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Abstract: Although the complexity of physically-based models continues to increase, they still
need to be calibrated. In recent years, there has been an increasing interest in using new satellite
technologies and products with high resolution in model evaluations and decision-making. The aim
of this study is to investigate the value of different remote sensing products and groundwater level
measurements in the temporal calibration of a well-known hydrologic model i.e., Hydrologiska
Bryåns Vattenbalansavdelning (HBV). This has rarely been done for conceptual models, as satellite
data are often used in the spatial calibration of the distributed models. Three different soil moisture
products from the European Space Agency Climate Change Initiative Soil Measure (ESA CCI SM
v04.4), The Advanced Microwave Scanning Radiometer on the Earth Observing System (EOS) Aqua
satellite (AMSR-E), soil moisture active passive (SMAP), and total water storage anomalies from
Gravity Recovery and Climate Experiment (GRACE) are collected and spatially averaged over the
Moselle River Basin in Germany and France. Different combinations of objective functions and search
algorithms, all targeting a good fit between observed and simulated streamflow, groundwater and
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soil moisture, are used to analyze the contribution of each individual source of information. Firstly,
the most important parameters are selected using sensitivity analysis, and then these parameters
are included in a subsequent model calibration. The results of our multi-objective calibration reveal
a substantial contribution of remote sensing products to the lumped model calibration, even if their
spatially-distributed information is lost during the spatial aggregation. Inclusion of new observations,
such as groundwater levels from wells and remotely sensed soil moisture to the calibration improves
the model’s physical behavior, while it keeps a reasonable water balance that is the key objective of
every hydrologic model.

Keywords: HBV; GRACE; SMAP; ESA CCI SM v04.4; AMSR-E; Moselle River

1. Introduction

Hydrologic models are indispensable tools for predicting the rainfall-runoff response of catchments
in order to anticipate hydrological droughts and (flash) flood events, causing loss of lives and economic
damage. Hydrological processes transforming rainfall to runoff are represented by mathematical
equations in different types of model structures. Based on their spatial discretization levels, the models
are grouped as lumped, semi-distributed and fully distributed models. While the most sophisticated
models fall in the latter group, lumped models are the most commonly used models, as they require
less inputs and computational sources. Further, if lumped models are calibrated with appropriate
observations and objective functions, they are skillful in obtaining reasonable discharge prediction
performance. In this study, we are interested in examining the potential usage of remote sensing (RS)
data to inform the parameter optimization, and evaluate different outputs of a bucket-type lumped
hydrologic model.

Earth observations using satellite-based RS gained popularity with its easy-to-apply usage and
large spatial coverage. RS products are recognized as an important source of data, and used directly as
model input e.g., leaf area index, or used to assess model performance on simulated states and fluxes [1].
Both the availability and spatial resolution of remotely-sensed data continuously increase the provision
of opportunities to constrain hydrological models [2,3]. Actual evapotranspiration (AET) [4,5] and
soil moisture data [6] from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellites,
and groundwater storage-related observations via the Gravity Recovery and Climate Experiment
(GRACE; [7]) satellites are just some of the examples from the numerous satellites. To benefit from
spatial observations, spatially-distributed models are utilized [8–11].

Demirel et al. [3] used MODIS-based AET to calibrate a spatially-distributed model, and revealed
that there is little trade-off between either the streamflow performance or the spatial performance
of the model. Appropriate objective functions were key to constrain the model and reduce the
number of runs to search for an optimal solution, meeting the water balance and spatial AET patterns.
Rakovec et al. [9] used GRACE-based total water storage data and evapotranspiration (ET) from
FLUXNET data to identify model parameters and improve the streamflow simulation performance
in more than 80 European catchments. Zink et al. [10] used remotely-sensed temperature data
to constrain a spatially-distributed model, and could succeed in reducing the errors in predicting
actual evapotranspiration by 8%, while the model streamflow performance slightly decreased by
6%, showing the trade-off between different objectives when applied in a multi-objective calibration
framework. Xiong et al. [12] assessed the impact of the remotely-sensed soil moisture active passive
level 3 product (SMAP L3) in a multi-objective calibration of a distributed hydrological model in the
Qujiang and Ganjiang catchments in China. They documented minor improvements in the simulation
performance of soil moisture and streamflow when adding the SMAP L3 product, which could be
due to the short length of this high-resolution soil moisture product. Li et al. [6] used lumped and
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semi-distributed hydrological models with different RS products and different calibration approaches
in two Australian catchments.

Near-surface soil moisture retrievals from MODIS (500 × 500 m) and the Soil Moisture and
Ocean Salinity level 3 product (SMOS L3, 25 × 25 km), together with remotely-sensed fractional
vegetation cover data from MODIS (500 × 500 m), were incorporated with hydrologic models to test
their contribution to the model simulation. They showed that the effect of RS soil moisture data for
model calibration is usually substantial for the upstream sub-catchments.

