Water Resources Allocation Systems under Irrigation Expansion and Climate Change Scenario in Awash River Basin of Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sources of Data
2.3. Methods
2.4. Modeling Set up and Key Assumptions
- All the demanding sites are given equal priority in the provision of water regardless of differences in financial returns expected from each scheme.
- The model also contains four streamflow gauging stations, six transmission links, and six runoff/infiltration lines.
- Six irrigation demand sites are also included in the model (Figure 3).
- The model includes one main river (Awash River) and small tributary rivers (Figure 4).
3. Results
3.1. Analysis of Irrigation Water Demand under Irrigation Expansion Scenario
3.2. Spatiotemporal Occurrence of Unmet Demand under Each Irrigation Site
3.3. Analysis of Unmet Demands under Each Scenario
3.4. Analysis of Water Demand under Climate Scenario
3.5. Model Calibration and Validation
3.6. Shortage of Water in the Basin
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cai, Y.; Xu, M.; Wang, X.; Yue, W.; Li, C. Optimal water utilization and allocation in industrial sectors based on water footprint accounting in Dalian City, China. J. Clean. Prod. 2017, 176, 1283–1291. [Google Scholar]
- Divakar, L.; Babel, M.S.; Perret, S.R.; Gupta, A.D. Optimal allocation of bulk water supplies to competing use sectors based on economic criterion—An application to the Chao Phraya River Basin, Thailand. J. Hydrol. 2011, 401, 22–35. [Google Scholar] [CrossRef]
- Roozbahani, R.; Schreider, S.; Abbasi, B. Optimal water allocation through a multi-objective compromise between environmental, social, and economic preferences. Environ. Model. Softw. 2015, 64, 18–30. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y.; Sun, L.; Zhang, Y. Assessing the effects of precipitation and temperature changes on hydrological processes in a glacier-dominated catchment. Hydrol. Process. 2015, 29, 4830–4845. [Google Scholar] [CrossRef]
- Pettinotti, L.; de Ayala, A.; Ojea, E. Benefits From Water Related Ecosystem Services in Africa and Climate Change. Ecol. Econ. 2018, 149, 294–305. [Google Scholar] [CrossRef]
- Yan, D.; Ludwig, F.; Huang, H.Q.; Werners, S.E. Many-objective robust decision making for water allocation under climate change. Sci. Total Environ. 2017, 607, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Bangash, R.F.; Passuello, A.; Hammond, M.; Schuhmacher, M. Water allocation assessment in low flow river under data scarce conditions: A study of hydrological simulation in Mediterranean basin. Sci. Total Environ. 2012, 440, 60–71. [Google Scholar] [CrossRef]
- Ramsar Convention Secretariat. Water allocation and management planning: Guidelines for the allocation and management of water for maintaining the ecological functions of wetlands. In Ramsar Handbooks for Wise Use of Wetland; Ramsar Convention Secretariat: Gland, Switzerland, 2010; Volume 10. [Google Scholar]
- Hu, Z.; Wei, C.; Yao, L.; Li, L.; Li, C. A multi-objective optimization model with conditional value-at-risk constraints for water allocation equality. J. Hydrol. 2016, 542, 330–342. [Google Scholar] [CrossRef]
- Alauddin, M. Optimization of Water-Allocation Networks with Multiple Contaminants using Genetic Algorithm. Int. J. Biol. Chem. Sci. 2014, 1, 7–14. [Google Scholar]
- Huang, Q.; Huo, Z.; Xu, X.; Huang, G.; Jiang, Y. Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model. Agric. Water Manag. 2014, 147, 67–81. [Google Scholar]
- Jiang, Y.; Xu, X.; Huang, Q.; Huo, Z.; Huang, G. Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model. Agric. Water Manag. 2016, 178, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Leonard, L.; Duffy, C.J. Essential terrestrial variable data workflows for distributed water resources modeling. Environ. Model. Softw. 2013, 50, 85–96. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.; Singh, V.P.; Liu, D. An interval multi-objective programming model for irrigation water allocation under uncertainty. Agric. Water Manag. 2018, 196, 24–36. [Google Scholar] [CrossRef]
