Using Water Stable Isotopes for Identifying Groundwater Recharge Sources of the Unconfined Alluvial Zagreb Aquifer (Croatia)
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
4. Results and Discussion
5. Conclusions
- Two- and three-component mixing models based on the isotopic mass balance are efficient tools for the quantification of groundwater recharge fractions. In the research area, these models showed that the Sava River, although spatially varying, is the dominating source of groundwater recharge.
- The thickness of the unsaturated zone and soil permeability has large influence on the aquifer recharge. Evaluation of soil permeability can be crucial in quantification of the shallow alluvial aquifer recharge and data interpretation.
- Water stable isotope composition of groundwater, precipitation, and the Sava River water confirmed strong connection between the alluvial part of the Zagreb aquifer and the Sava River.
- The Sava River presents the main recharge factor of the Zagreb aquifer. In general, more than 70% of the Zagreb aquifer recharge is related to the Sava River.
- Future research in the area of the Zagreb aquifer should be focused on detailed inspection of soil permeability in order to define the difference in percolation through different types of soil.
- The water management of the Zagreb aquifer should be focused on groundwater level stabilization by regulation of the Sava River.
- The identified pattern of groundwater–surface water interaction in the study area will enable the development of better monitoring networks as well as determination of aquifer areas that need better protection.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, Y.N.; Li, Z.; Fan, Y.T.; Wang, H.J.; Deng, H.J. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Döll, P.; Hoffmann-Dobrev, H.; Portmann, F.T.; Siebert, S.; Eicker, A.; Rodell, M.; Strassberg, G.; Scanlon, B. Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 2012, 59, 143–156. [Google Scholar] [CrossRef]
- Joshi, S.K.; Rai, S.P.; Sinha, R.; Gupta, S.; Densmore, A.L.; Rawat, Y.S.; Shekhar, S. Tracing groundwater recharge sources in the northwestern Indian alluvial aquifer using water isotopes (δ18O, δ2H and 3H). J. Hydrol. 2018, 559, 835–847. [Google Scholar] [CrossRef]
- Wada, Y.; van Beek, L.P.H.; Bierkens, M.F.P. Non-sustainable groundwater sustaining irrigation: A global assessment. Water Resour. Res. 2012, 48, 6. [Google Scholar] [CrossRef]
- Gleeson, T.; Befus, K.M.; Jasechko, S.; Luijendijk, E.; Cardenas, M.B. The global volume and distribution of modern groundwater. Nat. Geosci. 2015, 9, 161–167. [Google Scholar] [CrossRef]
- Kumar, C.P. Climate Change and Its Impact on Groundwater Resources. Int. J. Eng. Sci. 2012, 1, 43–60. [Google Scholar]
- Gampe, D.; Nikulin, G.; Ludwig, R. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci. Total Environ. 2016, 573, 1503–1518. [Google Scholar] [CrossRef]
- Vrzel, J.; Ludwig, R.; Gampe, D.; Ogrinc, N. Hydrological system behaviour of an alluvial aquifer under climate change. Sci. Total Environ. 2019, 649, 1179–1188. [Google Scholar] [CrossRef]
- Brunner, P.; Cook, P.G.; Simmons, C.T. Disconnected surface water and groundwater: From theory to practice. Ground Water 2010, 1–8. [Google Scholar] [CrossRef]
- Parlov, J.; Nakić, Z.; Posavec, K.; Bačani, A. Origin and dynamics of aquifer recharge in Zagreb area. In Proceedings of the Fifth International Scientific Conference on Water, Climate and Environment 2012, Balwois, Ohrid, Macedonia, 28 May–2 June 2012; ISBN 978-608-4510-10-9. [Google Scholar]