There have been studies solely focused upon the effect of performance metrics (objective functions)
on the model calibration. For instance, Kamamia et al. [13] calibrated a semi-distributed hydrologic
model (Soil and Water Assessment Tool—SWAT) using a multi-metric framework including a Pareto
front and five segment flow duration curve, and compared it with a standard calibration using Nash
Sutcliffe Efficiency (NSE; [14]). Tobin et al. [15] calibrated the same model for a mountainous watershed
in Idaho, US using ET estimates from MODIS, Simplified Surface Energy Balance and Global Land
Evaporation: the Amsterdam Model (GLEAM). Their study showed that the MODIS ET product
especially yielded the most to identify the model parameters, and improved streamflow simulations in
the recession phase and summertime. They also used NSE as streamflow objective function that is
criticized to be biased for high flows [16]. Krause et al. [17] studied nine different objective functions,
including the index of agreement [18], the coefficient of determination (R2), NSE and their revised
versions, so as to adopt these metrics to high flows and low flows. They highlighted the importance
of using multiple metrics depending on the modeling aim. All studies above and numerous other
studies [19–22] have utilized mostly spatially-distributed hydrologic models with RS products and
different calibration metrics [23,24].

However, to our knowledge, there have been few studies focusing on lumped models and RS
products to improve model calibration, and none of them used groundwater level measurements from
drilled wells in model evaluation and calibration. In one of the lumped model studies, Nijzink et
al. [2] used soil moisture, evaporation, total water storage and snow state from relevant satellites to
calibrate 27 catchments across Europe using the GLUE methodology [25]. They tested the applicability
of satellite-based RS data in an evaluation of five different lumped models through a model calibration
framework. Their study showed that using multiple information from satellites could be fruitful for
estimating model parameters in data scarce regions without streamflow time series.

The objective of this study is to assess the value of remote sensing products, as well as groundwater
level measurements in a multi-objective calibration of the Hydrologiska Bryåns Vattenbalansavdelning
(HBV) lumped hydrologic model [26,27]. For that, we collected relevant satellite-based hydrologic data
for the Moselle River Basin, and spatially averaged them first. Then different calibration scenarios are
tested to quantify the individual effect of each RS data source on model calibration results. Two essential
features of our study are: (1) The important parameters for the calibration are selected based on
a multi-objective sensitivity analysis and, (2) three search algorithms i.e., one gradient descend and
two global metaheuristic methods, are used to assess their effects on the calibration results. Further,
the important parameters for the calibration are selected based on a multi-objective sensitivity analysis.

2. Study Area

The study area, the Moselle River, is a tributary of the Rhine River. The Rhine River Basin covers
an area of 165,000 km2 in eight countries, that is, the Netherlands, Germany, Switzerland, Luxemburg,
Belgium, France, Austria and Liechtenstein [28,29]. The Moselle River Basin covers the mountains of
the middle reaches in Germany, including the Black Forest (Schwarzwald) and the Vosges, reaching
elevations over 1000 m (3280 feet) in the south, to around 600 m (1968 feet) towards the north. Land use
in these areas include vineyards on sunny valley slopes, and agriculture and forest in the mountains and
hillslopes. In the Moselle River Basin, winter is the season where the maximum discharge occurs. [28].
The mean discharge at Cochem is about 314 m3 s−1 (11,088.8 cu. ft. per sec.), and its discharge varies
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from 14 m3 s−1 (494 cu. ft. per sec.), in dry summers to a maximum of 4000 m3 s−1 (141,259 cu. ft. per
sec.), during winter floods [30].

The Moselle River is 313 km (195 mi.) long and has a catchment area of 27,262 km2, with an annual
precipitation of ~800 mm. The altitude ranges from 59 m to 1326 m (Figure 1), with a mean altitude of
around 340 m. The Moselle Basin has 26 sub-basins, and the surface areas of these sub-basins vary
between 102 and 3353 km2 [31,32].
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Figure 1. Moselle River Basin and Cochem Gauge.

3. Data

The basic inputs of a lumped hydrological model are daily precipitation (P) and potential
evapotranspiration (PET). The P and PET time series for the Moselle Basin were obtained from the
German Federal Institute of Hydrology (BfG) in Koblenz (Germany). Further, the outlet discharge (Q)
measurements at Cochem (gauge #6336050) were provided by the Global Runoff Data Centre (GRDC)
in Koblenz (Germany) [33]. Although Rhine has mostly alluvial aquifer, Moselle uplands comprised of
Jurassic Limestone aquifers [2]. Also within the Moselle there is contrasting lithology and topography:
granitic formations upstream in the Vosges mountains and carbonate platform downstream on the
Lorraine plateau [2]. The groundwater well measurements (GWY) from 80 stations within the Moselle
Basin were also obtained from the German Federal Institute of Hydrology (BfG) in Koblenz (Germany).
GWY data from the stations falling on the same sub-catchment of Moselle are averaged using arithmetic
mean. These sub-catchment averaged data are then aggregated to the Moselle Basin Level using areal
weights of 26 sub-catchments. In addition to these ground-based data we also included remote sensing
soil moisture data from different sources (Table 1). All remotely-sensed soil moisture (RS-SM) data are
upscaled to catchment scale using an arithmetic average of all cells (Figure 2).

