Bridging Terrestrial and Marine Geoheritage: Assessing Geosites in Portofino Natural Park (Italy)
Abstract
:1. Introduction
- Relict landforms, testifying past geological and geomorphological events or paleo-environments, and direct consequences of human interaction are usually better preserved than in a continental environment [52]. In particular, research on climate change occurring in the past 22 ka BP has allowed sea-level fluctuations to be identified up to about −120 m with respect to present levels. The numerous marine markers identifiable in the submerged strip of present-day Mediterranean coasts constitute exceptional archives of long-term paleo-environmental change, with particular reference to climate and sea-level changes (e.g., [62,63,64]).
- Abiotic heritage has strong interconnections with human life and marine biodiversity, since it plays an important role in providing benefits through the functioning of ecosystems (cf., [65]). The benefits include ecological benefits, such as habitat provision and improvement of fish stocks, social and cultural benefits related to nature appreciation, economic benefits of tourism, and recreational enjoyment of the marine environment.
- Submerged areas are often tourist destinations, with a potential for geotourist popularization of their geological and geomorphological heritage. Enjoyment of the underwater environment focuses mainly on biological attractions, such as marine biota and habitats [51] or cultural l.s elements, such as archeological remnants (e.g., [66,67]) or shipwrecks (e.g., [68,69]) whilst the importance of natural abiotic features is often underestimated [55]. The submerged environments are also used for tourist activities, especially for cultural, historical, and religious purposes. Examples of links between submerged cultural heritage and submerged geoheritage in the Mediterranean have been developed in marine protected areas in Liguria [43,53,54,55], in the Greek Islands [47], in Sardinia [50,52], and in Malta [70].
2. Geographical Setting
3. Geological, Geomorphological, and Hydrogeological Setting
4. Materials and Methods
4.1. Geosites Identification
4.2. Geosite Assessment
- Scientific/intrinsic (scientific merit) values;
- Exemplarity and educational potential of the site;
- Accessibility to the site and presence of tourist infrastructures;
- Existing threats and risks;
- Added values.
5. Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garavaglia, V.; Pelfini, M.; Bollati, I. The influence of climate change on glacier geomorphosites: The case of two Italian glaciers (Miage Glacier, Forni Glacier) investigated through dendrochronology. Géomorphologie 2010, 2, 153–164. [Google Scholar] [CrossRef]
- Bosson, J.B.; Reynard, E. Geomorphological heritage, conservation and promotion in high-alpine protected areas. eco. mont 2012, 4, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Ravanel, L.; Bodin, X.; Deline, P. Using terrestrial laser scanning for the recognition and promotion of high-alpine geomorphosites. Geoheritage 2014, 6-2, 129–140. [Google Scholar] [CrossRef]
- Reynard, E.; Coratza, P. The importance of mountain geomorphosites for environmental education. Examples from the Italian Dolomites and the Swiss Alps. Acta Geogr. Slov. 2016, 56-2, 291–303. [Google Scholar] [CrossRef]
- Bollati, I.; Pellegrini, M.; Reynard, E.; Pelfini, M. Water driven processes and landforms evolution rates in mountain geomorphosites: Examples from Swiss Alps. Catena 2017, 158, 321–339. [Google Scholar] [CrossRef]
- Bollati, I.; Coratza, P.; Panizza, V.; Pelfini, M. Lithological and structural control on Italian mountain geoheritage: Opportunities for tourism, outdoor and educational activities. Quaest. Geogr. 2018, 37, 53–73. [Google Scholar] [CrossRef]
- Van den Ancker, H.J.A.M.; Jungerius, P.D. Geodiversity, geoheritage and geoconservation along the Dutch coast. Ned. Geogr. Stud. 2004, 325, 63–72. [Google Scholar]
- Brocx, M.; Semeniuk, V. Coastal geoheritage: Encompassing physical, chemical, and biological processes, landforms, and other geological features in the coastal zone. J. R. Soc. West Aust. 2009, 92, 243–260. [Google Scholar]
- Brocx, M.; Semeniuk, V. Coastal geoheritage: A hierarchical approach to classifying coastal types as a basis for identifying geodiversity and sites of significance in Western Australia. J. R. Soc. West Aust. 2010, 93, 81–113. [Google Scholar]
- Coratza, P.; Gauci, R.; Schembri, J.; Soldati, M.; Tonelli, C. Bridging Natural and Cultural Values of Sites with Outstanding Scenery: Evidence from Gozo, Maltese Islands. Geoheritage 2016, 8, 91–103. [Google Scholar] [CrossRef]
- Faccini, F.; Gabellieri, N.; Paliaga, G.; Piana, P.; Angelini, S.; Coratza, P. Geoheritage map of the Portofino Natural Park (Italy). J. Maps 2018, 14, 87–96. [Google Scholar] [CrossRef]
- Martín-Duque, J.F.; Caballero García, J.; Carcavilla Urquí, L. Geoheritage information for Geoconservation and Geotourism Through the Categorization of Landforms in a Karstic Landscape. A Case Study from Covalagua and Las Tuerces (Palencia, Spain). Geoheritage 2012, 4, 93–108. [Google Scholar] [CrossRef]
