | 9.00 | 17.5 | 18.7 | 17.8 | 12.0 | 6.12 | 3.99 |
TFH 1 | Return Periods (Year) | Inflow of the Three Gorges (m³/s) | Flood Stored in the Xiluodu and Xiangjiaba Reservoirs (108 m³) | ||||||
---|---|---|---|---|---|---|---|---|---|
Natural Runoff | Stage 1 | Flood Reduction | Stage 2 | Flood Reduction | Stage 1 | Stage 2 | Comparisons | ||
1954 | 50 | 76,676 | 67,500.34 | 9175.66 | 67,284.74 | 215.60 | 144.28 | 159.37 | 15.08 |
100 | 67,025.4 | 58,388.07 | 8637.32 | 58,147.99 | 240.08 | 138.16 | 152.22 | 14.06 | |
1000 | 63,720.4 | 55,267.93 | 8452.47 | 54,993.17 | 274.75 | 133.9 | 148.0 | 14.1 | |
1968 | 50 | 96,390 | 84,091.62 | 12,298.37 | 84,091.0 | 0.57 | 240.2 | 252.1 | 11.9 |
100 | 83,916 | 74,102.2 | 9813.77 | 74,101.3 | 0.92 | 234.2 | 243.5 | 9.3 | |
1000 | 79,833.6 | 70,840.2 | 8993.4 | 70,839.8 | 0.35 | 231.6 | 239.9 | 8.3 | |
1969 | 50 | 92,599 | 77,086.3 | 15,512.6 | 76,456.3 | 630.1 | 160.0 | 174.3 | 14.3 |
100 | 80,908.9 | 64,984.7 | 15,924.1 | 64,588.8 | 395.9 | 150.9 | 162.7 | 11.8 | |
1000 | 76,928.4 | 61,000.5 | 15,927.9 | 60,846.7 | 153.7 | 147.6 | 158.6 | 11.0 | |
1980 | 50 | 91,182 | 79,087.6 | 12,094.38 | 78,731.4 | 356.17 | 163.8 | 175.7 | 11.9 |
100 | 79,661.4 | 66,305.01 | 13,356.39 | 66,116.25 | 188.75 | 167.32 | 179.13 | 11.8 | |
1000 | 75,730.2 | 63,189.1 | 12,541.04 | 63,160.1 | 29.03 | 165.79 | 176.63 | 10.8 | |
1981 | 50 | 111,200 | 96,768.65 | 14,431.35 | 96,689.93 | 78.71 | 177.64 | 188.79 | 11.1 |
100 | 97,091.5 | 88,907.63 | 8183.8 | 88,408.22 | 499.4 | 151.5 | 161.02 | 9.4 | |
1000 | 92,921.5 | 81,542.78 | 11,378.72 | 81,504.39 | 38.38 | 156.96 | 165.87 | 8.9 | |
1982 | 50 | 92,040 | 79,071.08 | 12,968.92 | 79,030.08 | 41 | 162.40 | 174.88 | 12.48 |
100 | 80,417 | 69,906.41 | 10,510.5 | 69,889.25 | 17.16 | 149.2 | 163.11 | 13.9 | |
1000 | 76,523 | 66,847.61 | 9675.39 | 66,832.96 | 14.64 | 143.3 | 157.4 | 14.06 | |
50 | 95,732 | 87,083.95 | 8648.05 | 87,083.9 | 0.05 | 182.1 | 195.1 | 13.0 | |
1983 | 100 | 82,582 | 74,997.29 | 7584.7 | 74,997.29 | 0 | 167.09 | 186.42 | 19.3 |
1000 | 78,479.2 | 70,371.11 | 8108.08 | 70,371.1 | 0 | 188.91 | 206.8 | 17.89 | |
50 | 80,106 | 69,897.8 | 10,208.17 | 68,171.5 | 1726.338 | 155.74 | 169.56 | 13.8 | |