3.1. European Space Agency (ESA CCI SM V04.4)

Soil moisture (SM) is an important variable for many purposes, e.g., to anticipate possible floods
using antecedent SM conditions, and to manage irrigation water. In 2010, the Global Climate Observing
System (GCOS) panel recognized soil moisture as one of the 50 Essential Climate Variables (ECVs) [34].
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The European Space Agency (ESA) started the CCI SM project, known as the Climate Change
Initiative, in 2012, to contribute to the monitoring of the ECVs [35]. The purpose of the ESA CCI SM
project is to merge active and passive microwave sensors and generate a new global SM data record.
The latest-released ESA CCI SM v04.4 product is used in this study (http://www.esa-soilmoisture-cci.org/,
last access: 4 September 2019; [36]). The last algorithm of this ESA CCI SM v4 project, which is also being
used in the current Copernicus Climate Change Service (C3S) climate data records (CDRs) production
system version v201812, uses an approach to better parameterize the least-squares merging [37].
The ESA CCI soil moisture v04.4 product with daily temporal and 0.25◦ spatial resolution, spans for
the period from November 1978 and June 2018, and consists of three different datasets, the so-called
active, passive and combined [38].

The active data set is generated by merging active microwave satellite data by using the TU
Wien Water Retrieval Package (WARP) algorithm [39,40], estimates from the European Remote
Sensing-Active Microwave Instrument Wind Scatterometer (ERS, AMI-WS, 5.3 GHz, July 1991–February
2007) [41,42] and the Meteorological Operational satellite program—Advanced Scatterometer (MetOp,
ASCAT, 5.3 GHz, January 2007–June 2018) [43]. The passive data set is generated by merging
active microwave satellite data by using the Land Parameter Retrieval Model (LPRM) algorithm [44],
estimates from Nimbus 7—Scanning Multichannel Microwave Radiometer (Nimbus 7, SMMR, 6.6 GHz,
January 1979–August 1987) [44], Defence Meteorological Satellite Program—The Special Sensor
Microwave/Imager (DMSP, SSM/I, 19.3 GHz, September 1987–December 2007) [44], the Tropical
Rainfall Measuring Mission’s Microwave Imager (TRMM, TMI, 10.7 GHz, January 1998–December
2013) [44], Aqua—The Advanced Microwave Scanning Radiometer for Earth Observing System (Aqua,
AMSR-E, 6.9/10.7 GHz, July 2002–October 2011) [44], Coriolis—WindSat radiometer (6.8/10.7 GHz,
October 2007–July 2012) [45], ESA—Soil Moisture and Ocean Salinity (ESA, SMOS, 1.4 GHz, January
2010–June 2018) [46,47]; and the Global Change Observation Mission 1st-Water—AMSR-2 (GCOM-W1,
AMSR2, 6.9/10.6 GHz, July 2012–June 2018) [48]. The combined data set is obtained by merging the
active and passive products. The method for merging based on the weighted averaging and merging
scheme is parameterized using triple collocation analysis (TCA) [38]. In this paper, the ESA CCI SM
v04.4 product combined data set is used. Studies of [36,38] are recommended to reader for more
details about the evolution of the ESA CCI SM data record, details of sensor properties, and product
merging methodology.

3.2. The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E)

Microwave remote sensing provides a solution to directly observe the soil moisture. Especially
active sensors are generally not affected by cloud cover, although accurate soil moisture estimates are
limited to regions that have either bare soil or low to moderate amounts of vegetation cover, since in the
absence of significant vegetation cover, soil moisture is the dominant effect on the received signal [49].
Besides, one of the issues about using passive microwaves is that there are contrasting effects of
soil moisture and vegetation water content on microwave emission. In other words, an increase of
soil moisture and a decrease in vegetation water content have the same effect. Effects of vegetation
and roughness become more evident as the frequency increases; that is why low frequencies in the
L-band range (1–2 GHz) are better suited for soil moisture sensing [50]. Another issue is about the
effect of the daytime temperature measurements affecting the top soil layers, making it difficult for
soil moisture inversion. The Advanced Microwave Scanning Radiometer (AMSR-E) on the Earth
Observing System (EOS) Aqua satellite was launched on 4 May 2002. The AMSR-E instrument was
developed by the National Space Development Agency of Japan (NASDA), and provided to the U.S.
National Aeronautics and Space Administration (NASA). AMSR-E records the brightness temperature
at frequencies of 6.9, 10.7, 18.7, 23.8, 36.5 and 89 GHz, at horizontal (H) and vertical (V) polarizations.
The mean spatial resolution at 6.9 GHz is about 56 km with a swath width of 1445 km. The AMSR–E
soil moisture has a strong association to ground-based soil moisture data, with typical correlations of

http://www.esa-soilmoisture-cci.org/
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greater than 0.8, and typical RMSD less than 0.03 vol/vol (for a normalized and filtered AMSR–E time
series) [50,51].

For AMSR, various soil moisture algorithms that differ mainly in their approaches to the
vegetation and surface temperature corrections have been considered. There are four groups of
correction approaches, with the first one being sequential corrections using external ancillary data;
another approach is the iterative parameter fitting to a forward multichannel brightness temperature
model, an yet another approach consists of the use of brightness temperature indices and regression
fits, and lastly combinations of the above approaches [50].