- Yandamuri, S.R.; Srinivasan, K.; Murty Bhallamudi, S. Multiobjective Optimal Waste Load Allocation Models for Rivers Using Nondominated Sorting Genetic Algorithm-II. J. Water Resour. Plan. Manag. 2006, 132, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Ren, C.; Guo, P.; Tan, Q.; Zhang, L. A multi-objective fuzzy programming model for optimal use of irrigation water and land resources under uncertainty in Gansu Province, China. J. Clean. Prod. 2017, 164, 85–94. [Google Scholar] [CrossRef]
- Gedefaw, M.; Wang, H.; Yan, D.; Song, X.; Yan, D.; Dong, G.; Wang, J.; Girma, A.; Ali, B.; Batsuren, D.; et al. Trend Analysis of Climatic and Hydrological Variables in the Awash River Basin. Ethiopia 2018, 10, 1554. [Google Scholar] [CrossRef]
- Mekonen, A.; Gebremeskel, T.; Mengistu, A.; Fasil, E.; Melkamu, M. Irrigation water pricing in Awash River Basin of Ethiopia: Evaluation of its impact on scheme-level irrigation performances and willingness to pay. Afr. J. Agric. Res. 2015, 10, 554–565. [Google Scholar] [CrossRef]
- Davijani, M.H.; Banihabib, M.E. Multi-Objective Optimization Model for the Allocation of Water Resources in Arid Regions Based on the Maximization of Socioeconomic Efficiency. Water Resour. Manag. 2016, 30, 927–946. [Google Scholar] [CrossRef]
- Yan, Z.; Zhou, Z.; Sang, X.; Wang, H. Water replenishment for ecological flow with an improved water resources allocation model. Sci. Total Environ. 2018, 643, 1152–1165. [Google Scholar] [CrossRef]
- Masih, I.; Uhlenbrook, S.; Turral, H.; Karimi, P. Analysing streamflow variability and water allocation for sustainable management of water resources in the semi-arid Karkheh river basin, Iran. Phys. Chem. Earth 2009, 34, 329–340. [Google Scholar] [CrossRef]
- Yang, Z.F.; Sun, T.; Cui, B.S.; Chen, B.; Chen, G.Q. Environmental flow requirements for integrated water resources allocation in the Yellow River Basin, China. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2469–2481. [Google Scholar] [CrossRef]
- Berhe, F.T.; Melesse, A.M.; Hailu, D.; Sileshi, Y. Catena MODSIM-based water allocation modeling of Awash River Basin, Ethiopia. Catena 2013, 109, 118–128. [Google Scholar] [CrossRef]
- Wang, L.; Fang, L.; Hipel, K.W. Basin-wide cooperative water resources allocation. Eur. J. Oper. Res. 2008, 190, 798–817. [Google Scholar] [CrossRef]
- Adeba, D. Assessment of water scarcity and its impacts on sustainable development in Awash basin, Ethiopia. Sustain. Water Resour. Manag. 2015, 1, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Ki, B.; Mengistu, G.; Hendrik, G. Climate Risk Management Climate change and population growth impacts on surface water supply and demand of Addis Ababa, Ethiopia. Clim. Risk Manag. 2017, 18, 21–33. [Google Scholar] [CrossRef]
- Basin, A. Evaluation of the Climate Forecast System Reanalysis Weather Data for Watershed Modeling in Upper Awash Basin, Ethiopia. Water 2018, 10, 725. [Google Scholar] [CrossRef]
- Karimi, P.; Bastiaanssen, W.G.M.; Sood, A.; Hoogeveen, J.; Peiser, L.; Bastidas-Obando, E.; Dost, R.J. Spatial evapotranspiration, rainfall and land use data in water accounting—Part 2: Reliability of water acounting results for policy decisions in the Awash Basin. Hydrol. Earth Syst. Sci. 2015, 19, 533–550. [Google Scholar] [CrossRef]
- Hailu, R.; Tolossa, D.; Alemu, G. Water institutions in the Awash basin of Ethiopia: The discrepancies between rhetoric and realities. Int. J. River Basin Manag. 2018, 16, 107–121. [Google Scholar] [CrossRef]
- Edossa, D.C.; Babel, M.S.; Gupta, A.D. Drought analysis in the Awash River Basin, Ethiopia. Water Resour. Manag. 2010, 24, 1441–1460. [Google Scholar] [CrossRef]
- Mersha, A.N. Evaluating the Impacts of IWRM Policy Actions on Demand Satisfaction and Downstream Water Availability in the Upper Awash Basin, Ethiopia. Water 2018, 10, 892. [Google Scholar] [CrossRef]
- Gedefaw, M.; Yan, D.; Wang, H.; Qin, T.; Wang, K. Analysis of the Recent Trends of Two Climate Parameters over Two Eco-Regions of Ethiopia. Water 2019, 11, 161. [Google Scholar] [CrossRef]
- Xiao-jun, W.; Jian-yun, Z.; Elmahdi, A.; Rui-min, H.E. Water demand forecasting under changing environment: A System Dynamics approach. In Risk in Water Resources Management, Proceedings of Symposium H03 held during IUGG2011, Melbourne, Australia, July 2011; IAHS: Edinburgh, UK, 2011. [Google Scholar]