- Huo, S.J.; Sun, J.H.; Sun, K.Q. An Analysis on Resource Management of Geoheritage: A Case Study of South China Karst. Adv. Mater. Res. 2012, 518, 5909–5920. [Google Scholar] [CrossRef]
- Hoblea, F.; Delannoy, J.J.; Jaillet, S.; Ployon, E.; Sadier, B. Digital Tools for Managing and Promoting Karst Geosites in Southeast France. Geoheritage 2014, 6, 113–127. [Google Scholar] [CrossRef]
- Ballesteros, D.; Jiménez-Sánchez, M.; Domínguez-Cuesta, M.J.; García-Sansegundo, J.; Meléndez-Asensio, M. Geoheritage and Geodiversity Evaluation of Endokarst Landscapes: The Picos de Europa National Park, North Spain. In Hydrogeological and Environmental Investigations in Karst Systems; Andreo, B., Carrasco, F., Durán, J., Jiménez, P., LaMoreaux, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 619–627. [Google Scholar]
- Antić, A.; Tomić, N.; Marković, S. Karst geoheritage and geotourism potential in the Pek River lower basin (Eastern Serbia). Geogr. Pann. 2019, 23, 32–46. [Google Scholar] [CrossRef]
- Bollati, I.; Pelfini, M.; Pellegrini, L. A geomorphosites selection method for educational purposes: A case study in Trebbia Valley (Emilia Romagna, Italy). Geogr. Fis. Din. Quat. 2012, 35, 23–35. [Google Scholar]
- Álvarez-Vázquez, M.Á.; De Uña-Álvarez, E. Inventory and Assessment of Fluvial Potholes to Promote Geoheritage Sustainability (Miño River, NW Spain). Geoheritage 2017, 9, 549–560. [Google Scholar] [CrossRef]
- Clivaz, M.; Reynard, E. How to Integrate Invisible Geomorphosites in an Inventory: A Case Study in the Rhone River Valley (Switzerland). Geoheritage 2018, 10, 527–541. [Google Scholar] [CrossRef]
- Migoń, P.; Pijet-Migoń, E. Overlooked geomorphological component of volcanic geoheritage—Diversity and perspectives for tourism industry, Pogórze Kaczawskie region, SW Poland. Geoheritage 2016, 8, 333–350. [Google Scholar] [CrossRef]
- Nemeth, K.; Moufti, M.R. Geoheritage Values of a Mature Monogenetic Volcanic Field in Intra-continental Settings: Harrat Khaybar, Kingdom of Saudi Arabia. Geoheritage 2017, 9, 311–328. [Google Scholar] [CrossRef]
- Nemeth, K.; Casadevall, T.; Moufti, M.R.; Marti, J. Volcanic Geoheritage. Geoheritage 2017, 9, 251–254. [Google Scholar] [CrossRef] [Green Version]
- Zacek, V.; Hradecky, P.; Kycl, P.; Sevcik, J.; Novotny, R.; Baron, I. The Somoto Grand Canyon (Nicaragua)-a Volcanic Geoheritage Site One Decade After Discovery: From Field Geological Mapping to the Promotion of a Geopark. Geoheritage 2017, 9, 299–309. [Google Scholar] [CrossRef]
- Del Monte, M.; Fredi, P.; Pica, A.; Vergari, F. Geosites within Rome City center (Italy): A mixture of cultural and geomorphological heritage. Geogr. Fis. Din. Quat. 2013, 36, 241–257. [Google Scholar] [CrossRef]
- Palacio-Prieto, J.L. Geoheritage within cities: Urban geosites in Mexico City. Geoheritage 2015, 7, 65–373. [Google Scholar] [CrossRef]
- Chan, M.A.; Godsey, H.S. Lake Bonneville Geosites in the Urban Landscape: Potential Loss of Geological Heritage. In Developments in Earth Surface Processes; Oviatt, C.G., Shroder, J.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 617–633. [Google Scholar] [CrossRef]
- De Wever, P.; Baudin, F.; Pereira, D.; Cornée, A.; Egoroff, G.; Page, K. The Importance of Geosites and Heritage Stones in Cities—A Review. Geoheritage 2017, 9, 561–575. [Google Scholar] [CrossRef]
- Reynard, E.; Coratza, P.; Pica, A. Urban Geomorphological Heritage. An Overview. Quaest. Geogr. 2017, 36, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Portal, C.; Kerguillec, R. The Shape of a City: Geomorphological Landscapes, Abiotic Urban Environment, and Geoheritage in the Western World: The Example of Parks and Gardens. Geoheritage 2018, 10, 67–78. [Google Scholar] [CrossRef]
- Sacchini, A.; Ponaro, M.I.; Paliaga, G.; Piana, P.; Faccini, F.; Coratza, P. Geological landscape and stone heritage of the Genoa walls Urban park and surrounding area (Italy). J. Maps 2018, 14, 528–541. [Google Scholar] [CrossRef]
- Brilha, J. Geoheritage: Inventories and evaluation. In Geoheritage: Assessment, Protection and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 69–86. [Google Scholar]
- Reynard, E.; Coratza, P.; Regolini-Bissig, G. Geomorphosites; Verlag Dr. Friedrich Pfeil: Munich, Germany, 2009. [Google Scholar]
- Brilha, J. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef]
- Grandgirard, V. Géomorphologie, protection de la nature et gestion du paysage. Ph.D. Thesis, Doctorat-Faculté des Sciences, Université de Fribourg, 1997. [Google Scholar]
- Grandgirard, V. L’évaluation des géotopes. Geol. Insubrica 1999, 4, 59–66. [Google Scholar]
- Gordon, J.E.; Crofts, R.; Díaz-Martínez, E.; Woo, K.S. Enhancing the role of geoconservation in protected area management and nature conservation. Geoheritage 2018, 10, 191–203. [Google Scholar] [CrossRef]
- Patzak, M.; Eder, W. UNESCO Geopark. A new programme—A new UNESCO label. Geol. Balc. 1998, 28, 33–35. [Google Scholar]
- UNESCO. Geoparks Programme: A new initiative to promote a global network of geoparks safeguarding and developing selected areas having significant geological features. In Proceedings of the 156th UNESCO Executive Board, Paris, France, 4 March 1999. [Google Scholar]