1988 | 100 | 69,772.8 | 59,948.75 | 9824.05 | 59,915.72 | 33.03 | 144.4 | 156.49 | 12.04 |
1000 | 66,360 | 57,210.63 | 9149.37 | 57,210.63 | 0 | 142.0 | 153.2 | 11.2 | |
50 | 78,501 | 69,472.82 | 9028.18 | 69,058.74 | 414.1 | 153.67 | 181.93 | 28.25 | |
1996 | 100 | 68,554.8 | 60,624.35 | 7930.4 | 60,622.61 | 1.74 | 140.67 | 174.7 | 34.02 |
1000 | 65,184.6 | 57,982.89 | 7201.7 | 57,982.76 | 0.13 | 136.29 | 170.24 | 33.9 | |
50 | 109,705.2 | 92,571.2 | 17,133.9 | 92,570.6 | 0.6 | 192.3 | 201.2 | 8.8 | |
1998 | 100 | 67,438.1 | 59,905.7 | 7532.3 | 57,890.4 | 2015.3 | 159.4 | 176.6 | 17.2 |
1000 | 64,168 | 56,802.3 | 7365.6 | 54,815.2 | 1987.0 | 157.7 | 174.3 | 16.6 | |
50 | 90,153 | 73,305.4 | 16,847.5 | 73,306.6 | -1.1 | 180.9 | 197.6 | 16.7 | |
1999 | 100 | 78,642.9 | 64,300.6 | 14,342.6 | 64,143.8 | 156.4 | 168.5 | 185.0 | 16.4 |
1000 | 74,787.3 | 61,446.0 | 13,341.2 | 61,318.9 | 127.1 | 164.1 | 181.5 | 17.4 | |
50 | 81,648 | 70,413.2 | 11,234.7 | 69,874.5 | 538.7 | 127.5 | 136.5 | 9.0 | |
2002 | 100 | 71,344.8 | 60,551.9 | 10,792.8 | 60,001.7 | 550.2 | 117.2 | 124.5 | 7.3 |
1000 | 67,845.6 | 57,273.2 | 10,572.3 | 56,824.3 | 448.8 | 113.5 | 120.7 | 7.2 | |
50 | 109,705.2 | 99,823.4 | 9881.8 | 99,823.0 | 0.39 | 190.3 | 201.8 | 11.4 | |
2010 | 100 | 96,407.6 | 88,551.2 | 7856.3 | 88,550.7 | 0.52 | 176.4 | 189.3 | 12.9 |
1000 | 91,088.56 | 84,048.3 | 7040.2 | 84,047.9 | 0.5 | 167.5 | 179.7 | 12.2 |
TFH | Return Periods (Year) | Without Operations | For the Jingjiang Area | For the Chenglingji Area | ||
---|---|---|---|---|---|---|
Single | Cascade | Single | Cascade | |||
1954 | 50 | 4.8 | 0 | 0 | 0 | 0 |
100 | 8.4 | 0 | 0 | 0 | 0 | |
1000 | 23.7 | 0 | 0 | 0 | 0 | |
1968 | 50 | 17.0 | 0 | 0 | 0 | 0 |
100 | 24.0 | 4.2 | 0 | 4.2 | 0 | |
1000 | 56.5 | 33.9 | 37.9 | 56.4 | 37.9 | |
1969 | 50 | 12.6 | 0 | 0 | 0 | 0 |
100 | 17.7 | 0 | 0 | 0 | 0 | |
1000 | 37.5 | 17.3 | 12.2 | 17.2 | 12.2 | |
1980 | 50 | 8.5 | 0 | 0 | 0 | 0 |
100 | 11.1 | 0 | 0 | 0 | 0 | |
1000 | 24.8 | 0 | 0 | 0 | 0 | |
1981 | 50 | 14.0 | 0 | 0 | 0 | 0 |
100 | 18.5 | 0 | 0 | 0 | 0 | |
1000 | 38.1 | 0 | 0 | 0 | 0 | |
1982 | 50 | 8.3 | 0 | 0 | 0 | 0 |
100 | 11.3 | 0 | 0 | 0 | 0 | |
