Investigation into Groundwater Resources in Southern Part of the Red River’s Delta Plain, Vietnam by the Use of Isotopic Techniques
Abstract
:1. Introduction
1.1. Study Site
1.2. Geology and Hydrogeology of the Study Site
1.3. Hydrology in the Study Region
2. Methods
2.1. Sampling Procedure and Field Measurement
2.2. Samples Treatment and Analytical Procedure
2.3. Estimate Groundwater Age by the 14C-Dating Method
3. Results
3.1. Regional Meteoric Water Line
3.2. Water Level
3.3. Groundwater Isotopic Composition
3.4. The Age of Groundwater in the Aquifers
3.5. Groundwater Chemistry
4. Discussion
4.1. Genesis of Groundwater Resources in the Southern Part of Red River’s Delta Plain
4.2. Recharge Area, Flow Direction and Flow Rate of Groundwater in the Southern Part of the Red River’s Delta Plain
4.3. Chemistry of Groundwater in the Southern Part of the Red River’s Delta Plain
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frenken, K. (Ed.) Irrigation in Southern and Eastern Asia in Figures; Food and Agriculture Organization of the United Nations (FAO) Report No. 37; FAO: Rome, Italy, 2007. [Google Scholar]
- Le, V.H.; Bui, H.; Chau, V.Q.; Dang, H.O.; Le, H.H.; Nguyen, T.T.; Tran, M. Groundwater in the Bac Bo Plain (North Vietnam); A Technical Report to the General Department of Geology and Minerals of Viet Nam; Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2000; 153p. (In Vietnamese)
- Bui, D.D.; Kawamura, A.; Tong, N.T.; Amaguchi, H.; Nakagawa, N.; Iseri, Y. Identification of aquifer system in the whole Red River Delta. Vietnam Geosci. J. 2011, 15, 323–338. [Google Scholar] [CrossRef]
- Hoang, H.V. Saltwater Intrusion in Quaternary Sediment in Nam Dinh Area. Ph.D. Thesis, Hanoi University of Mining and Geology, Hanoi, Vietnam, 5 September 2014. (In Vietnamese). [Google Scholar]
- Tran, L.T.; Larsen, F.; Pham, N.Q.; Christiansen, A.V.; Tran, N.; Vu, H.V.; Tran, L.V.; Hoang, H.V.; Hinsby, K. Origin and extent of fresh groundwater, salty paleowaters and recent saltwater intrusions in the Red River flood plain aquifers, Vietnam. Hydrogeol. J. 2012, 20, 1295–1313. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Kawamura, A.; Tong, N.T.; Nakagawa, N.; Amaguchi, H.; Gilbuena, R., Jr. Hydrogeochemical characteristics of groundwater from the two aquifers in the Red River Delta, Vietnam. J. Asian Earth Sci. 2014, 93, 180–192. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Kawamura, A.; Tong, N.T.; Nakagawa, N.; Amaguchi, H.; Gilbuena, R., Jr. Clustering spatio-seasonal hydrogeochemical data using self-organizing maps for groundwater quality assessment in the Red River Delta, Vietnam. J. Hydrol. 2015, 522, 661–673. [Google Scholar] [CrossRef]
- Nam Dinh Province Statistical Office (NDPSO) Area and Population of the Province. 2018. Available online: http://www.gso.gov.vn (accessed on 10 June 2019).
- Nguyen, D.N.; Nguyen, T.H. Climate and Climate Resources in Vietnam; Agriculture Publishing House: Ha Noi, Vietnam, 2004; 210p. (In Vietnamese) [Google Scholar]
- Tanabe, S.; Hori, K.; Saito, Y.; Haruyama, S.; Doanh, L.Q.; Sato, Y.; Hiraide, S. Sedimentary facies and radiocarbon dates of the Nam Dinh-1 core from the Song Hong (Red River) delta, Vietnam. J. Asian Earth Sci. 2003, 21, 503–513. [Google Scholar] [CrossRef]
- Kasbohm, J.; Grothe, S.; Le, T.L. Province Nam Dinh an Analysis for a Future Integrated Water Resource Management. 2013. Available online: http://www.idm.gov.vn (accessed on 15 June 2019).
