Impact of Climate Change and Human Activities on Streamflow Variations Based on the Budyko Framework
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Mann–Kendall Trend Test
3.2. Mann–Whitney–Pettit Test
3.3. Elasticity Method
4. Results and Discussion
4.1. Trend Analysis
4.2. Impacts of Climate Change and Non-Climate Factors on Streamflow
4.3. Sensitivity Analysis of Streamflow Variation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mach, K.; Mastrandrea, M. Climate Change 2014: Impacts, Adaptation, and Vulnerability; Field, C.B., Barros, V.R., Eds.; Cambridge University Press: Cambridge, UK, 2014; Volume 1. [Google Scholar]
- Parry, M.; Lowe, J.; Hanson, C. Overshoot, adapt and recover. Nature 2009, 458458, 1102. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319319, 83–95. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, N.; Wei, Y.; Hu, B.; Cao, Q.; Tong, K.; Liang, Y. Eight Hundred Years of Drought and Flood Disasters and Precipitation Sequence Reconstruction in Wuzhou City, Southwest China. Water 2019, 1111, 219. [Google Scholar] [CrossRef]
- Huntington, T.G.; Billmire, M. Trends in precipitation, runoff, and evapotranspiration for rivers draining to the Gulf of Maine in the United States. J. Hydrometeotol. 2014, 1515, 726–743. [Google Scholar] [CrossRef]
- Xu, X.; Yang, D.; Yang, H.; Lei, H. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin. J. Hydrol. 2014, 510, 530–540. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Fu, B.; Zhang, L. Advances in hydrological modelling with the Budyko framework: A review. Prog. Phys. Geogr. 2016, 40, 409–430. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Zhang, D.; Liang, K.; Li, X.; Dong, G. Reduced runoff due to anthropogenic intervention in the Loess Plateau, China. Water 2016, 8, 458. [Google Scholar] [CrossRef]
- Chang, J.; Wei, J.; Wang, Y.; Yuan, M.; Guo, J. Precipitation and runoff variations in the Yellow River Basin of China. J. Hydroinform. 2017, 19, 138–155. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Liu, Q.; Yao, Y.; Li, Y.; Wu, X.; Wang, T. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China. Sci. Total Environ. 2017, 607, 920–932. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Sharma, P.J.; Patel, P.L.; Jothiprakash, V. Impact of rainfall variability and anthropogenic activities on streamflow changes and water stress conditions across Tapi Basin in India. Sci. Total Environ. 2019, 687, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.P.; Mu, X.M.; Hu, J.M.; Gao, P.; Zhang, Y.F.; Liao, K.T.; Yu, Q. Assessing Impacts of Climate Change and Human Activities on Streamflow and Sediment Discharge in the Ganjiang River Basin (1964–2013). Water 2019, 11, 1679. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res. 2011, 47, 1–11. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D. Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff. Water Resour. Res. 2011, 47, W07526. [Google Scholar] [CrossRef]
- Liang, W.; Bai, D.; Wang, F.; Fu, B.; Yan, J.; Wang, S.; Feng, M. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau. Water Resour. Res. 2015, 51, 6500–6519. [Google Scholar] [CrossRef]
- Tomer, M.D.; Schilling, K.E. A simple approach to distinguish land-use and climate-change effects on watershed hydrology. J. Hydrol. 2009, 376, 24–33. [Google Scholar] [CrossRef]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47, W00J12. [Google Scholar] [CrossRef]