1000 | 26.0 | 17.8 | 0 | 16.9 | 0 | |
50 | 19.0 | 0 | 0 | 0 | 0 | |
1983 | 100 | 25.5 | 0 | 0 | 0 | 0 |
1000 | 55.2 | 55.2 | 39.6 | 55.1 | 39.7 | |
50 | 5.9 | 0 | 0 | 0 | 0 | |
1988 | 100 | 10.5 | 0 | 0 | 0 | 0 |
1000 | 26.7 | 20.1 | 0 | 20.1 | 0 | |
50 | 9.7 | 0 | 0 | 0 | 0 | |
1996 | 100 | 15.9 | 0 | 0 | 0 | 0 |
1000 | 42.1 | 18.9 | 13.4 | 18.9 | 13.4 | |
50 | 6.0 | 0 | 0 | 0 | 0 | |
1998 | 100 | 12.9 | 0 | 0 | 0 | 0 |
1000 | 29.4 | 0 | 0 | 0 | 0 | |
50 | 9.4 | 0 | 0 | 0 | 0 | |
1999 | 100 | 15.2 | 0 | 0 | 0 | 0 |
1000 | 37.5 | 14.3 | 8.9 | 14.3 | 8.9 | |
50 | 6.8 | 0 | 0 | 0 | 0 | |
2002 | 100 | 9.8 | 0 | 0 | 0 | 0 |
1000 | 20.0 | 0 | 0 | 0 | 0 | |
50 | 13.4 | 0 | 0 | 0 | 0 | |
2010 | 100 | 17.2 | 0 | 0 | 0 | 0 |
1000 | 29.4 | 0 | 0 | 0 | 0 |
TFH | Return Periods (Year) | Without Operations | For the Jingjiang Area | For the Chenglingji Area | ||
---|---|---|---|---|---|---|
Single | Cascade | Single | Cascade | |||
1954 | 50 | 31.2 | 35.4 | 26.4 | 9.6 | 4.0 |
100 | 37.1 | 45.3 | 36.6 | 19.3 | 13.7 | |
1000 | 54.3 | 74.2 | 70.1 | 59.8 | 54.2 | |
1968 | 50 | 59.9 | 73.5 | 63.8 | 64.5 | 59.0 |
100 | 69.8 | 88.4 | 80.8 | 79.7 | 78.4 | |
1000 | 93.9 | 111.1 | 101.7 | 93.9 | 102.1 | |
1969 | 50 | 37.7 | 50.0 | 38.8 | 33.2 | 28.3 |
100 | 45.2 | 61.7 | 50.5 | 50.5 | 45.6 | |
1000 | 70.8 | 88.8 | 87.3 | 88.9 | 87.4 | |
1980 | 50 | 28.7 | 35.7 | 26.0 | 12.1 | 6.6 |
100 | 36.2 | 46.1 | 35.9 | 23.5 | 18.0 | |
1000 | 61.6 | 83.9 | 74.2 | 77.2 | 71.6 | |
1981 | 50 | 39.8 | 49.4 | 38.8 | 20.5 | 14.4 |
100 | 46.3 | 59.1 | 48.2 | 35.8 | 30.3 | |
1000 | 68.3 | 98.0 | 91.2 | 89.9 | 84.4 | |
1982 | 50 | 28.9 | 35.1 | 25.6 | 14.8 | 3.7 |
100 | 35.5 | 43.2 | 34.3 | 24.6 | 13.6 | |
1000 | 51.7 | 67.9 | 61.9 | 56.4 | 52.5 | |
50 | 47.6 | 64.4 | 52.5 | 52.4 | 46.9 | |
1983 | 100 | 55.5 | 78.9 | 69.9 | 72.5 | 66.9 |
1000 | 83.0 | 83.0 | 92.2 | 82.8 | 91.7 | |
50 | 30.5 | 34.4 | 25.4 | 17.8 | 12.4 | |
1988 | 100 | 34.4 | 41.1 | 33.6 | 30.3 | 24.8 |
1000 | 48.2 | 54.1 | 62.8 | 52.4 | 62.6 | |
50 | 47.6 | 57.1 | 51.5 | 32.5 | 26.9 | |
1996 | 100 | 54.0 | 68.0 | 63.9 | 43.7 | 38.1 |
1000 | 68.7 | 89.4 | 88.8 | 63.1 | 63.0 | |
50 | 55.5 | 61.2 | 54.1 | 37.5 | 32.0 | |
1998 | 100 | 62.0 | 73.7 | 68.1 | 51.9 | 46.4 |
