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Abstract: Piston and preferential water flow are viewed as the two dominant water transport
mechanisms regulating terrestrial water and solute cycles. However, it is difficult to accurately
separate the two water flow patterns because preferential flow is not easy to capture directly in field
environments. In this study, we take advantage of the afforestation induced desiccated deep soil, and
directly quantify piston and preferential water flow using chloride ions (Cl−) and soil water profiles,
in four deforested apple orchards on the Loess Plateau. The deforestation time ranged from 3 to 15
years. In each of the four selected orchards, there was a standing orchard that was planted at the
same time as the deforested one, and therefore the standing orchard was used to benchmark the
initial Cl− and soil water profiles of the deforested orchard. In the deforested orchards, piston flow
was detected using the migration of the Cl− front, and preferential flow was measured via soil water
increase below the Cl− front. Results showed that in the desiccated zone, Cl− migrated to deeper
soil after deforestation, indicating that the desiccated soil layer formed by the water absorption of
deep-rooted apple trees did not completely inhibit the movement of water. Moreover, there was an
evident increase in soil water below the downward Cl− front, directly demonstrating the existence of
preferential flow in deep soil under field conditions. Although pore water velocity was small in the
deep loess, preferential water flow still accounted for 34–65% of total infiltrated water. This study
presented the mechanisms that regulate movement of soil water following deforestation through
field observations and advanced our understanding of the soil hydrologic process in deep soil.
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1. Introduction

The water in unsaturated zones is the main source of evapotranspiration and groundwater
recharge [1–3]. Therefore, clarifying how water migrates in soil is critical to water resource management,
nutrient management and contamination risk evaluation. Early research found that soil water flow
takes place uniformly and, therefore, developed the concept of piston flow migration of soil water [4–6].
However, subsequent studies revealed preferential flow in soil, where a portion of water and solutes
move along certain pathways (like large pores and cracks) and bypass a fraction of the porous
matrix [7,8].

Although the two flow patterns have been proposed, it is difficult to differentiate preferential
flow from piston flow via direct measurement of the changes in soil water content. Instead, tracers
like Cl− and water isotopes (2H, 3H and 18O) are used to assess the ratio of piston flow to preferential
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flow [9–13]. But even so, it is still a great challenge to accurately separate the two forms of water flow
under field environments, especially over long time scales, due to the small variation of soil water
content. Moreover, most previous studies on water flow mechanisms are focused on shallow soil, and
consequently, the water movement patterns in deep soil remain poorly understood. Recent progress
on ecohydrology demonstrated that deep soil water extraction is a widespread phenomenon in forest
ecosystems [14–16]. In this context, clarifying the water flow mechanisms in deep soil is important to
ecohydrology [17].

Unlike shallow-rooted plants, deep-rooted trees are normally characterized by high water
demand [18]. This stimulates trees to extract more water in deep soil [19,20], and finally results in the
desiccation of deep soil, which occurs in both arid and humid regions [18,21–26]. Moreover, in water
limited environments, the desiccated deep soil can hardly be replenished during the life span of the
trees [16]. Consequently, trees are likely to experience more water stress, and are more vulnerable
to disease, eventually leading to disease-induced death or being felled (deforestation) due to poor
productivity. Moreover, in soil of a felled forest, the upper several meters of the soil profile normally
contain higher Cl−, due to, for example, the intensive application of chemical fertilizers, which is
especially the case in the Loess Plateau [2].

Land use change from deep rooted trees to shallow rooted croplands generally results in reduced
evapotranspiration and enhanced infiltration [27–30], which can be viewed as a recovery process of
the desiccated deep soil. In this study we hypothesize that the intensive infiltration and the initial
high Cl− concentration in desiccated soil have great advantages for the study of the water movement
mechanisms due to: (1) just after deforestation, soil water content in deep soil is at the lowest stage,
and therefore the soil water in this stage is in small pores due to the large binding force of the small
pores [31]. In this context, nearly all of the Cl− should also be in these small pores. (2) During the
recovery stage, the infiltrated water was in big pores and water flow rates were higher than in the
small pores. Further, the small pores were filled with water containing high concentrations of Cl−.
(3) Collectively, in this study, during the water recovery process of deforested forests, the migration of
Cl− was used to represent piston flow (it has the opportunity and time to mix with water containing
high concentrations of Cl− in small pores), and the water that moved (in large pores) faster than the
Cl− (in small pores) was defined as preferential flow (it does not have the opportunity or time to mix
with water containing high concentrations of Cl− in small pores). Therefore, in this study, preferential
water flow results from water velocity difference between pore and Darcy scales [8,31,32], which may
have led to the separation of the Cl− migration front (moving in small pores) and the water moving in
large pores (preferential flow path).