- Coratza, P.; De Waele, J. Geomorphosites and natural hazards: Teaching the importance of geomorphology in society. Geoheritage 2012, 4, 195–203. [Google Scholar] [CrossRef]
- Wu, J.H.; Lin, W.K.; Hu, H.T. Assessing the impacts of a large slope failure using 3DEC: The Chiu-fen-erh-shan residual slope. Comput. Geotech. 2017, 88, 32–45. [Google Scholar] [CrossRef]
- Migoń, P.; Pijet-Migoń, E. Natural disasters, geotourism, and geo-interpretation. Geoheritage 2019, 11, 629–640. [Google Scholar] [CrossRef]
- Kotilainen, A. Marine Geotope Protection. In Encyclopedia of Marine Geosciences; Harff, J., Meschede, M., Petersen, S., Thiede, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 448–449. [Google Scholar] [CrossRef]
- Rovere, A.; Vacchi, M.; Parravicini, V.; Bianchi, C.N.; Zouros, N.; Firpo, M. Bringing geoheritage underwater: Definitions, methods, and application in two Mediterranean marine areas. Environ. Earth Sci. 2011, 64, 133–142. [Google Scholar] [CrossRef]
- Burek, C.V.; Ellis, N.V.; Evans, D.H.; Hart, M.B.; Larwood, J.G. Marine geoconservation in the United Kingdom. Proc. Geol. Assoc. 2013, 124, 581–592. [Google Scholar] [CrossRef]
- Arisci, A.; De Waele, J.; Di Gregorio, F.; Ferrucci, I.; Follesa, R. Integrated, sustainable touristic development of the karstic coastline of SW Sardinia. J. Coast. Conserv. 2003, 9, 81–90. [Google Scholar] [CrossRef]
- Carobene, L.; Firpo, M. Conservazione e valorizzazione dei geositi costieri in Liguria: L’esempio del tratto di costa tra Varazze e Cogoleto. In La Valorizzazione Dello Spazio Fisico Come via Alla Salvaguardia Ambientale; Terranova, R., Brandolini, P., Firpo, M., Eds.; Patron Editore: Bologna, Italy, 2005; pp. 87–102. [Google Scholar]
- Zouros, N. Geomorphosite assessment and management in protected areas of Greece. The case of the Lesvos island coastal geomorphosites. Geogr. Helv. 2007, 62, 169–180. [Google Scholar] [CrossRef]
- Bianchi, C.N. From bionomic mapping to territorial cartography, or from knowledge to management of marine protected areas. Biol. Mar. Mediterr. 2007, 14, 22–51. [Google Scholar]
- Bianchi, C.N.; Morri, C.; Navone, A. Classificazione degli ambienti sommersi e cartografia tematica. In Tavolara: Nature at Work … Working in Nature; Navone, A., Trainito, E., Eds.; Carlo Delfino Editore: Sassari, Italy, 2008; pp. 145–165. [Google Scholar]
- Orrù, P.; Ulzega, A. Rilevamento geomorfologico costiero e sottomarino applicato alla definizione delle risorse ambientali (Golfo di Orosei, Sardegna orientale). Mem. Soc. Geol. Ital. 1988, 37, 123–131. [Google Scholar]
- Orrù, P.; Panizza, V. Assessment and management of submerged geomorphosites. A case study in Sardinia (Italy). In Geomorphosites; Reynard, E., Coratza, P., Regolini-Bissig, G., Eds.; Pfeil: Munchen, Germany, 2009; pp. 201–212. [Google Scholar]
- Orrù, P.; Panizza, V.; Ulzega, A. Submerged geomorphosites in the marine protected areas of Sardinia (Italy): Assessment and improvement. Ital. J. Quat. Sci. 2005, 18, 167–174. [Google Scholar]
- Rovere, A.; Parravicini, V.; Donato, M.; Riva, C.; Diviacco, G.; Coppo, S.; Firpo, M.; Bianchi, C.N. Surveys of the Punta Manara shoals: An ecotipological approach. Biol. Mar. Mediterr. 2006, 13, 210–211. [Google Scholar]
- Rovere, A.; Carobene, L.; Firpo, M. Geoheritage conservation in coastal and submerged landscapes: Mapping methods, GIS approach and management perspectives from the Bergeggi area. In Proceedings of the 33rd International Geological Conference, Oslo, Norway, 6–14 August 2008. [Google Scholar]
- Rovere, A.; Vacchi, M.; Parravicini, V.; Morri, C.; Bianchi, C.N.; Firpo, M. Bringing geoheritage underwater: methodological approaches to evaluation and mapping. Géovisions 2010, 35, 65–80. [Google Scholar]
- Pereira, P.; Pereira, D.; Caetano Alves, M.I. Geomorphosite assessment in Montesinho Natural Park (Portugal). Geogr. Helv. 2007, 62, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Reynard, E.; Fontana, G.; Kozlik, L.; Scapozza, C. A method for assessing scientific and additional values of geomorphosites. Geographica Helvetica. Geogr. Helv. 2007, 62, 148–158. [Google Scholar] [CrossRef]
- Flores-de la Hoya, A.; Godínez-Domínguez, E.; González-Sansón, G. Rapid assessment of coastal underwater spots for their use as recreational scuba diving sites. Ocean Coast. Manag. 2018, 152, 1–13. [Google Scholar] [CrossRef]
- Ramos, J.; Santos, M.N.; Whitmarsh, D.; Monteiro, C.C. The usefulness of the analytic hierarchy process for understanding reef diving choices: A case study. Bull. Mar. Sci. 2006, 78, 213–219. [Google Scholar]
- Brooks, A.J.; Kenyon, N.H.; Leslie, A.; Long, D.; Gordon, J.E. Characterising Scotland’s Marine Environment to Define Search Locations for New Marine Protected Areas. Part 2: The Identification of Key Geodiversity Areas in Scottish Waters (Interim Report July 2011); Commissioned Report No. 430; Scottish Natural Heritage: UK, 2011; Available online: http://nora.nerc.ac.uk/id/eprint/16861/1/430.pdf (accessed on 11 October 2019).