- Nakić, Z.; Ružičić, S.; Posavec, K.; Mileusnić, M.; Parlov, J.; Bačani, A.; Durn, G. Conceptual model for groundwater status and risk assessment—Case study of the Zagreb aquifer system. Geol. Croat. 2013, 66, 55–76. [Google Scholar] [CrossRef]
- Marković, T.; Brkić, Ž.; Larva, O. Using hydrochemical data and modelling to enhance the knowledge of groundwater flow and quality in an alluvial aquifer of Zagreb, Croatia. Sci. Total Environ. 2013, 458–460, 508–516. [Google Scholar] [CrossRef]
- Kovač, Z.; Nakić, Z.; Barešić, J.; Parlov, J. Nitrate Origin in the Zagreb Aquifer System. Geofluids 2018, 15. [Google Scholar] [CrossRef]
- Deshpande, R.D.; Gupta, S.K. Oxygen and hydrogen isotopes in hydrological cycle: New data from IWIN national pro-gramme. Proc. Indian Natl. Sci. Acad. 2012, 78, 321–331. [Google Scholar]
- Achyuthan, H.; Deshpande, R.D.; Rao, M.S.; Kumar, B.; Nallathambi, T.; Shashikumar, K.; Ramesh, R.; Ramachandran, P.; Maurya, A.S.; Gupta, S.K. Spatio-temporal mixing inferred from water isotopes and salinity of surface waters in the Bay of Bengal. Mar. Chem. 2013, 149, 51–62. [Google Scholar] [CrossRef]
- Shahul Hameed, A.S.; Resmi, T.R.; Suraj, S.; Unnikrishnan Warrier, C.; Sudheesh, M.; Deshpande, R.D. Isotopic characterization and mass balance reveals groundwater recharge pattern in Chaliyar river basin, Kerala, India. J. Hydrol. Reg. Stud. 2015, 4, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Chen, Y.; He, Q.; Li, W.; Wang, Y. Isotopic Characterization of River Waters and Water Source Identification in an Inland River, Central Asia. Water 2016, 8, 286. [Google Scholar] [CrossRef]
- González-Trinidad, T.; Pacheco-Guerrero, A.; Júnez-Ferreira, H.; Bautista-Capetillo, C.; Hernández-Antonio, A. Identifying Groundwater Recharge Sites through Environmental Stable Isotopes in an Alluvial Aquifer. Water 2017, 9, 569. [Google Scholar] [CrossRef]
- Vrzel, J.; Kip Solomon, D.; Blažeka, Ž.; Ogrinc, N. The study of the interactions between groundwater and Sava River water in the Ljubljansko polje aquifer system (Slovenia). J. Hydrol. 2018, 556, 384–396. [Google Scholar] [CrossRef]
- Ala-aho, P.; Soulsby, C.; Pokrovsky, O.S.; Kirpotin, S.N.; Karlsson, J.; Serikova, S.; Vorobyev, S.N.; Manasypov, R.M.; Loiko, S.; Tetzlaff, D. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape. J. Hydrol. 2018, 556, 279–293. [Google Scholar] [CrossRef]
- Bačani, A.; Posavec, K.; Parlov, J. Groundwater quantity in the Zagreb aquifer. In XXXVIII IAH Congress Groundwater Quality Sustainability; Zuber, A., Kania, J., Kmiecik, E., Eds.; University of Silesia: Krakow, Poland, 2010; pp. 87–92. [Google Scholar]
- Velić, J.; Saftić, B. Subsurface Spreading and Facies Characteristics of Middle Peistocene Deposits between Zaprešić and Samobor. Geološki Vjesn. 1991, 44, 69–82. [Google Scholar]
- Velić, J.; Durn, G. Alternating Lacustrine-Marsh Sedimentation and Subaerial Exposure Phases during Quaternary: Prečko, Zagreb, Croatia. Geol. Croat. 1993, 46, 71–90. [Google Scholar] [CrossRef]
- Velić, J.; Saftić, B.; Malvić, T. Lithologic composition and stratigraphy of Quaternary sediments in the area of the “Jakuševec” Waste Depository (Zagreb, Northern Croatia). Geol. Croat. 1999, 52, 119–130. [Google Scholar] [CrossRef]