3.3. The Soil Moisture Active Passive (SMAP)

The Soil Moisture Active Passive (SMAP) mission has been developed by NASA as one of
the first Earth observation satellites in return for the National Research Council’s Decadal Survey.
SMAP analyzes global measurements of soil moisture present at the Earth’s surface, thus allowing
us to make indirect observations of soil moisture and the thaw/freeze state from space to formulate
considerably improved estimates of energy, water and carbon transfers between the atmosphere and
the land. Correct characterization of these transfers is highly dependent on the accuracy of numerical
atmosphere models that are used in weather prediction and climate projections. Measurement of soil
moisture can be applied directly to flood assessment and drought monitoring. It is useful in estimating
global water and energy fluxes at the land surface. Since April 2015, the Soil Moisture Active Passive
(SMAP) mission of NASA has been successfully monitoring near-surface soil moisture, by mapping
the globe between the latitude bands of 85.044◦ N/S in 2–3 days, depending upon the location [52–55].
In this research, daily data of soil moisture with a resolution of 36 × 36 km is downloaded and
processed. However, soil moisture retrievals only from only ESA and AQUA are incorporated into the
model calibration.

3.4. Gravity Recovery and Climate Experiment (GRACE)

The main purpose of GRACE (Gravity Recovery and Climate Experiment) is in the surveying of
the Earth’s gravity field anomalies of lands and oceans with a spatial resolution of 400 × 400 km [7].
Water storage in hydrologic reservoirs, the movements of oceans, atmospheric and land ice masses
and mass swaps of Earth compartments cause gravity changes, and for GRACE monthly changes are
considered. The gravity changes are measured in centimeters of equivalent water thickness every month.
The GRACE mission consists of twin satellites, and the creators of the mission are the United States
National Aeronautics and Space Administration (NASA) and the German Aerospace Centre (DLR).
GRACE was launched on 17 March 2002, and its mission ended on 27 October 2017. As a continuation of
the GRACE mission, on 22 May 2018, GRACE-FO (GRACE Follow On) was launched. The Science Data
System (SDS), which consists of Centre for Space Research (CSR) (http://www2.csr.utexas.edu/grace/),
the Geologic Research Centre in Potsdam (GFZ) (https://www.gfz-potsdam.de/en/grace/), and the
Jet Propulsion Laboratory (JPL) (https://gracefo.jpl.nasa.gov), provides GRACE gravity field models.
In this study, to track groundwater changes in the Moselle River Basin, monthly GRACE data for the
period between April 2002 and June 2017 were used (Table 1 and Figure 2).

http://www2.csr.utexas.edu/grace/
https://www.gfz-potsdam.de/en/grace/
https://gracefo.jpl.nasa.gov
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Figure 2. Catchment scale time series of remotely sensed soil moisture (RS-SM) products (AQUA, soil 
moisture active passive (SMAP) and ESA), hydrologic model inputs (P and PET), and discharge data 
(Q) from Cochem Gauge, GW well measurements (GWY) and Gravity Recovery and Climate 
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Figure 2. Catchment scale time series of remotely sensed soil moisture (RS-SM) products (AQUA,
soil moisture active passive (SMAP) and ESA), hydrologic model inputs (P and PET), and discharge
data (Q) from Cochem Gauge, GW well measurements (GWY) and Gravity Recovery and Climate
Experiment (GRACE) groundwater storage data (GWG), respectively.
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Table 1. Overview of remote sensing and hydro-meteorological data.

Abbreviation Description Number of
Sub-Basins

Spatiotemporal
Resolution Spatial Averaging Period Source

Q Discharge 1 gauge at Cochem Catchment-scale
(daily) - 1.1.1951–31.12.2015 GRDC in Koblenz

P Precipitation 26 10 km (daily) Areal weighting (sub-basins) 1.1.1951–31.12.2015 BfG in Koblenz,
van Osnabrugge et al. [29]

PET Potential evapotranspiration 26 20 km (daily) Areal weighting (sub-basins) 1.1.1951–31.12.2015 BfG in Koblenz,
van Osnabrugge et al. [29]

GWG Remotely sensed groundwater storage
(GRACE) 1 (Rhine basin) 400 km (monthly) - 2002–2017 GRACE

GWY Groundwater well measurements 80 Point (daily) Areal weighting (sub-basins) 8.2.1978–7.10.2009 BfG in Koblenz

ESA Soil moisture (ESACCI_SM_V04.4
combined product) - 0.25 degree (daily) Grids—arithmetic averaging 01.11.1978–30.06.2018 ftp.geo.tuwien.ac.at

AQUA Soil moisture (AMSR-E/Aqua) - 25 km (daily) Grids—arithmetic averaging 19.06.2002–03.10.2011 earthdata.nasa.gov
SMAP Soil moisture - 36 km (daily) Grids—arithmetic averaging 31.03.2015–Present earthdata.nasa.gov

ftp.geo.tuwien.ac.at
earthdata.nasa.gov
earthdata.nasa.gov
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4. Methods

Lumped hydrologic models are usually calibrated based solely on discharge data measured at
the catchment outlet. In this study, we used well measurements (water levels), as well as temporal
information from several remote sensing products, in order to evaluate outputs from different
compartments (fast runoff and base flow) of the Hydrologiska Bryåns Vattenbalansavdelning (HBV)
model. This is done to simultaneously improve the performance and physical meaning of the results.
First, we applied a systematic sensitivity analysis using appropriate objective functions to identify the
most important parameters. We then included the selected parameters in the calibration.

4.1. Hydrologic Model

In this study we used the Hydrologiska Bryåns Vattenbalansavdelning (HBV) lumped model
that includes the basic rainfall-runoff processes, such as snow accumulation and melt, soil moisture,
quick runoff and base flow (Figure 3). The model was developed by the Swedish Meteorological and
Hydrological Institute [26,27], and applied in numerous projects [30,32,56–59]. The Moselle River is
a rainfed river, therefore, we only used P and PET as model inputs. The parameter ranges for model
calibration (Table 2) were taken from previous studies [32,58].