- Luu, T.M.N.; Garnier, J.; Billen, G.; Orange, D.; Nemery, J.; Le, T.P.Q.; Tran, H.T.; Le, L.A. Hydrological regime and water budget of the Red River Delta (Northern Vietnam). J. Asian Earth Sci. 2010, 37, 219–228. [Google Scholar] [CrossRef]
- National Center for Monitoring the Hydrology in the Marine Coast (NCMH). The Hydrological Regime Along the Marine Coast, North Vietnam in the 2017 Year; Annual Report to the General Directorate of Meteorology and Hydrology of Vietnam; NCMH: Hanoi, Vietnam, 2017; 53p. (In Vietnamese)
- Erickson, E. Stable Isotopes and Tritium in Precipitation. Guidebook on Nuclear Techniques in Hydrology; IAEA Technical Report Series No. 91; IAEA: Vienna, Austria, 1983; pp. 19–33. [Google Scholar]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrology; Lewis Publisher: New York, NY, USA, 1997; 328p. [Google Scholar]
- Kalin, R.M. Radiocarbon dating of groundwater systems. In Environmental Tracers in Subsurface Hydrology; Cook, P.G., Herczeg, A.L., Eds.; Springer: Boston, MA, USA, 2000; pp. 57–68. [Google Scholar]
- Zhu, C. Estimate of recharge from radiocarbon dating of groundwater and numerical flow and transport modeling. Water Resour. Res. 2000, 36, 2607–2620. [Google Scholar] [CrossRef]
- MookW, G. (Ed.) Environmental Isotopes in the Hydrological Cycle. Principles and Applications; Volume II: Atmospheric Water; IAEA: Vienna, Austria, 2001; 288p. [Google Scholar]
- Glynn, P.D.; Plummer, L.N. Geochemistry and the understanding of groundwater systems. Hydrogeol. J. 2005, 13, 263–287. [Google Scholar] [CrossRef]
- Sánchez-Murillo, R.; Brooks, E.S.; Elliot, W.J.; Boll, J. Isotope hydrology and baseflow geochemistry in natural and human-altered watersheds in the Inland Pacific Northwest, USA. Isot. Environ. Health Stud. 2015, 51, 231–254. [Google Scholar] [CrossRef] [Green Version]
- Craig, H. Isotopic variation in meteoric water. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry, 2nd ed.; Wiley & Sons: New York, NY, USA, 1981; 780p. [Google Scholar]
- Stookey, L.L. Ferrozine—A new spectrophotometric reagent for iron. Anal. Chem. 1970, 42, 779–781. [Google Scholar] [CrossRef]
- International Atomic Energy Agency (IAEA). Water and Environment Newsletter of the Isotope Hydrology Section; International Atomic Energy Agency: Vienna, Austria, 2002; 8p. [Google Scholar]
- IsoPrime User’s Guide; Micromass UK Limited: Wemslow, UK, 2000; 18p.
- Villa, M.; Manjon, G. Low-level measurements of tritium in water. Appl. Radiat. Isot. 2004, 61, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Plastino, W.; Chereji, I.; Cuna, S.; Kaihola, L.; de Felice, P.; Lupsa, N.; Balas, G.; Mirel, V.; Berdea, P.; Baciu, C. Tritium in water electrolytic enrichment and liquid scintillation counting. Radiat. Meas. 2007, 42, 68–73. [Google Scholar] [CrossRef]
- Groening, M.; Dargier, M.; Tatzber, H. Seventh IAEA Inter-Comparison of Low-Level Tritium Measurement in Water (TRIC-2004); International Atomic Energy Agency: Vienna, Austria, 2007; Available online: http://www-naweb.iaea.org/napc/ih/documents/IHL/TRIC/TRIC2004-Report.pdf (accessed on 15 June 2019).
- Groening, M.; Tatzber, H.; Trinkl, A.; Klaus, B.; van Duren, M. Eighth IAEA Inter-Comparison of Low-Level Tritium Measurement in Water (TRIC-2008); International Atomic Energy Agency: Vienna, Austria, 2009; Available online: http://www-naweb.iaea.org/napc/ih/documents/IHL/TRIC/TRIC2008-Report.pdf (accessed on 15 June 2019).