- Sokač, A. Pleistocene ostracode fauna of the Pannonian Basin in Croatia. Paleontol. Jugosl. 1978, 20, 1–51. [Google Scholar]
- Hernitz, Z.; Kovačević, S.; Velić, J.; Urli, M. An example of complex geological and geophysical explorations of Quaternary deposits in the soroundings of Prevlaka. Geološki Vjesn. 1981, 33, 11–34. (In Croatian) [Google Scholar]
- Bogunović, M.; Vidaček, Ž.; Husnjak, S.; Sraka, M.; Petošić, D. Inventory of Soils in Croatia. Agric. Conspec. Sci. 1998, 63, 105–112. [Google Scholar]
- Sollitto, D.; Romić, M.; Castrignano, A.; Romić, D.; Bakić, H. Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics. Catena 2010, 80, 182–194. [Google Scholar] [CrossRef]
- Ružičić, S.; Kovač, Z.; Nakić, Z.; Kireta, D. Fluvisol permeability estimation using soil water content variability. Geofizika 2017, 34, 141–155. [Google Scholar] [CrossRef]
- Ružičić, S.; Kovač, Z.; Tumara, D. Physical and chemical properties in relation to soil permeability in the area of the Velika Gorica well field. Min.-Geol.-Pet. Eng. Bull. 2018, 33, 73–81. [Google Scholar] [CrossRef]
- Posavec, K.; Vukojević, P.; Ratkaj, M.; Bedeniković, T. Cross-correlation modelling of surface water-groundwater interaction using the Excel spreadsheet application. Min.-Geol.-Pet. Eng. Bull. 2017, 32, 25–32. [Google Scholar] [CrossRef]
- Posavec, K. Identification and prediction of minimum ground water levels of Zagreb alluvial aquifer using recession curve models. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2006; p. 89. unpublished. (In Croatian). [Google Scholar]
- Nakić, Z.; Posavec, K.; Parlov, J.; Bačani, A. Development of the conceptual model of the Zagreb aquifer system. In The Geology in Digital Age, Proceedings of the 17th Meeting of the Association of European Geological Societies (MAEGS 17), Belgrade, Serbia, 17–18 September 2011; The Serbian Geological Society: Belgrade, Serbia, 2011. [Google Scholar]
- Vlahović, T.; Bačani, A.; Posavec, K. Hydrogeochemical stratification of the unconfined Samobor aquifer (Zagreb, Croatia). Environ. Geol. 2009, 57, 1707–1722. [Google Scholar] [CrossRef]
- Kovač, Z.; Cvetković, M.; Parlov, J. Gaussian simulation of nitrate concentration distribution in the Zagreb aquifer. J. Maps 2017, 13, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Kovač, Z.; Nakić, Z.; Pavlić, K. Influence of groundwater quality indicators on nitrate concentrations in the Zagreb aquifer system. Geol. Croat. 2017, 70, 93–103. [Google Scholar] [CrossRef]
- Kovač, Z.; Nakić, Z.; Špoljarić, D.; Stanek, D.; Bačani, A. Estimation of nitrate trends in the groundwater of the Zagreb aquifer. Geosciences 2018, 8, 5. [Google Scholar] [CrossRef]
- Parlov, J.; Kovač, Z.; Barešić, J. The study of the interactions between Sava River and Zagreb aquifer system (Croatia) using water stable isotopes. In Proceedings of the 16th International Symposium on Water-Rock Interaction and the 13th International Symposium on Applied Isotope Geochemistry, Tomsk, Russia, 21–26 July 2019. [Google Scholar]
- Horvatinčić, N.; Barešić, J.; Krajcar Bronić, I.; Obelić, B.; Kármán, K.; Fórisz, I. Study of the bank filtered groundwater system of the Sava River at Zagreb (Croatia) using isotope analyses. Cent. Eur. Geol. 2011, 54, 121–127. [Google Scholar] [CrossRef] [Green Version]
- IAEA/WMO. Global Network of Isotopes in Precipitation. The GNIP Database. 2019. Available online: http://www.iaea.org/water (accessed on 21 May 2019).