Table 2. Description of the Hydrologiska Bryåns Vattenbalansavdelning (HBV) model parameters.

Parameter Unit Range Description

FC mm 100–800 Maximum soil moisture capacity

LP 0.1–1 Soil moisture threshold for the reduction of
evapotranspiration

BETA 1–6 Shape coefficient

CFLUX mm day−1 0.1–1 Maximum capillary flow from upper response box to soil
moisture zone

ALFA 0.1–2 Measure for nonlinearity of quick runoff

KF day−1 0.005–0.5 Recession coefficient for quick runoff

KS day−1 0.0005–0.2 Recession coefficient for base flow
PERC mm day−1 0.01–6 Maximum flow from upper to lower response box
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Figure 3 shows the three components (buckets) of the HBV and the flowchart of the model
evaluation based on ESA, AQUA, Gravity Recovery and Climate Experiment (GRACE), water wells
and gauge streamflow data. Three objective functions (CORR, NSE-Q and NSE-LNQ) and the weights
(0.2, 0.8, 0.3, 0.7 and 1.0) of each data source used in the multi objective calibration framework are also
depicted in this figure.

4.2. Objective Functions

There are various objective functions (i.e., performance metrics) to evaluate the hydrologic model.
Some of them may focus on low flows [16], while others focus on high flows [14]. These objective
functions (OFs) can use the crude difference between observed and simulated values, like the root
mean square error, or the relative difference (i.e., normalized), such as the Nash Sutcliffe Efficiency
(NSE) [14,16]. As highlighted in different studies [60–63], choosing an appropriate OF is very crucial
for calibrating hydrologic models. In this paper, we carefully selected three OFs, namely NSE-Q,
NSE-LNQ and the Pearson Correlation Coefficient (CORR) to assess the efficiency of the HBV model.
The details of these OFs are summarized in Table 3.

The Pearson Correlation Coefficient (shown as CORR in Table 3) was used to determine the
relationship between simulated variables from the HBV model (soil moisture and groundwater) and
observed sensing data. Observed data contains groundwater well measurements (GWY) and remote
sensing products (GRACE, ESA, AQUA and soil moisture active passive (SMAP)). Since soil moisture
is highly relevant for fast runoff and high flows, NSE-Q was used as well. This metric uses squared
differences which can be dominated by high values in the time series. To avoid this and to reduce
the sensitivity of NSE to extreme high values, we used the logarithmic discharge values in NSE, i.e.,
NSE-LNQ, as well. Herein, peak values in the hydrograph are flattened, leading to a fair treatment of
low flows in the model performance [17].

Table 3. Description of objective functions. In these formulas x, y, x and y indicate observation data,
simulation data and their means, respectively.

Objective Functions Formula Range of Values

CORR
∑n

i=1(x− x)(y− y)√∑n
i=1(x− x)2

√∑n
i=1(y− y)2

[−1, 1]

NSE-Q 1−

∑n
i=1(x− y)2∑n
i=1(x− x)2

[−∞, 1]

NSE-LNQ 1−

∑n
i=1(lnx− lny)2∑n
i=1(lnx− lnx)2 [−∞, 1]

4.3. Latin Hypercube Sampling One-Factor-At-A-Time Sensitivity Analysis

Following the study of Demirel et al. [64], we used the Latin Hypercube Sampling One-at-a-Time
(LHS-OAT) approach for sensitivity analysis with 20 different initial parameter sets. This number
is assumed to be sufficient, as Demirel et al. [64] showed the stability of the average accumulated
relative parameter sensitivities after nearly 20 initial parameter sets. Obviously the main advantage
of using LHS is that it is a stratified sampling method improving the coverage of the parameter
space, using a smaller number of random sets, as compared to other methods like crude Monte Carlo
Sampling [65].
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4.4. Model Calibration and Validation

In this study we tested three different optimization algorithms: (1) Gradient-based Levenberg
Marquardt [66], (2) Shuffled Complex Evolutionary algorithm—University of Arizona (SCE-UA) [67]
and 3) the Covariance Matrix Adaptation Evolution Strategy (CMAES) [68]. While the first method
uses a local search algorithm, the other two use metaheuristic global search algorithms. SCE-UA is one
of the most popular algorithms in hydrology, and CMAES emerges as a very efficient global algorithm
that can converge quickly. The details of the model calibration and validation periods are presented in
Table 4. The discharge data from the period of 2002–2006, GW well measurements and the satellite
data (ESA and AQUA) from 2002–2004 are used to calibrate the model. The remaining part of the data
is used to validate the HBV model (see Table 4).

It should be noted that the SMAP data have been available since 2015, and therefore they not
included in the model calibration. A three year warm-up period is incorporated, and the evaluation of
the discharge results started in 1954, instead of 1951. The objective functions are used individually or
in different combinations based on our four cases: (1) Only discharge (only-Q), (2) only groundwater
and soil moisture (GW-only and SM-only), (3) discharge and groundwater/soil moisture (Q + GW and
Q + SM) and (4) all together (Q + GW + SM), i.e., discharge and remote sensing products (GRACE,
ESA and AQUA), as well as groundwater measurements (GWY) are used together in the calibration
with all objective functions. As the well observations (GWY) are a more reliable source of information
about groundwater, as compared to the GRACE-based storage estimations, we gave a higher weight of
0.7 to GWY than GWG (weight of 0.3). Similarly, we gave higher weight to ESA (0.8) as compared to
AQUA (0.2) since ESA is a blended product that contains AQUA (AMSR-E) as well. For the combined
objective functions, we gave equal weights to Q, SM and GW.