- Tamers, M.A. Chemical yield optimization of the benzene synthesis for radiocarbon dating. Int. J. Appl. Radiat. Isot. 1975, 26, 676–682. [Google Scholar] [CrossRef]
- Gupta, S.K.; Polach, H.A. Radiocarbon Dating Practices at ANU; Radiocarbon Laboratory, Research School of Pacific Studies, ANU: Canberra, Australia, 1985. [Google Scholar]
- Mann, W.B. An international reference material for radiocarbon dating. Radiocarbon 1983, 25, 519–522. [Google Scholar] [CrossRef]
- Salem, O.; Visser, J.M.; Deay, M.; Gonfiantini, R. Groundwater flow patterns in the western Lybian Arab Jamahitiya evaluated from isotope data. In Arid Zone Hydrology: Investigation with Isotope Techniques; IAEA: Vienna, Austria, 1980; pp. 165–179. [Google Scholar]
- Bigeleisen, C.T.; Mayer, M.G. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 1947, 15, 261–270. [Google Scholar] [CrossRef]
- Mook, W.G.; Bommerson, J.C.; Staverman, W.H. Carbon isotope fractionation between dissolved and gaseous carbon dioxide. Earth Planet Sci. Lett. 1974, 22, 169–176. [Google Scholar] [CrossRef]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; A.A.Balkema Publisher: Amsterdam, The Netherlands, 2007; pp. 175, 226. [Google Scholar]
- Fontes, J.C.; Garnier, J.M. Determination of the initial activity of the total dissolved carbon: A review of the existing models and anew approach. Water Resour. Res. 1979, 12, 399–413. [Google Scholar] [CrossRef]
- Fontes, J.C. Dating of groundwater. Guidebook on Nuclear Techniques in Hydrology; IAEA Technical Report Series No. 91; IAEA: Vienna, Austria, 1983; pp. 285–317. [Google Scholar]
- Plummer, N.L.; Prestemon, E.C.; Parkhurst, D.L. An Interactive Code (NETPATH) for Modeling Net Geochemical Reactions along a Flow Path, version 2.0; US Geological Survey Water Resources Investigations Report 94–4169; USGS: Reston, VA, USA, 1994.
- Nhan, D.D.; Lieu, D.B.; Minh, D.A.; Anh, V.T. Isotopic Compositions of Precipitation Over Red River’s Delta Region (Vietnam): Data of the GNIP Hanoi. 2013. Available online: www.iaea/gnip (accessed on 15 March 2019).
- Babu, M.M.; Viswanadh, G.K.; Rao, S.V. Assessment of saltwater intrusion along coastal areas of Nellore District, A.P. Int. J. Sci. Eng. Res. 2013, 4, 173–178. [Google Scholar]
- Stiefel, J.M.; Melesse, A.M.; McClain, M.E.; René, M.P.; Anderson, E.P.; Chauhan, N.K. Effects of rainwater-harvesting induced artificial recharge on the groundwater of wells in Rajasthan, India. Hydrogeol. J. 2012, 17, 2061–2073. [Google Scholar] [CrossRef]
- Nguyen, V.H. Investigation into the Rainwater Recharge to the Holocene Aquifer in Hanoi Area by Using Isotopicand Related Techniques. Master’s Thesis, Hanoi University of Mining and Geology, Hanoi, Vietnam, 11 August 2009. (In Vietnamese). [Google Scholar]
- Yurtsever, Y.; Payne, B.R. Application of environmental isotopes to groundwater investigations in Qatar. Isot. Hydrol. 1979, 2, 465–490. [Google Scholar]
- Larsen, F.; Long, V.T.; Hoan, H.V.; Luu, T.T.; Christiansen, A.V.; Nhan, P.Q. Groundwater salinity influenced by Holocene seawater trapped in incised valleys in the Red River Delta plain. Nat. Geosci. 2017, 10, 376–381. [Google Scholar] [CrossRef]
- Doan, V.C. Investigation to Propose Criteria and Zones for Sustainable Exploitation and Protection of Groundwater Resources in the Red River’s (Bac Bo) and Mekong River’s (Nam Bo) Deltas; Final Report to the Ministry of Science and Technology of Vietnam) for a Research Program; Ministry of Sci. & Technol. of Vietnam: Hanoi, Vietnam, 2015; 277p. (In Vietnamese)
- Lindenmaier, F.; Bahls, R.; Wagner, F. Assessment of Groundwater Resources in Nam Dinh Province; Final Technical Report, Part B: Three Dimensional Structural and Numerical Modelling; Ministry of Natural Resources and Environment of Vietnam: Hanoi, Vietnam, 2011; 131p.