- Vreča, P.; Krajcar Bronić, I.; Horvatinčić, N.; Barešić, J. Isotopic characteristics of precipitation in Slovenia and Croatia: Comparison of continental and maritime stations. J. Hydrol. 2006, 330, 457–469. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Clark, I.D.; Fritz, P. Tracing the hydrological cycle. In Environmental Isotopes in Hydrogeology; CRC Press: Boca Raton, FL, USA, 1997; pp. 35–60. [Google Scholar]
- Peng, T.R.; Wang, C.H.; Lai, T.C.; Ho, F.S.K. Using hydrogen, oxygen, and tritium isotopes to identify the hydrological factors contributing to landslides in a mountainous area, central Taiwan. Environ. Geol. 2007, 52, 1617–1629. [Google Scholar] [CrossRef]
- Peng, T.R.; Wang, C.H.; Hsu, S.M.; Wang, G.S.; Su, T.W.; Lee, J.F. Identification of groundwater sources of a local-scale creep slope: Using environmental stable isotopes as tracers. J. Hydrol. 2010, 381, 151–157. [Google Scholar] [CrossRef]
- Clark, I. Groundwater Geochemistry and Isotopes; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2015; p. 421. [Google Scholar]
- Kovač, Z. Nitrate origin in groundwater of the Zagreb alluvial aquifer. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2017; p. 255. (In Croatian). [Google Scholar]
Observation Well | Inflow Area According to Figure 2 | Soil Type | Minimum Water Level (m a.s.l.) | Maximum Water Level (m a.s.l.) | δ2H (‰) | δ18O (‰) | d-Excess (‰) | n |
---|---|---|---|---|---|---|---|---|
D-6 | CPCZ | Urban | 106.6 | 107.9 | −62.3 | −9.1 | 10.2 | 4 |
D-3 | CPCZ | Urban | 108.0 | 109.2 | −62.6 | −9.1 | 10.1 | 4 |
Ph-12 | CPCZ | Urban | 110.4 | 112.8 | −62.6 | −9.1 | 10.3 | 4 |
B-5 | CPCZ | Urban | 109.5 | 111.8 | −63.2 | −9.1 | 9.7 | 4 |
V-3 | CPCZ | Urban | 109.2 | 110.3 | −62.7 | −9.2 | 10.6 | 4 |
B-15 | CPCZ | Urban | 110.4 | 111.2 | −63.3 | −9.2 | 10.4 | 4 |
Čp-8 | Kosnica | Fluvisols | 98.6 | 103.5 | −60.7 | −9.1 | 12.0 | 12 |
Pkb-1/1/3 | Kosnica | Fluvisols | 99.0 | 102.1 | −61.2 | −9.1 | 11.8 | 12 |
Čdp-13/1 | Kosnica | Fluvisols | 98.9 | 103.2 | −61.0 | −9.2 | 12.3 | 12 |
Čdp-12/3 | Kosnica | Fluvisols | 98.8 | 103.9 | −61.3 | −9.2 | 12.2 | 12 |
Pkb-3/1/3 | Kosnica | Fluvisols | 99.1 | 102.0 | −61.4 | −9.2 | 12.2 | 12 |
Pkb-5/1/3 | Kosnica | Fluvisols | 98.6 | 101.9 | −62.3 | −9.2 | 11.6 | 12 |
Mp-5 | Kosnica | Fluvisols | 100.0 | 103.1 | −62.0 | −9.2 | 11.9 | 12 |
Čp-101 | Kosnica | Fluvisols | 99.6 | 103.1 | −61.9 | −9.3 | 12.2 | 12 |