In PEST toolbox, we set the max number of runs to 3000 in all three methods, and used two
complexes for SCE-UA and default population values (i.e., lambda = 11, number of parents = 5,
seed number = 1111) for CMAES. Also as a stopping rule, the maximum relative objective function
change was set to 1% over five iterations in all three methods. We evaluated the differences between
model-simulated and observed variables at their available temporal scales i.e., daily, except for the
monthly GRACE data.

Table 4. The model calibration and validation periods.

Calibration Validation

Objective Function Start End Start End

CORR_GWG 31.03.2002 31.12.2004 31.01.2005 31.12.2015
CORR_GWY 01.01.2002 31.12.2004 01.01.1979 31.12.2001
CORR_SM 19.06.2002 31.12.2004 01.01.2005 31.12.2015

NSE-Q 01.01.2002 31.12.2006 01.01.1954 31.12.2001
NSE-LNQ 01.01.2002 31.12.2006 01.01.1954 31.12.2001

5. Results

5.1. Sensitivity Analysis of the Model Parameters

Table 5 shows the LHS-OAT results based on the correlation coefficient and NSE, respectively.
It should be noted that the sensitivity analysis is done separately for each objective function and RS
product. The results are illustrated as descending in the third column i.e., SM for comparison and ease of
following. The most influential parameters for SM are FC, LP, BETA and CFLUX, whereas the remaining
four parameters (i.e., ALFA, KF, KS and PERC) have no effect upon the results. Interestingly for the two
groundwater data sources (well and GRACE) the most influential parameters are different; i.e., KS for
GWY and LP for GWG. As expected, the ALFA and KF parameters have no effect on the groundwater.
Based on the results in the Table 5 columns Q and LNQ, ALFA is the most influential parameter for
high flows (NSE), whereas BETA is the most important parameter for low flows (NSE-LNQ).
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Table 5. Normalized (from 0 to 1) sensitivity indices of eight HBV parameters.

Parameter

Normalized Sensitivity

Correlation Coefficient NSE

GWG (GRACE) GWY (WELL) SM (ESA and AQUA) Q LNQ

FC 0.733 0.970 1 0.075 0.695
LP 1 0.687 0.446 0.011 0.353

BETA 0.706 0.854 0.179 0.042 1
CFLUX 0.255 0.214 0.177 0.016 0.188
ALFA 0 0 0 1 0.112

KF 0 0 0 0.188 0.061
KS 0.926 1 0 0 0.450

PERC 0.352 0.376 0 0.086 0.106

Figure 4 shows the evolution of parameter rankings based on the average accumulated sensitivities.
Interestingly, the rankings are unstable in the very first initial runs and stable after ten or twenty runs
from different initial parameter sets.

This is consistent with the results of a recent study by Demirel et al. [64], stating that it is key
to repeat local sensitivity analysis at different locations in the parameter space for fairly reaching
global sensitivity results. In short, the most influential parameters from Table 5 can also be identified
in Figure 4, and all parameters that have sensitivity above zero in this table are included in the
model calibration.
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5.2. Model Calibration and Validation

Table 6 shows different dimensions in our results (different cases, different objective functions,
different optimization algorithms and calibration versus validation). Herein the case numbers from 1
to 4 indicate different hydrologic processes included in the model calibration. Appropriate objective
functions are then included in the multi-objective calibration based on the considered processes (shown
as bold in the Table 6). Three search algorithms, PEST-LM, SCE-UA and CMAES, are particularly
selected, as they are widely used in hydrology. Model validation results are also presented next to the
calibration in the same table.

Obviously, the validation results were mostly poorer than the calibration results. In addition,
the two global optimization methods tested in this study (SCE-UA and CMAES) predominantly yielded
better results than the gradient-based Levenberg Marquardt method. The best NSE-Q value obtained
by the PEST-LM was 0.77 for case 1 (high flows), however with SCE-UA and CMAES, values of 0.90
and 0.89 could be obtained, respectively. The best NSE-LNQ value obtained by PEST-LM was 0.81 for
case 1 (low flows), and SCE-UA and CMAES resulted in 0.81 and 0.82, respectively.

Table 6. Summary of the calibration and validation results for four cases.