- Hoang, H.T.; Bäumle, R. Complex hydrochemical characteristics of the Middle-Upper Pleistocene aquifer in Soc Trang province, Southern Vietnam. Environ. Geochem. Health 2019, 41, 325–341. [Google Scholar] [CrossRef] [PubMed]
Borehole | Depth, m bgs | Elevation of Water Table, m asl | Borehole | Depth, m bgs | Elevation of Water Table, m asl |
---|---|---|---|---|---|
Shallow Holocene Aquifer in NE Area | Deep Aquifers in NE Area | ||||
OB-01 | 7.6 | 0.38 | Q223n | 138 | −1.94 |
OB-02 | 8.5 | 0.34 | Q224a | 100 | −2.46 |
OB-04 | 8.3 | 0.25 | Q225a | 110 | −1.45 |
OB-06 | 6.7 | 0.26 | Q226a | 105 | −2.27 |
OB-07 | 7.3 | 0.42 | Q226n | 151.5 | −2.25 |
OB-08 | 8.1 | 0.40 | Q227a | 105.5 | −4.57 |
OB-09 | 6.1 | 0.45 | Deep Aquifers in SW Area | ||
OB-10 | 8.0 | 0.50 | GV01 | 70 | 94.5 |
OB-11 | 7.8 | 0.57 | Q220t | 100 | 0.96 |
OB-12 | 7.6 | 0.74 | Q92a | 43 | 0.50 |
OB-13 | 6.7 | 0.52 | Q92t | 100 | 1.03 |
OB-14 | 8.4 | 0.60 | Q108b | 80 | −5.89 |
OB-15 | 8.8 | 0.62 | Q109a | 136 | −8.51 |
OB-16 | 9.6 | 0.78 | Q109n | 171 | −7.45 |
Deep Aquifers in NE Area | Q228a | 120 | −7.57 | ||
Q221a | 70 | −0.97 | Q110a | 94 | −5.12 |
Q221n | 127 | −0.96 | Q229a | 85 | −8.18 |
Q222b | 115 | −2.05 | Q229n | 150 | −6.89 |
Rainy Season | Dry Season | |||||||
---|---|---|---|---|---|---|---|---|
Borehole | SW | RW | LP | Total | SW | RW | LP | Total |
OB-01 | 36.97 | 28.49 | 34.53 | 100 | 36.63 | 43.25 | 20.12 | 100 |
OB-02 | 53.62 | 1.34 | 45.03 | 100 | 51.96 | 22.00 | 26.03 | 100 |
OB-04 | 61.02 | 7.98 | 31.00 | 100 | 64.56 | 14.29 | 21.15 | 100 |
OB-06 | 12.93 | 29.91 | 57.16 | 100 | 13.85 | 37.11 | 49.04 | 100 |
OB-07 | 0.60 | 66.59 | 32.81 | 100 | 1.08 | 88.73 | 10.19 | 100 |
OB-08 | 2.75 | 59.12 | 38.13 | 100 | 2.80 | 65.87 | 31.33 | 100 |
OB-09 | 0.00 | 1.67 | 98.33 | 100 | 0.00 | 5.58 | 94.43 | 100 |
OB-10 | 4.95 | 37.17 | 57.88 | 100 | 33.38 | 29.46 | 37.16 | 100 |
OB-11 | 19.39 | 67.71 | 12.90 | 100 | 16.62 | 76.06 | 7.32 | 100 |
OB-12 | 5.52 | 55.15 | 39.32 | 100 | 6.08 | 56.50 | 37.43 | 100 |
OB-13 | 48.07 | 32.23 | 19.70 | 100 | 64.72 | 19.45 | 15.83 | 100 |
OB-14 | 32.35 | 44.51 | 23.14 | 100 | 34.66 | 49.03 | 16.32 | 100 |
OB-15 | 10.15 | 64.36 | 25.49 | 100 | 10.18 | 78.66 | 11.16 | 100 |
OB-16 | 0.45 | 99.62 | 0.00 | 100 | 1.56 | 98.43 | 0.00 | 100 |
Boreholes | Calcite | Aragonite | Dolomite | Siderite | Gypsum |
---|---|---|---|---|---|
OB-01 | −0.23 | −0.36 | 0.72 | 1.64 | −1.89 |
OB-02 | 1.19 | 1.06 | 3.01 | 2.64 | −1.47 |
OB-04 | 1.24 | 1.11 | 3.89 | 2.57 | −2.24 |
OB-06 | −0.02 | −0.15 | 1.10 | 1.16 | −2.63 |