- Li, Z.; Ning, T.; Li, J.; Yang, D. Spatiotemporal variation in the attribution of streamflow changes in a catchment on China’s Loess Plateau. Catena 2017, 158, 1–8. [Google Scholar] [CrossRef]
- Gao, G.; Fu, B.; Wang, S.; Liang, W.; Jiang, X. Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Sci. Total Environ. 2016, 557, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Budyko, M.I. Evaporation under Natural Conditions. Gidrometeorizdat, Leningrad 1948; English Translation by Isreal Program for Scientific Translations; IPST: Jerusalem, Israel, 1963. [Google Scholar]
- Budyko, M.I. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Siriwardena, L.; Finlayson, B.L.; McMahon, T.A. The impact of land use change on catchment hydrology in large catchments: The Comet River, Central Queensland, Australia. J. Hydrol. 2006, 326, 199–214. [Google Scholar] [CrossRef]
- Zhang, L.; Karthikeyan, R.; Bai, Z.; Srinivasan, R. Analysis of streamflow responses to climate variability and land use change in the Loess Plateau region of China. Catena 2017, 154, 1–11. [Google Scholar] [CrossRef]
- Gao, P.; Mu, X.M.; Wang, F.; Li, R. Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrol. Earth Syst. Sci. 2011, 15, 1. [Google Scholar] [CrossRef]
- Wu, J.; Miao, C.; Zhang, X.; Yang, T.; Duan, Q. Detecting the quantitative hydrological response to changes in climate and human activities. Sci. Total Environ. 2017, 586, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Schaake, J.C. From Climate to Flow, in Climate Change and U.S. Water Resources; Waggoner, P.E., Ed.; John Wiley: Hoboken, NJ, USA, 1990; Chapter 8; pp. 177–206. [Google Scholar]
- Sankarasubramanian, A.; Vogel, R.M.; Limbrunner, J.F. Climate elasticity of streamflow in the United States. Water Resour. Res. 2001, 37, 1771–1781. [Google Scholar] [CrossRef]
- Dooge, J.C. Sensitivity of runoff to climate change: A Hortonian approach. Bull. Am. Mereorol. Soc. 1992, 73, 2013–2024. [Google Scholar] [CrossRef]
- Arora, V.K. The use of the aridity index to assess climate change effect on annual runoff. J. Hydrol. 2002, 265, 164–177. [Google Scholar] [CrossRef]
- Freund, E.R.; Kirchner, J.W. A Budyko framework for estimating how spatial heterogeneity and lateral moisture redistribution affect average evapotranspiration rates as seen from the atmosphere. Hydrol. Earth Syst. Sci. 2017, 21, 217. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, J.; Tang, Y.; Sivapalan, M. A thermodynamic interpretation of Budyko and L’vovich formulations of annual water balance: Proportionality Hypothesis and maximum entropy production. Water Resour. Res. 2015, 51, 3007–3016. [Google Scholar] [CrossRef]
- Greve, P.; Gudmundsson, L.; Orlowsky, B.; Seneviratne, S.I. Introducing a probabilistic Budyko framework. Geophys. Res. Lett. 2015, 42, 2261–2269. [Google Scholar] [CrossRef]
- Lintner, B.R.; Gentine, P.; Findell, K.L.; Salvucci, G.D. The Budyko and complementary relationships in an idealized model of large-scale land–atmosphere coupling. Hydrol. Earth Syst. Sci. 2015, 19, 2119. [Google Scholar] [CrossRef]
- Xue, L.; Yang, F.; Yang, C.; Chen, X.; Zhang, L.; Chi, Y.; Yang, G. Identification of potential impacts of climate change and anthropogenic activities on streamflow alterations in the Tarim River Basin, China. Sci. Rep. 2017, 7, 8254. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, P. Über die Beziehungen zwischen dem Niederschlag und der Wasserführung der Flüsse in Mitteleuropa. Z. Meteorol. 1904, 21, 441–452. [Google Scholar]