CAL VAL

Case Processes Objective
Function PEST_LM SCE-UA CMAES PEST_LM SCE-UA CMAES

1

Q—High flows

CORR_GWG −0.14 −0.36 −0.38 0.02 −0.05 −0.03
CORR_GWY 0.51 0.71 0.73 0.61 0.67 0.68
CORR_SM 0.82 0.83 0.78 0.68 0.67 0.67

NSE-Q 0.77 0.90 0.89 0.77 0.90 0.89
NSE-LNQ 0.53 0.86 0.85 0.44 0.84 0.84

Q—Low flows

CORR_GWG −0.38 −0.38 −0.36 −0.03 0.07 0.03
CORR_GWY 0.73 0.62 0.72 0.66 0.75 0.73
CORR_SM 0.82 0.79 0.78 0.69 0.64 0.67

NSE-Q 0.84 0.84 0.81 0.84 0.84 0.81
NSE-LNQ 0.81 0.80 0.82 0.81 0.79 0.76

2

GW—Only

CORR_GWG −0.37 −0.28 −0.27 −0.07 −0.10 −0.05
CORR_GWY 0.73 0.75 0.75 0.63 0.70 0.75

CORR_SM 0.79 0.83 0.84 0.68 0.61 0.58
NSE-Q 0.88 −286 0.72 0.88 −286 0.72

NSE-LNQ 0.85 −0.68 −0.91 0.83 −1.18 −0.48

SM—Only

CORR_GWG −0.05 −0.38 0.18 −0.04 0.01 −0.08
CORR_GWY 0.48 0.69 0.25 0.58 0.75 0.37
CORR_SM 0.83 0.85 0.85 0.71 0.65 0.66

NSE-Q 0.82 −26.7 0.20 0.82 −26.7 0.20
NSE-LNQ 0.63 0.17 −1.39 0.54 −0.24 −1.39

3

Q + GW

CORR_GWG −0.11 −0.37 −0.31 −0.03 0.00 −0.04
CORR_GWY 0.54 0.72 0.73 0.61 0.72 0.67

CORR_SM 0.80 0.83 0.82 0.69 0.66 0.65
NSE-Q 0.45 0.87 0.85 0.45 0.87 0.85

NSE−LNQ 0.64 0.84 0.83 0.57 0.78 0.82

Q + SM

CORR_GWG −0.36 −0.38 −0.36 0.10 0.00 0.01
CORR_GWY 0.68 0.72 0.68 0.70 0.74 0.75
CORR_SM 0.84 0.83 0.84 0.64 0.66 0.66

NSE-Q 0.85 0.88 0.87 0.71 0.88 0.87
NSE-LNQ 0.81 0.79 0.67 −0.69 0.73 0.62

4 Q + GW + SM

CORR_GWG −0.15 −0.37 −0.34 −0.02 −0.06 −0.07
CORR_GWY 0.55 0.73 0.73 0.64 0.67 0.65
CORR_SM 0.83 0.84 0.83 0.69 0.68 0.66

NSE-Q 0.80 0.88 0.87 0.80 0.88 0.87
NSE-LNQ 0.58 0.86 0.83 0.50 0.82 0.81

It is worth pointing out that there is a trade-off between single and multi-objective calibrations.
For instance, single objective calibration improved the SM-Only simulations from 0.83 to 0.85 using
the SCE-UA method (case 2, CORR_SM). Multi-objective calibration (Q + SM) ensured a reasonable
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hydrograph match (NSE-Q 0.88), whereas SM-Only calibration failed for both SCE-UA and CMAES,
i.e., NSE-Q ~−26.7 and 0.2, respectively.

Based on the validation results, the GW-Only calibration algorithm resulted in a value of 0.75
for CORR_GWY using the SCE-UA. Interestingly, the performance did not deteriorate, i.e., 0.72 for
CORR_GWY, when we added NSE-LNQ to the set of objective functions. The case 3 (Q + GW)
calibration using SCE-UA substantially improved the NSE-LNQ metric from −1.18 to 0.78 in the
validation period; i.e., the main motivation of our multi-objective calibration framework proposed
in this study (Table 6). With this in mind, the GRACE data from the Rhine basin apparently caused
a conflict with the Moselle well measurements, like in the last case (Q + GW + SM); i.e., they showed
negative CORR_GWG results. Out of curiosity, we tested GWG-Only and GWY-Only calibration
scenarios using all three methods and obtained NSE of 0.18 and 0.76, respectively using the SCE-UA
method. This confirms the low reliability of the coarse GRACE (GWG) data, as compared to the
groundwater well measurements (GWY) in the Moselle River Basin.

Figure 5 shows the results of the model calibration framework comprising seven cases listed in
the legend. For brevity, only the CMAES results are presented, as Table 6 gives the overall calibration
and validation results. Here one can clearly see the trade-off between single and multiple objective
functions in the calibration. Obviously, Only Q and Only Q-LN perform best in both calibration and
validation periods, spring and fall seasons in particular. During low flows from June to September,
the HBV model captures the hydrological behavior well. Only-GW calibration fails to capture the
streamflow dynamics in the Moselle River, and Only-SM calibration fails to simulate low flow periods,
since these constraints are not given to the model via the objective functions. In other words, if the
objective function does not incorporate appropriate process information, the hydrologic model usually
fails/ignores to simulate the underlying physics.
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for seven cases calibrated by the CMAES global search algorithm.

6. Discussion

Satellite-based observations have been incorporated into different model calibrations to constrain
the spatially-distributed hydrologic model behavior towards reliable physics [3,6,10,12]. In this study,
we sought an answer to the question whether satellite-based products can also be helpful for guiding
lumped models throughout the calibration, an issue which has been rarely investigated [2]. Obviously
spatial information is lost during the averaging (lumping) process, but the temporal information from
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the satellite data are shown to be helpful for the model evaluations. SM-only and GW-only calibrations
fail on discharge, and in combination with Q they add little to the performance.

Also the combination of Q, SM and G data gives good results for Q simulation for the right reasons
(SM and G simulation is reasonable, in particular, compared to Q only simulations).