- Gordon, J.E.; Brooks, A.J.; Chaniotis, P.D.; James, B.D.; Kenyon, N.H.; Leslie, A.B.; Long, D.; Rennie, A.F. Progress in marine geoconservation in Scotland’s seas: Assessment of key interests and their contribution to marine protected area network planning. Proc. Geol. Assoc. 2016, 127, 716–737. [Google Scholar] [CrossRef]
- Silenzi, S.; Devoti, S.; Gabellini, M.; Magaletti, E.; Nisi, M.F.; Pisapia, M.; Angelelli, F.; Antonioli, F.; Zarattini, A. Le variazioni del clima nel Quaternario. Geo-Archeol. 2004, 1, 15–50. [Google Scholar]
- Lambeck, K.; Antonioli, F.; Purcell, A.; Silenzi, S. Sea-level change along the Italian coast for the past 10,000 yr. Quat. Sci. Rev. 2004, 23, 1567–1598. [Google Scholar] [CrossRef]
- Anzidei, M.; Antonioli, F.; Benini, A.; Lambeck, K.; Sivan, D.; Serpelloni, E.; Stocchi, P. Sea level change and vertical land movements since the last two millennia along the coasts of southwestern Turkey and Israel. Quat. Int. 2011, 232, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Gray, M. Geodiversity: The Backbone of Geoheritage and Geoconservation. In Geoheritage; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 13–25. [Google Scholar] [CrossRef]
- Raban, A. Archaeological park for divers at Sebastos and other submerged remnants in Caesarea Maritima, Israel. Int. J. Naut. Archaeol. 1992, 21, 27–35. [Google Scholar] [CrossRef]
- Abd-el-Maguid, M.M. Underwater Archaeology in Egypt and the Protection of its Underwater Cultural Heritage. J. Marit. Arch. 2012, 7, 193–207. [Google Scholar] [CrossRef]
- Jeffery, B. Realising the cultural tourism potential of South Australian shipwrecks. Hist. Environ. 1990, 7, 72. [Google Scholar]
- Edney, J.; Howard, J. Review 1: Wreck diving, Scuba Diving Tourism. In Contemporary Geographies of Leisure, Tourism and Mobility; Musa, G., Dimmock, K., Eds.; Routledge: Abington, UK, 2013; pp. 52–56. [Google Scholar]
- Prampolini, M.; Foglini, F.; Biolchi, S.; Devoto, S.; Angelini, S.; Soldati, M. Geomorphological mapping of terrestrial and marine areas, northern Malta and Comino (Central Mediterranean sea). J. Maps 2017, 13, 457–469. [Google Scholar] [CrossRef]
- Bird, E.C.F. Coastal Geomorphology, 2nd ed.; John and Wiley and Sons: Hoboken, NJ, USA, 2008; p. 436. [Google Scholar]
- Westley, K.; Quinn, R.; Forsythe, W.; Plets, R. Mapping submerged landscapes using multibeam bathymetric data: A case study from the north coast of Ireland. Int. J. Naut. Archaeol. 2011, 40, 99–112. [Google Scholar] [CrossRef]
- Harff, J.; Bailey, G.; Luth, F. Geology and Archaeology: Submerged Landscapes of the Continental Shelf; Geological Society: London, UK, 2016; p. 294. [Google Scholar]
- Miccadei, E.; Mascioli, F.; Piacentini, T. Quaternary geomorphological evolution of the Tremiti Islands (Puglia, Italy). Quatern. Int. 2011, 233, 3–15. [Google Scholar] [CrossRef]
- Miccadei, E.; Mascioli, F.; Orrù, P.; Piacentini, T.; Puliga, G. Late Quaternary palaeolandscape of submerged inner continental shelf areas of Tremiti Islands archipelago (northern Puglia). Geogr. Fis. Din. Quat. 2011, 34, 223–234. [Google Scholar]
- Kerr, S.; Johnson, K.; Side, J.C. Planning at the edge: Integrating across the land sea divide. Mar. Policy 2014, 47, 118–125. [Google Scholar] [CrossRef]
- Parrott, D.R.; Todd, B.J.; Shaw, J.; Hughes Clarke, J.E.; Griffin, J.; MacGowan, B.; Lamplugh, M.; Webster, T. Integration of multibeam bathymetry and LiDAR surveys of the Bay of Fundy, Canada. In Proceedings of the Canadian Hydrographic Conference and National Surveyors Conference, Victoria, BC, Canada, 2008; pp. 1–15. [Google Scholar]
- De Jongh, C.; van Opstal, H. Coast-Map-IO TopoBathy Database. Report Pilot Project, Leading Partner CARIS BV. 2012, pp. 20–26. Available online: https://www.dhyg.de/images/hn_ausgaben/HN094.pdf (accessed on 11 October 2019).