A-2-1 | Kosnica | Fluvisols | 99.9 | 101.5 | −62.3 | −9.3 | 12.1 | 12 |
Čdp-8/2 | Kosnica | Fluvisols | 99.3 | 104.1 | −62.6 | −9.3 | 11.8 | 12 |
Mm-49 | Mala Mlaka | Fluvisols | 106.4 | 108.1 | −60.0 | −8.9 | 10.5 | 4 |
Mm-325 | Mala Mlaka | Fluvisols | 102.0 | 104.9 | −60.5 | −9.0 | 11.2 | 4 |
Mm-311 | Mala Mlaka | Eutric Cambisols | 101.5 | 105.0 | −61.0 | −9.0 | 11.1 | 4 |
Pzo-8 | Mala Mlaka | Fluvisols | 109.0 | 111.0 | −62.1 | −9.1 | 10.5 | 4 |
Mm-333 | Mala Mlaka | Fluvisols | 109.0 | 111.0 | −61.9 | −9.1 | 10.7 | 4 |
Mm-320 | Mala Mlaka | Fluvisols | 102.5 | 105.4 | −62.2 | −9.1 | 10.9 | 4 |
Mm-322 | Mala Mlaka | Eutric Cambisols | 107.9 | 109.5 | −62.2 | −9.2 | 11.3 | 4 |
Mm-330 | Mala Mlaka | Eutric Cambisols | 108.8 | 111.0 | −63.1 | −9.3 | 10.1 | 4 |
Mm-319 | Mala Mlaka | Fluvisols | 101.1 | 104.6 | −63.1 | −9.3 | 11.4 | 4 |
Mm-32 | Mala Mlaka | Fluvisols | 100.4 | 103.8 | −63.7 | −9.3 | 11.1 | 4 |
Pp-18/30 | Petruševec | Fluvisols | 100.8 | 103.9 | −61.0 | −9.1 | 11.7 | 12 |
Pp-19 | Petruševec | Fluvisols | 100.5 | 103.8 | −60.7 | −9.2 | 12.9 | 12 |
B-5A | Petruševec | Fluvisols | 99.8 | 103.8 | −61.0 | −9.2 | 12.8 | 11 |
Pp-23/5 | Petruševec | Fluvisols | 100.9 | 104.7 | −61.2 | −9.1 | 11.3 | 12 |
Ž-8 | Sašnjak and Žitnjak | Urban | 104.5 | 107.6 | −62.0 | −8.9 | 9.3 | 4 |
Z-7 | Sašnjak and Žitnjak | Urban | 101.7 | 104.1 | −62.1 | −9.0 | 9.6 | 4 |
Z-4 | Sašnjak and Žitnjak | Urban | 101.1 | 104.6 | −62.0 | −9.0 | 9.8 | 4 |
Sk-18 | Sašnjak and Žitnjak | Urban | 100.4 | 104.1 | −61.8 | −9.0 | 10.2 | 4 |
Sk-16/2 | Sašnjak and Žitnjak | Urban | 99.9 | 103.6 | −62.0 | −9.1 | 10.8 | 4 |
Z-10 | Sašnjak and Žitnjak | Urban | 99.9 | 103.5 | −61.9 | −9.3 | 12.1 | 4 |
Z-13 | Sašnjak and Žitnjak | Urban | 101.0 | 103.4 | −61.8 | −9.4 | 13.1 | 4 |
Vg-4 | Velika Gorica | Eutric Cambisols | 99.5 | 102.3 | −62.1 | −9.0 | 9.7 | 4 |
Vg-11 | Velika Gorica | Fluvisols | 101.0 | 104.1 | −62.5 | −9.3 | 11.5 | 4 |
Vg-10/2 | Velika Gorica | Eutric Cambisols | 99.6 | 102.2 | −64.3 | −9.3 | 10.3 | 4 |
Vg-9 | Velika Gorica | Eutric Cambisols | 100.4 | 103.2 | −63.5 | −9.4 | 11.4 | 4 |
Čp-23 | Velika Gorica | Eutric Cambisols | 99.4 | 102.0 | −64.1 | −9.5 | 11.6 | 4 |
Pz-11 | Zapruđe | Urban | 106.4 | 110.2 | −62.2 | −9.3 | 11.8 | 12 |
Pz-26 | Zapruđe | Urban | 105.5 | 109.8 | −61.0 | −9.2 | 12.3 | 12 |