- Ol’Dekop, E.M. On evaporation from the surface of river basins. Trans. Meteorol. Obs. 1911, 4, 200. [Google Scholar]
- Turc, L. The water balance of soils. Relation between precipitation, evaporation and flow. Ann. Agron. 1954, 5, 491–569. [Google Scholar]
- Pike, J.G. The estimation of annual run-off from meteorological data in a tropical climate. J. Hydrol. 1964, 2, 116–123. [Google Scholar] [CrossRef]
- Fu, G.; Charles, S.P.; Chiew, F.H. A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow. Water Resour. Res. 2007, 43, W11419. [Google Scholar] [CrossRef]
- Mezentsev, V.S. More on the calculation of average total evaporation. Meteorol. Gidrol. 1955, 5, 23–31. [Google Scholar]
- Choudhury, B. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J. Hydrol. 1999, 216, 99–110. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D.; Lei, Z.; Sun, F. New analytical derivation of the mean annual water-energy balance equation. Water Resour. Res. 2008, 44, W03410. [Google Scholar] [CrossRef]
- Milly, P.C.D. An analytic solution of the stochastic storage problem applicable to soil water. Water Resour. Res. 1993, 29, 3755–3758. [Google Scholar] [CrossRef]
- Porporato, A.; Daly, E.; Rodriguez-Iturbe, I. Soil water balance and ecosystem response to climate change. Am. Nat. 2004, 164, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Wang, D.; Tang, Y. A one-parameter Budyko model for water balance captures emergent behavior in darwinian hydrologic models. Geophys. Res. Lett. 2014, 41, 4569–4577. [Google Scholar] [CrossRef] [Green Version]
- Water Resources Agency 2017 Hydrological Year Book of Taiwan. Ministry of Economic Affairs; Water Resources Agency 2017 Hydrological Year Book of Taiwan: Taipei, Taiwan, 2017. (In Chinese)
- Wang, C.H. The impacts of climate change on the groundwater environment of Taiwan: Retrospective and prospective views. Cent. Geol. Surv. 2007, 18, 239–255. (In Chinese) [Google Scholar]
- Thiessen, A.H. Precipitation averages for large areas. Mon. Weather Rev. 1911, 39, 1082–1089. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; de Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures [M]; Charles Griffin: London, UK, 1975. [Google Scholar]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Amirataee, B.; Montaseri, M. The performance of SPI and PNPI in analyzing the spatial and temporal trend of dry and wet periods over Iran. Nat. Hazards 2017, 86, 89–106. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Yang, H.; Qi, J.; Xu, X.; Yang, D.; Lv, H. The regional variation in climate elasticity and climate contribution to runoff across China. J. Hydrol. 2014, 517, 607–616. [Google Scholar] [CrossRef]
- Wu, J.; Miao, C.; Wang, Y.; Duan, Q.; Zhang, X. Contribution analysis of the long-term changes in seasonal runoff on the Loess Plateau, China, using eight Budyko-based methods. J. Hydrol. 2017, 545, 263–275. [Google Scholar] [CrossRef]
- Choate, M.; Steinwand, D.; Rengarajan, R. Multispectral Scanner (MSS) Geometric Algorithm Description Document; USGS Landsat Project Documentation, LS-IAS: Delhi, India, 2012; Volume 6.