- Van Alphen, J.S.L.J.; Damoiseaux, M.A. A geomorphological map of the Dutch shoreface and adjacent part of the continental shelf. Geol. Mijnb. 1989, 68, 433–443. [Google Scholar]
- Miccadei, E.; Orrù, P.; Piacentini, T.; Mascioli, F.; Puliga, G. Geomorphological map of the Tremiti Islands (Puglia, southern Adriatic Sea, Italy), scale 1:15,000. J. Maps 2012, 8, 74–87. [Google Scholar] [CrossRef]
- Prampolini, M.; Gauci, C.; Micallef, A.S.; Selmi, L.; Vandelli, V.; Soldati, M. Geomorphology of the north-eastern coast of Gozo (Malta, Mediterranean Sea). J. Maps 2018, 14, 402–410. [Google Scholar] [CrossRef]
- Panizza, M. Geomorphosites: Concepts, methods and examples of geomorphological survey. Chin. Sci. Bull. 2001, 46, 4–6. [Google Scholar] [CrossRef]
- Panizza, M.; Piacente, S. Geomorphological asset evaluation. Z. Geomorph. 1993, 87, 13–18. [Google Scholar]
- Stokes, A.M.; Cook, S.D.; Drew, D. Geotourism: The New Trend in Travel; Travel Industry America and National Geographic Traveler: Washington, DC, USA, 2003. [Google Scholar]
- Pellati, A. La Penisola di Portofino, note geomorfologiche. Riv. Sci. Nat. 1934, 25, 13–34. [Google Scholar]
- Brandolini, P.; Faccini, F.; Piccazzo, M. Geomorphological hazard and tourist vulnerability along Portofino Park trails (Italy). Nat. Hazard. Earth. Syst. Sci. 2006, 6, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Faccini, F.; Piccazzo, M.; Robbiano, A. Environmental Geological Maps of San Fruttuoso Bay (Portofino Park, Italy). J. Maps 2008, 4, 431–443. [Google Scholar] [CrossRef] [Green Version]
- Faccini, F.; Piccazzo, M.; Robbiano, A.; Roccati, A. Applied Geomorphological Map of the Portofino municipal territory (Italy). J. Maps 2008, 4, 451–462. [Google Scholar] [CrossRef]
- Cimmino, F.; Faccini, F.; Robbiano, A. Stones and coloured marbles of Liguria in historical monuments. Per. Mineral. 2004, 73, 71–84. [Google Scholar]
- Paliaga, G.; Giostrella, P.; Faccini, F. Terraced landscape as cultural and environmental heritage at risk: An example from Portofino Park (Italy). Annal. Ser. Hist. Sociol. 2016, 26, 1–10. [Google Scholar]
- Salmona, P.; Verardi, D. The marine protected area of Portofino, Italy: A difficult balance. Ocean. Coast. Manag. 2011, 44, 39–60. [Google Scholar] [CrossRef]
- Cerrano, C.; Milanese, M.; Ponti, M. Diving for science-science for diving: Volunteer scuba divers support science and conservation in the Mediterranean Sea. Aquat. Conserv. 2017, 27, 303–323. [Google Scholar] [CrossRef]
- Faccini, F.; Piccazzo, M.; Robbiano, A. Natural hazards in San Fruttuoso of Camogli (Portofino Park, Italy): A case study of a debris flow in a coastal environment. Boll. Soc. Geol. Ital. 2009, 128, 641–654. [Google Scholar]
- Brandolini, P.; Faccini, F.; Robbiano, A.; Terranova, R. Geomorphological hazard and monitoring activity along the western rocky coast of the Portofino Promontory (Italy). Quatern. Int. 2007, 171, 131–142. [Google Scholar] [CrossRef]
- Corsi, B.; Elter, F.M.; Giammarino, S. Structural fabric of the Antola unit (Riviera di Levante, Italy) and implications for its Alpine versus Apennine origin. Ophiolites 2001, 26, 1–8. [Google Scholar]
- Cevasco, A.; Faccini, F.; Nosengo, S.; Olivari, F.; Robbiano, A. Valutazioni sull’uso delle classificazioni geomeccaniche nell’analisi della stabilità dei versanti rocciosi: Il caso del ‘Promontorio di Portofino (Provincia di Genova). GEAM 2004, 111, 31–38. [Google Scholar]
- Giammarino, S.; Nosengo, S.; Vannucci, G. Risultanze geologiche-paleontologiche sul Conglomerato di Portofino (Liguria Orientale). Atti Istituto di Geologia dell’Università di Genova 1969, 7, 305–363. [Google Scholar]
- Giammarino, S.; Messiga, B. Clasti di meta-ofioliti a paragenesi di alta pressione nel Conglomerato di Portofino: Implicazioni paleogeografiche e strutturali. Ofioliti 1979, 4, 25–41. [Google Scholar]
- Bonaria, V.; Faccini, F.; Galiano, I.C.; Sacchini, A. Hydrogeology of conglomerate fractured-rock aquifers: An example from the Portofino’s Promontory (Italy). Rendiconti Online Soc. Geol. Ital. 2016, 41, 22–25. [Google Scholar] [CrossRef]
- Area Marina Protetta Portofino. Available online: http://www.portofinoamp.it/ (accessed on 6 May 2019).
- Sacchini, A.; Faccini, F.; Ferraris, F.; Firpo, M.; Angelini, S. Large-scale landslide and Deep-Seated Gravitational Slope Deformation of the Upper Scrivia Valley (Northern Apennine, Italy). J. Maps 2016, 12, 344–358. [Google Scholar] [CrossRef]
- Faccini, F.; Paliaga, G.; Piana, P.; Sacchini, A.; Watkins, C. The Bisagno stream catchment (Genoa, Italy) and its major floods: Geomorphic and land use variations in the last three centuries. Geomorphology 2016, 273, 14–27. [Google Scholar] [CrossRef]
- Brunetti, M.; Bertolini, A.; Soldati, M.; Maugeri, M. High-resolution analysis of 1-day extreme precipitation in a wet area centered over eastern Liguria, Italy. Theor. Appl. Climatol. 2019, 135, 341–353. [Google Scholar] [CrossRef]
- Ligurian Cave Inventory. Available online: https://www.catastogrotte.net/ (accessed on 6 May 2019).