We received P and PET data from two sources: BfG-Koblenz (up to 2006) and van Osnabrugge et
al. [29] (up to 2015). We noticed wetter characteristics in the latter data, and decided to stick to the
first data from BfG-Koblenz for the model calibration, as the initial calibration results were promising.
Instead, the more recent data were used only for the validation. We assume that three to five year
daily data (2002–2004 and 2002–2006) are sufficient for model calibration. Besides, the long validation
period is probably the main reason for good validation performances. In contrast to the conventional
model calibration approaches, we used more recent data for calibration and older data for validation
to benefit from the opportunities of new instrumentation.

We limited the PEST-LM calibration with 375 iterations corresponding to nearly 3,000 model runs,
which is comparable with the maximum number of runs of SCE-UA and CMAES. However, PEST-LM
usually ended much earlier than the maximum number of runs. This is from the fact that the initial
point in the model calibration is key to determine a local minimum, or to coincidentally find a global
optimum. Apparently, PEST-LM suffered from the local minimum issue. Comparing the NSE-LNQ
values in the first column (PEST-LM) for low flows and GW-only, and also the NSE values in the first
column of high flows and SM-only, clearly show the importance of the initial parameter set (start point
in the solution space) and the local minimum problem of PEST-LM.

We only used the HBV model, which has GW and SM storages, whereas other similar models
with three buckets can be also tested to assess the uncertainties from model selection. The effects of
model structure and different remote sensing products on the calibration of five different rainfall-runoff

models with different spatial discretization have been discussed in the previous studies [2,69].
Moreover, we only used NSE and CORR as objective functions, whereas there are many more

objective functions, e.g., Kling and Gupta Efficiency [70], Spatial Efficiency (SPAEF) [3], Spearman and
Kendall Rank Correlation Coefficients [71], than these two metrics tested in the spatial and temporal
domain. Although SPAEF has been designed to evaluate spatial performance of distributed models,
it can be applied to the time-series comparison in this study as well, since the three components in the
SPAEF metric, i.e., the correlation coefficient, coefficient of variation and histogram match, are important
characteristics of temporal data too. In a subsequent study, we plan to apply SPAEF in a temporal
model calibration. Moreover, Spearman’s rho and Kendall’s tau coefficients can capture non-linear
relations between two variables, while Pearson’s metric (CORR) only shows the linear correlations.

We expected to see similar parameters showing a high sensitivity for fitting HBV model simulations
to observed and remotely-sensed groundwater data (well and GRACE). However, the KS parameter
showed the highest sensitivity for GWY, and the LP parameter showed the highest sensitivity for
GWG. This can be an initial alert/indicator to the poor GRACE performance, since the LP parameter is
relevant for the soil moisture reservoir of the model, and it hardly influences simulated groundwater
behavior. We used GRACE-Rhine data directly instead of estimating or finding GRACE-Moselle data.
This must have substantial effects on the results as the Rhine Basin size is large, and there can be
different aquifer dynamics within the basin.

7. Conclusions

At the beginning of this study, we applied sensitivity analysis to determine the most important
parameters for the calibration using the groundwater well measurements (GWY) and remotely-sensed
products (GRACE, ESA, AQUA and SMAP) data. We selected three different objective functions,
namely NSE-Q, NSE-LNQ and CORR. We can draw the following conclusions from the results of this
study:

• Based on the sensitivity analysis results, we find that different hydrologic processes are sensitive
for different parameters. The HBV model’s groundwater performance (GWY) was most sensitive
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to the KS parameter, whereas the model’s soil moisture performance was most sensitive to the
FC parameter. Also we confirm that 20 different initial parameter sets [64] using Latin Hypercube
sampling are sufficient for globally encapsulating the most sensitive parameters.

• Based on the calibration and validation results, we show that the two global methods perform
better than the local Levenberg Marquardt method. An upper limit of 3,000 model runs appeared
to be plausible for both the local and global optimization of the HBV model. Also including
groundwater and remotely-sensed soil moisture information slightly (up to ~10%) improved
not only the GW and SM simulation performances of the model, but also the simulation of the
observed discharge behavior of the HBV model. This is only exploiting the temporal information
of the satellite-based data, since we spatially averaged the distributed data to get the time series
of SM and GW. This was also confirmed by a recent study by Nijzink et al. [2].

Further work on the combination of lumped hydrological models with newly-available high
resolution remote sensing products, e.g. SMAP, is necessary. Also it is recommended to test the value
of spatially-distributed well measurements in addition to the GRACE on the performance of a fully
distributed version of HBV (i.e., HYPE) or another hydrologic model like mHM [3]. Since ESA is
a combined product including AQUA, only ESA can be used to avoid redundancy in the future studies.
Spatial variation of droughts and high flows should also be assessed with different performance
metrics to exploit both the temporal and spatial value of the remote sensing products. Promising deep
learning methods such as Long Short-Term Memory Network (LSTM) [72,73] and Tensorflow can
also be incorporated to simulate spatially-distributed runoff based on spatially-distributed layers of
precipitation and potential evapotranspiration maps.
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M.C.D., S.O., E.T. (Emir Toker), Ö.E., H.T., S.E., H.K.D., A.B.S., Ö.S., E.T. (Ecem Tuncer), H.H., T.İ.Ö. and M.J.B.;
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