- Engebretson, C. Landsat Thematic Mapper (TM) Level 1 DFCB. USGS Landsat Project Documentation. 2018. Available online: https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-284_Landsat4-5TM-Level1DFCB-v10.pdf (accessed on 26 September 2019).
- Jaramillo, F.; Cory, N.; Arheimer, B.; Laudon, H.; Van Der Velde, Y.; Hasper, T.B.; Uddling, J. Dominant effect of increasing forest biomass on evapotranspiration: Interpretations of movement in Budyko space. Hydrol. Earth Syst. Sci. 2018, 22, 567–580. [Google Scholar] [CrossRef]
- Guzha, A.C.; Rufino, M.C.; Okoth, S.; Jacobs, S.; Nóbrega, R.L.B. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. J. Hydrol. Regional Stud. 2018, 15, 49–67. [Google Scholar] [CrossRef]
Model | Budyko Curve Equation | Parameter | Reference |
---|---|---|---|
Budyko–Schreiber | None | Schreiber [36] | |
Budyko–Ol’dekop | None | Ol’dekop [37] | |
Budyko | None | Budyko [21,22] | |
Budyko–Turc–Pike | None | Turc [38]; Pike [39] | |
Budyko–Fu | m | Fu [40] | |
Budyko–Mezentsev–Choudhury–Yang | n | Mezentsev [41]; Choudhury [42]; Yang et al. [43] | |
Budyko–Mill–Porporato | Milly [44]; Porporato et al. [45] | ||
Budyko–Zhang | Zhang et al. [46] | ||
Budyko–Wang | Wang and Tang [47] |
River Basin | Drainage Area (km2) | Average Elevation (m) | No. | Type | Station | TM2_X (TWD67) | TM2_Y (TWD67) |
---|---|---|---|---|---|---|---|
Lanyang River Basin | 820.69 | 955.2 | 1 | Streamflow gauging station | Lan Yang Bridge | 327,262.2 | 2,734,754 |
2 | Rainfall station | Nan Shan | 287,634 | 2,703,687 | |||
3 | Liu Mao An | 294,890 | 2,714,194 | ||||
4 | Tu Chang-1 | 299,456 | 2,718,763.39 | ||||
5 | Fan Fan-2 | 302,389 | 2,723,226 | ||||
6 | Xin Bei Cheng | 324,950 | 2,730,841 | ||||
Dahan River Basin | 622.80 | 1614.81 | 7 | Streamflow gauging station | Xia Yun | 285,813.3 | 2,740,336.8 |
8 | Rainfall station | Xiu Luan | 278,034.4 | 2,723,777.7 | |||
9 | An Bu | 277,705.5 | 2,729,116.5 | ||||
10 | San Guang | 286,273.5 | 2,729,607.8 | ||||
Keelung River Basin | 204.41 | 251.78 | 11 | Streamflow gauging station | Wu Tu | 319,419.4 | 2,774,923.7 |
12 | Rainfall station | Huo Shao Liao | 324,813.7 | 2,764,092.9 | |||
13 | Rui Fang-2 | 330,186.2 | 2,778,442.8 | ||||
14 | Wu Du | 319,447.5 | 2,774,911.4 | ||||
Fengshan River Basin | 208.06 | 258.84 | 15 | Streamflow gauging station | Hsin Pu-2 | 255,810.3 | 2,746,676 |
16 | Rainfall station | Guanxi 3 | 267,417.1 | 2,741,651.3 | |||
17 | Xinpu 1 | 256,388.7 | 2,747,090.2 | ||||
Youluo River Basin | 139.07 | 977.80 | 18 | Streamflow gauging station | Nei Wan | 267,503.3 | 2,733,084 |
19 | Rainfall station | Niaozuishan | 277,875.8 | 2,734,904.7 | |||
20 | Meihua | 270,281.7 | 2,730,286.1 | ||||
Shangping River Basin | 221.73 | 1251.48 | 21 | Streamflow gauging station | Shang Ping | 260,738.5 | 2,729,330 |
22 | Rainfall station | Taigenan | 264,159.4 | 2,724,487.3 | |||
23 | Qingguan | 259,655.8 | 2,718,705.8 |
River Basin | Period | Variable | Z | Significant Trend (α = 10%) | PMAX | Point of Highest Probability |
---|---|---|---|---|---|---|
Lanyang River Basin | 1980–2017 | P | −0.05 | None | 0.41 | 2001 |
1980–2017 | E0 | 0.55 | None | 0.54 | 1990 | |
1980–2017 | Q | 2.01 | Exist | 0.97 | 1993 | |
Keelung River Basin | 1980–2017 | P | −0.86 | None | 0.66 | 1990 |
1980–2017 | E0 | 1.51 | None | 0.89 | 1990 | |
1980–2017 | Q | −1.31 | None | 0.94 | 1990 | |
Dahan River Basin | 1980–2017 | P | 0.11 | None | 0.36 | 2008 |
1980–2017 | E0 | 1.11 | None | 0.73 | 1990 | |