- Ristori, G. Il Conglomerato miocenico e il regime sotterraneo delle acque nel Promontorio e Monte di Portofino. Atti Università di Pisa 1901, 18, 49–67. [Google Scholar]
- Du Plessis, E.; Saayman, M. What makes scuba diving operations successful: The case of Portofino, Italy. EJTR 2017, 17, 164–176. [Google Scholar]
- Lucrezi, S.; Milanese, M.; Sarà, A.; Palma, M.; Saayman, M.; Cerrano, C. Profiling scuba divers to assess their potential for the management of temperate marine protected areas: A conceptual model. Tourism. Mar. Environ. 2018, 13, 85–108. [Google Scholar] [CrossRef]
- Saayman, M.; Saayman, A. Are there economic benefits from marine protected areas? An analysis of scuba diver expenditure. Eur. J. Tour. Res. 2018, 19, 23–39. [Google Scholar]
- Di Carro, M.; Magi, E.; Massa, F.; Castellano, M.; Mirasole, C.; Tanwar, S.; Olivari, E.; Povero, P. Untargeted approach for the evaluation of anthropic impact on the sheltered marine area of Portofino (Italy). Mar. Pollut. Bull. 2018, 131, 87–94. [Google Scholar] [CrossRef]
- Markantonatou, V.; Noguera-Méndez, P.; Semitiel-García, M.; Hogg, K.; Sano, M. Social networks and information flow: Building the ground for collaborative marine conservation planning in Portofino Marine Protected Area (MPA). Ocean. Coast. Manag. 2016, 120, 29–38. [Google Scholar] [CrossRef]
- Migoń, P.; Pijet-Migoń, E. Viewpoint geosites—Values, conservation and management issues. Proc. Geol. Assoc. 2017, 128, 511–522. [Google Scholar] [CrossRef]
- Scuba Diving Sites of the MPA of Portofino. Available online: http://www.portofinoamp.it/ubacquea/i-siti-di-immersione-dellarea-marina-protetta (accessed on 6 May 2019).
- Carton, A.; Cavallin, A.; Francavilla, F.; Mantovani, F.; Panizza, M.; Pellegrini, G.B.; Tellini, C.; Bini, A.; Castaldini, D.; Giorgi, G.; et al. Ricerche ambientali per l’individuazione e la valutazione dei beni geomorfologici. Metodi ed esempi. Ital. J. Quat. Sci. 1994, 7, 365–372. [Google Scholar]
- Rivas, V.; Rix, K.; Frances, A.; Cendrero, A.; Brunsden, D. Geomorphological indicators for environmental impact assessment: Consumable and non-consumable geomorphological resources. Geomorphology 1997, 18, 169–182. [Google Scholar] [CrossRef]
- Vujicic, M.D.; Vasiljevic, D.E.; Markovic, S.B.; Hose, T.A.; Lukic, T.; Hadzic, O.; Janicevic, S. Slankamen villages preliminary geosite assessment model (GAM) and its application on Fruska Gora Mountain, potential geotourism destination of Serbia. Acta Geogr. Slov. 2011, 51, 361–377. [Google Scholar] [CrossRef]
- Reynard, E.; Coratza, P. Scientific research on geomorphosites. A review of the activities of the IAG working group on geomorphosites over the last twelve years. Geogr. Fis. Dinam. Quat. 2013, 36, 159–168. [Google Scholar]
- Bruschi, V.M.; Cendrero, A. Direct and parametric methods for the assessment of geosites and geomorphosites. In Geomorphosites; Reynard, E., Coratza, P., Regolini-Bissig, G., Eds.; Pfeil: München, Germany, 2009; pp. 73–88. [Google Scholar]
- Reynard, E. The assessment of geomorphosites. In Geomorphosites; Reynard, E., Coratza, P., Regolini-Bissig, G., Eds.; Pfeil: Munchen, Germany, 2009; pp. 63–71. [Google Scholar]
- Coratza, P.; Galve, J.P.; Soldati, M.; Tonelli, C. Recognition and assessment of sinkholes as geosites: Lessons from the Island of Gozo (Malta). Quaest. Geogr. 2012, 31, 25–35. [Google Scholar] [CrossRef]
- Kubaliková, L.; Kirchner, K. Geosite and Geomorphosite Assessment as a Tool for Geoconservation and Geotourism Purposes: A Case Study from Vizovická vrchovina Highland (Eastern Part of the Czech Republic). Geoheritage 2016, 8, 5–14. [Google Scholar] [CrossRef]
- Reynard, E.; Perret, A.; Bussard, J.; Grangier, L.; Martin, S. Integrated approach for the inventory and management of geomorphological heritage at the regional scale. Geoheritage 2016, 8, 43–60. [Google Scholar] [CrossRef]
- Bruschi, V.M.; Cendrero, A. Geosite evaluation: Can we measure intangible values? Ital. J. Quat. Sci. 2005, 18, 293–306. [Google Scholar]
- Brilha, J. Património Geológico e Geoconservação: A Conservação da Natureza na sua Vertente Geológica; Palimage Editores: Viseu, Portugal, 2005; pp. 1–190. [Google Scholar]
- Coratza, P.; Giusti, C. Methodological proposal for the assessment of the scientific quality of geomorphosites. Ital. J. Quat. Sci. 2005, 18, 303–313. [Google Scholar]
- Kubalíková, L. Geomorphosite assessment for geotourism purposes. Czech. J. Tour. 2013, 2, 80–104. [Google Scholar] [CrossRef]
- Cappadonia, C.; Coratza, P.; Agnesi, V.; Soldati, M. Malta and Sicily joined by geoheritage enhancement and geotourism within the framework of land management and development. Geosciences 2018, 8, 253. [Google Scholar] [CrossRef]
- Droz, Y.; Miéville-Ott, V. La Polyphonie du Paysage; Presses Polytechniques et Universitaires Romandes: Lausanne, Switzerland, 2005; p. 236. [Google Scholar]
- Štrba, L.; Rybár, P.; Baláž, B.; Molokáč, M.; Hvizdák, L.; Kršák, B.; Lukáč, M.; Muchová, L.; Tometzová, D.; Ferenčíková, J. Geosite assessments: Comparison of methods and results. Curr. Issues Tour. 2015, 18, 496–510. [Google Scholar] [CrossRef]
- Coratza, P.; Vandelli, V.; Soldati, M. Environmental rehabilitation linking natural and industrial heritage: A Master Plan for dismissed quarry areas in the Emilia Apennines (Italy). Environ. Earth Sci. 2018, 77, 455. [Google Scholar] [CrossRef]
Nr | Name/Location | Scientific Interest | Features/Description |
---|---|---|---|
1T | Pietre Strette | Geological | Conglomerate |
2T | St George Church | Geological | Conglomerate |