1000 | 41.5 | 61.5 | 53.0 | 39.3 | 33.7 | |
50 | 43.5 | 52.2 | 41.1 | 24.7 | 19.1 | |
1999 | 100 | 50.6 | 62.3 | 52.9 | 42.6 | 37.1 |
1000 | 71.7 | 89.6 | 88.9 | 82.6 | 82.5 | |
50 | 18.2 | 22.9 | 19.4 | 1.6 | 0.0 | |
2002 | 100 | 20.8 | 27.1 | 24.0 | 5.6 | 0.1 |
1000 | 32.0 | 43.1 | 40.5 | 19.8 | 14.6 | |
50 | 23.2 | 32.1 | 23.1 | 3.0 | 0.0 | |
2010 | 100 | 27.9 | 39.3 | 29.3 | 9.0 | 3.3 |
1000 | 41.5 | 61.5 | 52.7 | 39.3 | 33.7 |
TFH | 1954 | 1981 | 1998 | ||||||
---|---|---|---|---|---|---|---|---|---|
Return Periods (Year) | 1000 | 100 | 50 | 1000 | 100 | 50 | 1000 | 100 | 50 |
Single mode | 175.0 | 159.3 | 153.9 | 174.4 | 166.1 | 163.9 | 174.7 | 160.7 | 153.4 |
Cascade mode | 169.3 | 150.8 | 145.0 | 169.4 | 164.1 | 156.4 | 169.8 | 152.4 | 145.3 |
Comparison | 5.7 | 8.5 | 8.9 | 5.0 | 2.0 | 7.5 | 4.9 | 8.3 | 8.1 |
TFH | 1954 | 1981 | 1998 | ||||||
---|---|---|---|---|---|---|---|---|---|
Return Periods (Year) | 1000 | 100 | 50 | 1000 | 100 | 50 | 1000 | 100 | 50 |
Single mode | 175 | 175 | 175 | 175 | 175 | 175 | 175 | 175 | 175 |
Cascade mode | 171.9 | 175 | 175 | 170.8 | 172.0 | 173.0 | 172.3 | 175 | 175 |
Comparison | 3.1 | 0 | 0 | 4.2 | 3.0 | 2.0 | 2.7 | 0 | 0 |
TFH | Return Periods (Year) | Without Operations | For the Jingjiang Area | For both the Jingjiang and Chenglingji Areas | ||
---|---|---|---|---|---|---|
Current | Optimal | Current | Optimal | |||
1954 | 50 | 4.8 | 0 | 0 | 0 | 0 |
100 | 8.4 | 0 | 0 | 0 | 0 | |
1000 | 23.7 | 0 | 0 | 5.7 | 0 | |
1980 | 50 | 8.5 | 0 | 0 | 0 | 0 |
100 | 11.1 | 0 | 0 | 0 | 0 | |
1000 | 24.8 | 0 | 0 | 4.1 | 0 | |
1981 | 50 | 14.0 | 0 | 0 | 0 | 0 |
100 | 18.5 | 0 | 0 | 0 | 0 | |
1000 | 38.1 | 0 | 0 | 5.2 | 0 | |
50 | 9.7 | 0 | 0 | 0 | 0 | |
1996 | 100 | 15.9 | 0 | 0 | 0 | 0 |
1000 | 42.1 | 18.7 | 13.4 | 22.8 | 133.8 | |
50 | 9.4 | 0 | 0 | 0 | 0 | |
1999 | 100 | 15.2 | 0 | 0 | 0 | 0 |
1000 | 37.5 | 13.8 | 8.9 | 18.2 | 8.9 | |
50 | 6.8 | 0 | 0 | 0 | 0 | |
2002 | 100 | 9.8 | 0 | 0 | 0 | 0 |
1000 | 20.0 | 0 | 0 | 2.8 | 0 |
TFH | Return Periods (Year) | Without Operations | For the Jingjiang Area | For both the Jingjiang and Chenglingji Areas | ||
---|---|---|---|---|---|---|
Current | Optimal | Current | Optimal | |||