Pz-33 | Zapruđe | Urban | 106.9 | 110.8 | −60.4 | −9.1 | 12.6 | 12 |
Type of the Soil | Soil Horizon | Depth (m) | Sand (%) | Silt (%) | Clay (%) |
---|---|---|---|---|---|
Fluvisols | A | 0–0.19 | 24.56 | 65.27 | 10.17 |
AC-C | 0.19–0.68 | 13.79 | 76.69 | 9.52 | |
2C/Cl | 0.68–1.1 | 56.33 | 38.23 | 5.44 | |
3Cl | 1.1–1.4 | 43.29 | 47.43 | 9.28 | |
4Cl/Cr | 1.4.–1.9 | 37.21 | 50.50 | 12.29 | |
5Cr | 1.9–2.1 | 55.62 | 38.45 | 5.93 | |
Eutric Cambisols | A | 0–0.2 | 2.42 | 87.43 | 10.15 |
Bw | 0.2–0.4 | 1.8 | 89.54 | 8.65 | |
0.4–0.6 | 1.46 | 87.59 | 10.95 | ||
0.6–0.8 | 2.72 | 84.97 | 12.32 | ||
C | 0.8–1 | 4.77 | 82.00 | 13.23 | |
1–1.2 | 3.84 | 89.78 | 6.37 |
Observation Well | Two-Component Mixing Model | Three-Component Mixing Model | |||
---|---|---|---|---|---|
Recharge from Precipitation (%) | Recharge from the Sava River (%) | Recharge from Precipitation (%) | Recharge from the Sava River (%) | Recharge from Groundwater (%) | |
D-6 | 34.03 | 65.97 | 32.89 | 62.73 | 4.38 |
D-3 | 33.19 | 66.81 | 32.04 | 63.53 | 4.43 |
Ph-12 | 30.88 | 69.12 | 29.69 | 65.72 | 4.59 |
B-5 | 30.04 | 69.96 | 28.83 | 66.52 | 4.65 |
V-3 | 26.68 | 73.32 | 25.42 | 69.72 | 4.86 |
B-15 | 22.27 | 77.73 | 20.93 | 73.92 | 5.15 |
Čp-8 | 31.93 | 68.07 | 30.76 | 64.72 | 4.52 |
Pkb-1/1/3 | 29.72 | 70.28 | 28.50 | 66.83 | 4.67 |
Čdp-13/1 | 26.47 | 73.53 | 25.20 | 69.92 | 4.88 |
Čdp-12/3 | 23.74 | 76.26 | 22.42 | 72.52 | 5.06 |
Pkb-3/1/3 | 22.13 | 77.87 | 20.79 | 74.05 | 5.16 |
Pkb-5/1/3 | 19.96 | 80.04 | 18.58 | 76.12 | 5.30 |
Mp-5 | 19.12 | 80.88 | 17.72 | 76.92 | 5.36 |
Čp-101 | 16.95 | 83.05 | 15.51 | 78.98 | 5.51 |
A-2-1 | 14.29 | 85.71 | 12.80 | 81.52 | 5.68 |
Čdp-8/2 | 14.92 | 85.08 | 13.45 | 80.92 | 5.63 |
Mm-49 | 45.38 | 54.62 | 44.43 | 51.94 | 3.63 |
Mm-325 | 42.65 | 57.35 | 41.65 | 54.53 | 3.82 |
Mm-311 | 38.66 | 61.34 | 37.59 | 58.33 | 4.08 |
Pzo-8 | 33.82 | 66.18 | 32.67 | 62.93 | 4.40 |
Mm-333 | 33.61 | 66.39 | 32.46 | 63.13 | 4.41 |
Mm-320 | 28.15 | 71.85 | 26.91 | 68.32 | 4.77 |
Mm-322 | 24.37 | 75.63 | 23.06 | 71.92 | 5.02 |
Mm-330 | 17.44 | 82.56 | 16.01 | 78.52 | 5.47 |
Mm-319 | 12.82 | 87.18 | 11.31 | 82.92 | 5.77 |
Mm-32 | 10.50 | 89.50 | 8.96 | 85.12 | 5.92 |
Pp-18/30 | 31.93 | 68.07 | 30.76 | 64.72 | 4.52 |
Pp-19 | 22.66 | 77.34 | 21.32 | 73.55 | 5.13 |
B-5A | 20.10 | 79.90 | 18.72 | 75.98 | 5.30 |
Pp-23/5 | 34.03 | 65.97 | 32.89 | 62.73 | 4.38 |
Ž-8 | 46.64 | 53.36 | 45.71 | 50.73 | 3.56 |