3T | St Rocco | Geological | Marly limestone |
4T | P.ta Chiappa | Geological | Conglomerate |
5T | P.ta Pedale | Geological | Marly limestone |
6T | Pietre Strette | Geomorphological | Boulders |
7T | Vitrale | Geomorphological | High cliffs |
8T | P.ta Cervara | Geomorphological | Sea stack |
9T | Mt. Campana | Geomorphological | Mass movement (lateral spread) |
10T | P.ta Budego | Geomorphological | High cliffs |
11T | Cala dell’Oro | Geomorphological | Inlet |
12T | Pietre Strette | Minero-Petrographical | Anagenite |
13T | Cala dell’Oro | Minero-Petrographical | Coal interlayers |
14T | St Rocco | Minero-Petrographical | Abandoned quarry |
15T | Rio Gentile | Minero-Petrographical | Abandoned quarry |
16T | Coppelli | Hydrogeological | Natural springs |
17T | Acquaviva | Hydrogeological | Natural springs |
18T | Caselle | Hydrogeological | Natural springs |
19T | Vegia | Hydrogeological | Natural springs |
20T | St Rocco | Viewpoints | Viewpoints |
21T | Batterie | Viewpoints | Viewpoints |
22T | Toca saddle | Viewpoints | Viewpoints |
23T | Castelletto | Viewpoints | Viewpoints |
24T | Rocca del Falco | Viewpoints | Viewpoints |
25T | Base O | Viewpoints | Viewpoints |
26T | Mt Campana | Viewpoints | Viewpoints |
27T | Semaforo Nuovo | Viewpoints | Viewpoints |
28T | Sotto le Gave | Viewpoints | Viewpoints |
Nr | Name/Location | Scientific Interest | Features/Description | Protection Zone | Min Depth | Max Depth | Difficulty |
---|---|---|---|---|---|---|---|
1S | Punta Chiappa di Levante | Speleological | Cave | B | 10 | 40 | high |
2S | Punta della Targhetta | Geomorphological | Submerged cliff | B | 8 | 20 | low |
3S | Grotta dellEremita | Geomorphological | Cave | B | 5 | 40 | low |
4S | Punta della Torretta | Geomorphological | Submerged cliff | B | 10 | 35 | high |
5S | Punta dell’Indiano | Geomorphological | Submerged cliff | B | 16 | 45 | high |
6S | Il Dragone | Geomorphological | Landslide blocks, cliff | B | 5 | 40 | high |
7S | La Colombara | Speleological | Cave | B | 10 | 30 | medium |
8S | Secca Gonzatti (Secca Carega) | Geomorphological | Submarine relief, shoal | B | 5 | 30 | medium |
9S | Targa Gonzatti | Geomorphological | Landslide blocks | B | 12 | 33 | high |
10S | Scoglio del Raviolo (Andrea Ghisotti) | Hydrogeological/Geomorphological | Cave and submarine spring | B | 10 | 35 | medium |
11S | Testa del Leone | Hydrogeological/Geomorphological | Cave and submarine spring | B | 8 | 35 | medium |
12S | Scoglio del Diamante | Geomorphological | Landslide blocks | B | 10 | 30 | low |
13S | Mohawk Deer | Geomorphological/Cultural | Landslide blocks and scarp | B | 10 | 40 | high |
14S | Punta Vessinaro | Geomorphological | Landslide blocks, submarine cliff | B | 10 | 35 | high |
15S | Casa del Sindaco - Vitrale | Geomorphological | Submarine cliff, landslide blocks | B | 20 | 40 | high |
16S | Chiesa di San Giorgio (La Liscia) | Geomorphological | Landslide blocks, cave | B | 10 | 40 | medium |
17S | Punta del Faro | Geomorphological | Landslide blocks, cliff | B | 16 | 40 | medium |
18S | Secca dell’Isuela | Geomorphological | Submarine relief | B | 14 | 40 | high |
19S | Punta dell’Altare | Geomorphological | Submarine cliff | B | 10 | 35 | medium |
20S | Punta Chiappa ponente | Geomorphological | Cliff, debris covered sea bottom | B | 5 | 25 | low |
21S | Cristo degli Abissi | Geomorphological/Cultural | Debris covered sea bottom, rocky blocks | B | 12 | 30 | low |
22D | Punta Chiappa | Geomorphological/Geological | Cliff, submarine scarp | B/C | 0 | 5 | low |
23D | Baia di San Fruttuoso | Geomorphological/Ecological | Seabed, submarine scarp, Posidonia meadows | B | 0 | 3 | low |
24D | Baia dell’Olivetta | Geomorphological | Boulders, submarine cliff | C | 0 | 3 | low |
25D | Baia di Paraggi | Geomorphological/Ecological | Seabed, submarine cliff, Posidonia meadows | C | 0 | 3 | low |
26D | Castello di Paraggi | Geomorphological | High cliff, rock fall boulders | C | 0 | 5 | low |
27D | Punta Cervara-Punta Pedale | Geomorphological/Geological | Landslide boulders, Posidonia meadows | C | 0 | 5 | low |
Scientific Value | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Integrity (INT): State of conservation of a landform | Poor conservation due to natural causes (after [43]) | Poor conservation due to inadequate management inadequate management | Damage may occur in some parts of landform but landscape integrity is preserved | Good conservation due to proper management | Good conservation due to natural conditions |
Representativeness (REP): exemplarity with respect to a reference space [119] | No exemplarity (after [43]) | Poor example of process or landform | Fair example of process or landform | Good example of process or landform | Reference site (in scientific literature) for the description of process or landform |
Rareness (RAR): | Very common | Rare at a local scale1 | Rare at a regional scale | Rare at a national scale | Rare at an international scale |
rarity of the site with respect to a reference space [57] | |||||
Paleogeographical model (PAL): Importance of a site in defining processes or environments characterizing the Earth history (modified after [43]) | No paleogeographic value (after [43]) | Scarce paleogeographic significance | Good representation of a paleoprocess | Good representation of a paleoenvironment | Good representation of a paleoprocess and a paleoenvironment |
Additional Value | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