- Adgolign, T.B.; Rao GV, R.S.; Abbulu, Y. WEAP modeling of surface water resources allocation in Didessa. Sustain. Water Resour. Manag. 2016, 2, 55–70. [Google Scholar] [CrossRef]
- Hussen, B.; Mekonnen, A.; Murlidhar, S. Integrated water resources management under climate change scenarios in the sub-basin of Abaya-Chamo, Ethiopia. Model. Earth Syst. Environ. 2018, 4, 221–240. [Google Scholar] [CrossRef]
Data Item | Description | Sources |
---|---|---|
Meteorological data (1980–2016) | Precipitation, temperature | National Meteorological Agency of Ethiopia |
Hydrological data (1980–2014) | Reservoirs, data of Gauging stations | Department of water resources and hydrology of Ethiopia |
Remote sensing data | Digital Elevation Model (DEM) of Awash River Basin | Department of GIS and Remote sensing |
Water demand data |
| Ministry of water resources and energy of Ethiopia |
Irrigation Schemes | Arba | Hombole | Keleta | Metehara | Tibela | Wonji | Total |
---|---|---|---|---|---|---|---|
January | 0.44 | 0.82 | 0.62 | 0.52 | 0.47 | 0.37 | 3.23 |
February | 0.34 | 0.92 | 0.64 | 0.50 | 0.47 | 0.35 | 3.23 |
March | 0.20 | 1.31 | 0.57 | 0.49 | 0.34 | 0.35 | 3.26 |
April | 0.50 | 1.14 | 0.58 | 0.50 | 0.34 | 0.37 | 3.44 |
May | 0.50 | 1.00 | 0.84 | 0.59 | 4.51 | 0.43 | 7.88 |
June | 0.50 | 1.08 | 0.77 | 0.65 | 0.34 | 0.44 | 3.79 |
July | 0.56 | 0.11 | 0.18 | 0.31 | 0.11 | 0.33 | 1.60 |
August | 0.87 | 0.28 | 0.08 | 0.27 | 0.00 | 0.26 | 1.76 |
September | 1.37 | 0.77 | 0.16 | 0.50 | 0.11 | 0.24 | 3.16 |
October | 0.84 | 1.01 | 0.24 | 0.58 | 0.23 | 0.40 | 3.30 |
November | 0.47 | 1.00 | 0.58 | 0.50 | 0.34 | 0.35 | 3.24 |
December | 0.47 | 0.78 | 0.65 | 0.65 | 0.34 | 0.36 | 3.13 |
Total | 7.06 | 10.23 | 5.90 | 5.90 | 7.62 | 4.27 | 41.0 |
Scenario | Reference (1980–2016) | Medium Term Development (2017–2030) | Long Term Development (2031–2050) |
---|---|---|---|
January | 0.09 | 6.30 | 6.30 |
February | 0.09 | 6.39 | 6.39 |
March | 0.10 | 7.03 | 7.03 |
April | 0.11 | 7.63 | 7.63 |
May | 0.12 | 8.27 | 8.27 |
June | 0.13 | 9.57 | 9.57 |
July | 9.40 | 12.57 | 12.57 |
August | 16.50 | 24.40 | 24.40 |
September | 0.23 | 16.40 | 16.40 |
October | 0.11 | 7.75 | 7.75 |
November | 0.10 | 6.91 | 6.91 |
December | 0.09 | 6.43 | 6.43 |
Summary | 27.07 | 119.65 | 119.65 |
Parameters | Model Ranges | Optimal Range | Unit |
---|---|---|---|
Soil water capacity | 0–higher | 0–1200 | mm |
Root zone conductivity | Default = 20 | 10–50 | Mm/month |
Deep water conductivity | 0.1–higher | 20 | Mm/month |
Runoff resistance factor | 0–1000 (default = 20) | 0–100 | |
Preferred flow direction | 0–1 (default = 0.15) | 0.5–1 | |
Initial Z1 | 0–100 | % | |
Initial Z2 | 0–100 | % |
Gauging Stations | Calibration | Validation | ||
---|---|---|---|---|
R2 | NSE | R2 | NSE | |
Hombole | 0.89 | 0.83 | 0.91 | 0.84 |
Melka Kuntre | 0.85 | 0.73 | 0.86 | 0.73 |
Akaki | 0.73 | 0.65 | 0.63 | 0.5 |
Modjo | 0.91 | 0.85 | 0.54 | 0.68 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gedefaw, M.; Wang, H.; Yan, D.; Qin, T.; Wang, K.; Girma, A.; Batsuren, D.; Abiyu, A. Water Resources Allocation Systems under Irrigation Expansion and Climate Change Scenario in Awash River Basin of Ethiopia. Water 2019, 11, 1966. https://doi.org/10.3390/w11101966
Gedefaw M, Wang H, Yan D, Qin T, Wang K, Girma A, Batsuren D, Abiyu A. Water Resources Allocation Systems under Irrigation Expansion and Climate Change Scenario in Awash River Basin of Ethiopia. Water. 2019; 11(10):1966. https://doi.org/10.3390/w11101966
Chicago/Turabian StyleGedefaw, Mohammed, Hao Wang, Denghua Yan, Tianling Qin, Kun Wang, Abel Girma, Dorjsuren Batsuren, and Asaminew Abiyu. 2019. "Water Resources Allocation Systems under Irrigation Expansion and Climate Change Scenario in Awash River Basin of Ethiopia" Water 11, no. 10: 1966. https://doi.org/10.3390/w11101966
APA StyleGedefaw, M., Wang, H., Yan, D., Qin, T., Wang, K., Girma, A., Batsuren, D., & Abiyu, A. (2019). Water Resources Allocation Systems under Irrigation Expansion and Climate Change Scenario in Awash River Basin of Ethiopia. Water, 11(10), 1966. https://doi.org/10.3390/w11101966