1980–2017 | Q | −0.40 | None | 0.75 | 2008 | |
Fengshan River Basin | 1981–2017 | P | −0.14 | None | 0.49 | 1986 |
1980–2017 | E0 | 1.58 | None | 0.86 | 2001 | |
1980–2017 | Q | −0.54 | None | 0.73 | 1990 | |
Youluo River Basin | 1980–2017 | P | 0.38 | None | 0.42 | 2003 |
1980–2017 | E0 | 1.38 | None | 0.82 | 2001 | |
1980–2017 | Q | 0.58 | None | 0.78 | 2003 | |
Shangping River Basin | 1980–2017 | P | 0.23 | None | 0.41 | 2003 |
1980–2017 | E0 | 1.38 | None | 0.83 | 2001 | |
1980–2017 | Q | 0.48 | None | 0.76 | 2003 |
River Basin | Period | P (mm) | Q (mm) | E0 (mm) | m | n | ΔQ | B–F | B–M–C–Y | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
mm | % | ηc1imate | ηnon-climate | ηclimate | ηnon-climate | |||||||
Lanyang | 1980–1993 | 2810.38 | 1926.62 | 1049.09 | 2.07 | 1.33 | ||||||
1994–2017 | 2752.51 | 2552.86 | 1050.16 | 1.10 | 0.32 | 626.24 | 32.50% | −9.01% | 109.01% | −8.99% | 108.99% | |
Keelung | 1980–1990 | 4712.45 | 4376.79 | 1119.50 | 1.14 | 0.37 | ||||||
1991–2017 | 4130.50 | 3584.32 | 1146.11 | 1.28 | 0.53 | −792.47 | −18.11% | 71.75% | 28.25% | 71.30% | 28.70% | |
Dahan | 1980–2017 | 2184.87 | 1850.40 | 1057.56 | 1.21 | 0.46 | - | - | - | - | - | - |
Fengshan | 1981–2017 | 2043.57 | 1559.83 | 1086.29 | 1.37 | 0.64 | - | - | - | - | - | - |
Youluo | 1980–2017 | 2851.03 | 2298.69 | 1063.48 | 1.37 | 0.64 | - | - | - | - | - | - |
Shangping | 1980–2017 | 2449.42 | 2089.31 | 1082.52 | 1.23 | 0.48 | - | - | - | - | - | - |
NDVI Difference | 1978–1993 | 1993–2004 | 2004–2018 |
---|---|---|---|
−1.00~0.30 | 3.11% | 3.51% | 29.49% |
−0.30~−0.20 | 2.31% | 5.28% | 44.46% |
−0.20~−0.10 | 3.59% | 14.79% | 12.09% |
−0.10~0 | 12.14% | 47.74% | 5.73% |
0~0.05 | 21.13% | 18.06% | 2.30% |
0.05~0.10 | 28.91% | 4.70% | 2.58% |
0.10~0.15 | 16.27% | 1.88% | 2.04% |
0.15~0.20 | 6.38% | 1.12% | 0.72% |
0.20~0.25 | 2.71% | 0.86% | 0.30% |
0.25~0.30 | 1.43% | 0.70% | 0.16% |
0.30~1.00 | 2.02% | 1.36% | 0.16% |
River Basin | Period | B–F | B–M–C–Y | ||||
---|---|---|---|---|---|---|---|
Lanyang | 1980–1993 | 1.37 | −0.37 | −0.27 | 1.36 | −0.36 | −0.18 |
1994–2017 | 1.05 | −0.05 | −0.73 | 1.05 | −0.04 | −0.16 | |
Keelung | 1980–1990 | 1.05 | −0.05 | −0.49 | 1.05 | −0.05 | −0.13 |
1991–2017 | 1.11 | −0.1 | −0.46 | 1.1 | −0.1 | −0.18 | |
Dahan | 1980–2017 | 1.11 | −0.11 | −0.79 | 1.11 | −0.1 | −0.26 |
Fengshan | 1981–2017 | 1.19 | −0.2 | −0.75 | 1.18 | −0.19 | −0.33 |
Youluo | 1980–2017 | 1.17 | −0.16 | −0.54 | 1.16 | −0.16 | −0.24 |
Shangping | 1980–2017 | 1.11 | −0.11 | −0.72 | 1.1 | −0.11 | −0.25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-H.; Yeh, H.-F. Impact of Climate Change and Human Activities on Streamflow Variations Based on the Budyko Framework. Water 2019, 11, 2001. https://doi.org/10.3390/w11102001
Lee C-H, Yeh H-F. Impact of Climate Change and Human Activities on Streamflow Variations Based on the Budyko Framework. Water. 2019; 11(10):2001. https://doi.org/10.3390/w11102001
Chicago/Turabian StyleLee, Chung-Hsun, and Hsin-Fu Yeh. 2019. "Impact of Climate Change and Human Activities on Streamflow Variations Based on the Budyko Framework" Water 11, no. 10: 2001. https://doi.org/10.3390/w11102001
APA StyleLee, C. -H., & Yeh, H. -F. (2019). Impact of Climate Change and Human Activities on Streamflow Variations Based on the Budyko Framework. Water, 11(10), 2001. https://doi.org/10.3390/w11102001