Z-7 | 42.44 | 57.56 | 41.44 | 54.73 | 3.83 |
Z-4 | 41.18 | 58.82 | 40.16 | 55.93 | 3.91 |
Sk-18 | 39.08 | 60.92 | 38.02 | 57.93 | 4.05 |
Sk-16/2 | 31.09 | 68.91 | 29.90 | 65.51 | 4.57 |
Z-10 | 18.49 | 81.51 | 17.08 | 77.52 | 5.40 |
Z-13 | 8.61 | 91.39 | 7.04 | 86.91 | 6.05 |
Vg-4 | 41.60 | 58.40 | 40.58 | 55.53 | 3.88 |
Vg-11 | 18.07 | 81.93 | 16.65 | 77.92 | 5.43 |
Vg-10/2 | 11.55 | 88.45 | 10.03 | 84.12 | 5.85 |
Vg-9 | 9.24 | 90.76 | 7.68 | 86.32 | 6.00 |
Čp-23 | 0.84 | 99.16 | -0.87 | 94.32 | 6.55 |
Pz-11 | 18.07 | 81.93 | 16.65 | 77.92 | 5.43 |
Pz-26 | 25.70 | 74.30 | 24.42 | 70.66 | 4.92 |
Pz-33 | 29.41 | 70.59 | 28.19 | 67.12 | 4.69 |
Grouped Observation Wells | Recharge from the Precipitation (%) | Recharge from the Sava River (%) |
---|---|---|
Central part of the City of Zagreb | 29.52 | 70.48 |
Area of well field Kosnica | 21.92 | 78.08 |
Area of well field Mala Mlaka | 28.74 | 71.26 |
Area of well field Petruševec | 27.18 | 72.82 |
Area of well fields Sašnjak and Žitnjak | 32.50 | 67.50 |
Area of well field Velika Gorica | 16.26 | 83.74 |
Area of well field Zapruđe | 24.39 | 75.61 |
Soil Type | Number of Observation Wells | Recharge from the Precipitation (%) | Recharge from the Sava River (%) |
---|---|---|---|
Fluvisols | 21 | 25.65 | 74.35 |
Eutric Cambisols | 8 | 19.75 | 80.25 |
Urban area | 16 | 29.86 | 70.14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parlov, J.; Kovač, Z.; Nakić, Z.; Barešić, J. Using Water Stable Isotopes for Identifying Groundwater Recharge Sources of the Unconfined Alluvial Zagreb Aquifer (Croatia). Water 2019, 11, 2177. https://doi.org/10.3390/w11102177
Parlov J, Kovač Z, Nakić Z, Barešić J. Using Water Stable Isotopes for Identifying Groundwater Recharge Sources of the Unconfined Alluvial Zagreb Aquifer (Croatia). Water. 2019; 11(10):2177. https://doi.org/10.3390/w11102177
Chicago/Turabian StyleParlov, Jelena, Zoran Kovač, Zoran Nakić, and Jadranka Barešić. 2019. "Using Water Stable Isotopes for Identifying Groundwater Recharge Sources of the Unconfined Alluvial Zagreb Aquifer (Croatia)" Water 11, no. 10: 2177. https://doi.org/10.3390/w11102177
APA StyleParlov, J., Kovač, Z., Nakić, Z., & Barešić, J. (2019). Using Water Stable Isotopes for Identifying Groundwater Recharge Sources of the Unconfined Alluvial Zagreb Aquifer (Croatia). Water, 11(10), 2177. https://doi.org/10.3390/w11102177