OB-07 | −0.06 | −0.19 | 0.16 | 1.48 | −1.53 |
OB-08 | −0.48 | −0.61 | −0.46 | 1.31 | −2.27 |
OB-09 | −1.06 | −1.19 | −2.37 | −0.47 | −2.79 |
OB-10 | 0.34 | 0.21 | 1.86 | 1.88 | −2.22 |
OB-11 | 0.41 | 0.28 | 1.71 | 1.17 | −1.90 |
OB-12 | 0.01 | −0.12 | 0.51 | 1.54 | −1.99 |
OB-13 | 0.72 | 0.59 | 2.61 | 1.85 | −1.67 |
OB-14 | 0.05 | −0.08 | 1.35 | 1.38 | −2.24 |
OB-15 | −0.30 | −0.43 | −0.34 | 1.36 | −1.71 |
OB-16 | −0.30 | −0.43 | 0.09 | 0.80 | −2.15 |
Borehole | Rainy Season | Dry Season | ||||
---|---|---|---|---|---|---|
SIcc | SIarag | SIdol | SIcc | SIarag | SIdol | |
Q221a | 0.44 | 0.31 | 1.16 | 0.48 | 0.34 | 1.15 |
Q222b | −0.39 | −0.52 | −0.30 | −0.37 | −0.51 | −0.32 |
Q224a | 0.01 | −0.12 | 0.26 | 0.00 | −0.14 | 0.25 |
Q225a | 0.68 | 0.55 | 1.87 | 0.70 | 0.56 | 1.84 |
Q226a | 0.46 | 0.33 | 1.39 | 0.53 | 0.39 | 1.37 |
Q227a | −0.39 | −0.52 | −0.03 | −0.16 | −0.30 | −0.31 |
Q228a | −1.31 | −1.44 | −1.24 | −0.84 | −0.98 | −0.91 |
Q229a | −0.16 | 0.03 | −0.21 | −0.11 | −0.03 | −0.11 |
Q110a | 0.07 | −0.06 | 0.48 | 0.17 | 0.03 | 0.60 |
Q109a | −0.45 | −0.58 | 0.09 | −0.24 | −0.38 | 0.19 |
Q108b | −0.90 | −1.03 | −1.07 | −0.91 | −1.05 | −1.13 |
Q92 | 0.50 | 0.37 | 1.41 | 0.45 | 0.31 | 1.33 |
Q229n | −0.62 | −0.75 | −0.55 | −0.70 | −0.84 | −0.55 |
Q109 | 0.51 | 0.38 | 1.48 | 0.51 | 0.37 | 1.51 |
Q226n | 0.42 | 0.29 | 1.22 | 0.55 | 0.41 | 1.26 |
Q221n | 0.40 | 0.27 | 1.24 | 0.47 | 0.33 | 1.27 |
Q223n | −0.53 | −0.66 | −0.84 | −0.52 | −0.66 | −0.76 |
Q220t | −1.51 | −1.64 | −1.93 | −1.19 | −1.33 | −1.96 |
Q92a | 0.46 | 0.33 | 1.39 | 0.54 | 0.40 | 1.47 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Lam, N.; Van Hoan, H.; Duc Nhan, D. Investigation into Groundwater Resources in Southern Part of the Red River’s Delta Plain, Vietnam by the Use of Isotopic Techniques. Water 2019, 11, 2120. https://doi.org/10.3390/w11102120
Van Lam N, Van Hoan H, Duc Nhan D. Investigation into Groundwater Resources in Southern Part of the Red River’s Delta Plain, Vietnam by the Use of Isotopic Techniques. Water. 2019; 11(10):2120. https://doi.org/10.3390/w11102120
Chicago/Turabian StyleVan Lam, Nguyen, Hoang Van Hoan, and Dang Duc Nhan. 2019. "Investigation into Groundwater Resources in Southern Part of the Red River’s Delta Plain, Vietnam by the Use of Isotopic Techniques" Water 11, no. 10: 2120. https://doi.org/10.3390/w11102120
APA StyleVan Lam, N., Van Hoan, H., & Duc Nhan, D. (2019). Investigation into Groundwater Resources in Southern Part of the Red River’s Delta Plain, Vietnam by the Use of Isotopic Techniques. Water, 11(10), 2120. https://doi.org/10.3390/w11102120