Ecological value (ECOL): presence of ecotypes and level of the site protection for its natural features [128] | No ecotypes and no site protection | Presence of ecotypes without any protection | Presence of rare ecotypes and protection at a local level | Presence of rare ecotypes and protection at a regional level | Presence of rare ecotypes and protection at a national level | |
Aesthetic value (AEST): [119] | Panoramic quality | Site not visible from any viewpoint | Site visible from one viewpoint | Site visible from more than one viewpoint | Site visible at 360° but within a close distance | Site visible from many viewpoints also at a great distance |
Color diversity | No color diversity | Low color diversity | Moderate color diversity | High color diversity | Very high color diversity | |
Vertical development | Same level as the surrounding ground | Slightly emerging from the surrounding ground | Moderately emerging from the surrounding ground | Significantly emerging from the surrounding ground | Imposing feature in the landscape | |
Naturalness | Completely modified by human intervention | Strongly affected by human intervention but some natural features are still preserved | Moderately affected by human intervention but most of the natural features are preserved | Slightly affected by human intervention | No traces of human intervention | |
Cultural value (CULT): [119] | Religious importance | No religious importance | Religious importance but no connection to geological and geomorphological features of the site | Religious importance with connection to geological or geomorphological features of the site | Local religious importance with connection to geological and geomorphological features of the site | National religious importance with connection to geological and geomorphological features of the site |
Historical importance | No historical importance | Historical importance but no connection to geological and geomorphological features of the site | Historical importance with connection to geological or geomorphological features of the site | Local historical importance with both connections to geological and geomorphological features of the site | National historical importance with both connections to geological and geomorphological features of the site | |
Artistic and/or literature importance | No artistic and literature importance | Artistic and/or literature importance but no connection to geological and geomorphological features of the site | Artistic and/or literature importance with connection to geological or geomorphological features of the site | Local artistic and/or literature importance with connections to both geological and geomorphological features of the site | National artistic and/or literature importance with connections to both geological and geomorphological features of the site |
Potential for Use Value | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
Accessibility (ACC): level of accessibility | Land | No access | Accessible only by experts with specific technical skills (e.g., climbers, speleologists) | Accessible by experts but no specific technical skills are required | Accessible by people with normal movement capacity | Accessible by people with limited movement capacity |
Sea [43] | No accessibility or only with indirect methods (e.g., ROV, submersible) | Accessible to expert professional divers or speleology divers | Accessible to 2nd level SCUBA divers (max depth 40 m) | Accessible to 1st level SCUBA divers (max depth 18 m) | Accessible to snorkeling | |
Services | Land: presence of equipment and support services in the nearby [119] | No services | Support services within a walkable distance but subject to seasonal availability | Equipment available but subject to seasonal availability | Equipment and services in the near proximity of the site subject to seasonal availability | Equipment and support services in the near proximity of the site, available 7/24 all year round |
(SER) | Sea: distance from the nearest boarding dock [58] | distance from the boarding dock > 10 km | distance from the boarding dock between 10 and 7 km | distance from the boarding dock between 7 and 5 km | distance from the boarding dock between 5 and 2 km | distance from the boarding dock < 2 km |
Economic potential (ECON): number of visitors per year | land | Visitors < 5000 | 5000 < visitors ≤ 20,000 | 20,000 < visitors ≤ | 50,000 < visitors ≤ | visitors > 70,000 |
50,000 | 70,000 | |||||
sea | Visitors ≤ 100 | 100 < visitors ≤ 400 | 400 < visitors ≤ 700 | 700 < visitors ≤ 1000 | Visitors > | |
1000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coratza, P.; Vandelli, V.; Fiorentini, L.; Paliaga, G.; Faccini, F. Bridging Terrestrial and Marine Geoheritage: Assessing Geosites in Portofino Natural Park (Italy). Water 2019, 11, 2112. https://doi.org/10.3390/w11102112
Coratza P, Vandelli V, Fiorentini L, Paliaga G, Faccini F. Bridging Terrestrial and Marine Geoheritage: Assessing Geosites in Portofino Natural Park (Italy). Water. 2019; 11(10):2112. https://doi.org/10.3390/w11102112
Chicago/Turabian StyleCoratza, Paola, Vittoria Vandelli, Lara Fiorentini, Guido Paliaga, and Francesco Faccini. 2019. "Bridging Terrestrial and Marine Geoheritage: Assessing Geosites in Portofino Natural Park (Italy)" Water 11, no. 10: 2112. https://doi.org/10.3390/w11102112
APA StyleCoratza, P., Vandelli, V., Fiorentini, L., Paliaga, G., & Faccini, F. (2019). Bridging Terrestrial and Marine Geoheritage: Assessing Geosites in Portofino Natural Park (Italy). Water, 11(10), 2112. https://doi.org/10.3390/w11102112