1954 | 50 | 31.2 | 35.5 | 26.4 | 26.8 | 4.0 |
100 | 37.1 | 45.2 | 36.6 | 36.2 | 13.7 | |
1000 | 54.3 | 75.1 | 70.1 | 65.3 | 54.2 | |
1980 | 50 | 28.7 | 35.7 | 26.0 | 21.1 | 6.6 |
100 | 36.2 | 46.2 | 35.9 | 32.7 | 18.0 | |
1000 | 61.6 | 84.2 | 74.2 | 69.5 | 71.6 | |
1981 | 50 | 39.8 | 50.7 | 38.8 | 38.2 | 14.4 |
100 | 46.3 | 60.4 | 48.2 | 48.2 | 30.3 | |
1000 | 68.3 | 99.2 | 91.2 | 86.4 | 84.4 | |
50 | 47.6 | 57.1 | 51.5 | 49.8 | 26.9 | |
1996 | 100 | 54.0 | 68.6 | 63.9 | 59.9 | 38.1 |
1000 | 68.7 | 89.8 | 88.8 | 74.0 | 63.0 | |
50 | 43.5 | 51.9 | 41.1 | 41.5 | 19.1 | |
1999 | 100 | 50.6 | 62.6 | 52.9 | 52.4 | 37.1 |
1000 | 71.7 | 90.4 | 88.9 | 79.4 | 82.5 | |
50 | 18.2 | 23.7 | 19.4 | 17.8 | 0 | |
2002 | 100 | 20.8 | 28.3 | 24.0 | 20.7 | 0.1 |
1000 | 32.0 | 44.8 | 40.5 | 32.3 | 14.6 |
TFH | 1954 | 1968 | 1998 |
---|---|---|---|
Cascade regular operation model | 157.3 | 145.3 | 147.9 |
Cascade optimal operation model | 148.8 | 145 | 145.2 |
Comparisons | 8.5 | 0.3 | 2.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Sun, N.; Chen, L.; Ding, Y.; Zhou, J.; Zha, G.; Luo, G.; Dai, L.; Yang, X. Optimal Operation of Cascade Reservoirs for Flood Control of Multiple Areas Downstream: A Case Study in the Upper Yangtze River Basin. Water 2018, 10, 1250. https://doi.org/10.3390/w10091250
Zhou C, Sun N, Chen L, Ding Y, Zhou J, Zha G, Luo G, Dai L, Yang X. Optimal Operation of Cascade Reservoirs for Flood Control of Multiple Areas Downstream: A Case Study in the Upper Yangtze River Basin. Water. 2018; 10(9):1250. https://doi.org/10.3390/w10091250
Chicago/Turabian StyleZhou, Chao, Na Sun, Lu Chen, Yi Ding, Jianzhong Zhou, Gang Zha, Guanglei Luo, Ling Dai, and Xin Yang. 2018. "Optimal Operation of Cascade Reservoirs for Flood Control of Multiple Areas Downstream: A Case Study in the Upper Yangtze River Basin" Water 10, no. 9: 1250. https://doi.org/10.3390/w10091250
APA StyleZhou, C., Sun, N., Chen, L., Ding, Y., Zhou, J., Zha, G., Luo, G., Dai, L., & Yang, X. (2018). Optimal Operation of Cascade Reservoirs for Flood Control of Multiple Areas Downstream: A Case Study in the Upper Yangtze River Basin. Water, 10(9), 1250. https://doi.org/10.3390/w10091250