To test our hypothesis, four deforested apple orchards with a deforestation time ranging from 3 to
15 years were selected on the Loess Plateau. In each of the four selected orchards, there was a standing
orchard that was planted at the same time as the deforested one, and therefore the standing orchard
was used to benchmark the initial Cl− and soil water profiles of the deforested orchard. According to
the maximum infiltration depth, soil water and Cl− were measured to a depth of 10 to 13 m to reveal the
water flow pattern in deep soil. The results of this study are projected to promote our understanding
of the water movement mechanisms in deep soil.

2. Materials and Methods

2.1. Site Description

This study was conducted in Changwu County (35◦12.701′ N to 35◦16.717′ N), Shaanxi Province,
China (Figure 1). All sampling sites were located on flat tableland with elevations of around 1200 m
above sea level. The climate is semi-humid with an annual precipitation of 580 mm, 70% of which
falls from June to September [33]. Rainfed agriculture is the dominant production system. However,
since the 1980s, apple trees were widely planted. By 2000, apple orchards covered 60% of the arable
land in Changwu County [34]. As one of the first areas in China to grow apples extensively, old apple
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orchards were found facing low soil water content in deep soil layers, and some of them have been cut
down in recent years due to poor productivity. Therefore, this area is ideal for studying the movement
of soil water following deforestation.
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Figure 1. The locations of sampling sites.

2.2. Soil Sampling and Analysis

In May 2015 (before the rainy season), four croplands derived from deforested apple orchards
were selected around the Changwu experimental station (Figure 1). The deforestation age of the
selected sites ranged from 3 to 15 years. In each site, there was a standing orchard that was planted
at the same time as the deforested one, and therefore the standard orchard was used to benchmark
the initial Cl− and soil water profiles of the deforested orchard. Based on the maximum infiltration
depth of the deforested sites, soil cores were taken using a soil auger to a depth of 10 to 13 m in
each paired orchard and cropland (6 cm in diameter). Soil cores were collected at 20 cm intervals.
The gravimetric soil water content (SWC) of each segment was measured using the oven drying method
and subsequently converted to volumetric soil water content. To determine Cl− concentrations in soil
water, 25 mL of deionized water was added to 5 g of the oven-dried soil sample, then agitated on a
reciprocal shaker table for 1 hour, and centrifuged at 5000 rpm for 30 min. The concentrations of Cl−

in the supernatant solution were analyzed by ion chromatography (Dionex ICS-1100, Thermo Fisher
Scientific). Cl− concentrations in soil water were recalculated by:

Clsw =
Clex × 5

θ
(1)

where Clsw is Cl− concentration in soil water (mmol L−1); Clex is Cl− concentration in the extracted
supernatant (mmol L−1); 5 is the ratio of water to soil used in the extraction process; θ is the mass water
content of soil (g g−1).

2.3. Calculation of the Replenishment of Depleted Deep Soil Water

It takes a long time to directly observe the water migration process since deforestation. Instead,
the space-for-time substitution method [35] was used in this study to detect the long-term water flow
mechanisms in deep soil. Compared with the standing orchard, soil water changes in the deforested
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sites were used to investigate the long-term water movement in deep soil. In this context, the total
replenishment of depleted soil water storage (TR, cm) was calculated by:

TR =

∫ L

0
(θt2 − θt1)dz (2)

where θt2 is the soil water content in the deforested orchard (m3 m−3); θt1 is the soil water content of
the corresponding standing orchard (m3 m−3); and L is the depth of soil profile (cm).

2.4. Quantify Piston Flow and Preferential Flow Using Measured Cl- and Soil Water Profiles

At the initial stage after deforestation, deep soil is desiccated and therefore nearly all the water
and Cl− are concentrated in small pores. During the recovery process, the infiltration water (“newer”
water) should be in pores larger than the “older” water filled pores (with high Cl− concentrations).
As large pores are normally featured with a fast water flow velocity, herein, we use the downward
migration of Cl− to represent piston flow, and the water moving faster than Cl− to derive preferential
flow (Figure 2). In this process, the deforested site had the same Cl− input time as the corresponding
standing orchard. Considering that multiple Cl− fronts will be formed due to the unstable input of Cl−

in the orchard, we took the midpoint of the lowest dispersion front as the reference point to calculate
the Cl− migration distance. The piston flow amount (cm) was calculated according to the migration
distance of the reference point:

PF = l · θ (3)

where PF is piston flow (cm), l is the moving distance of the reference point (cm), and θ is the average
soil water content (cm3 cm−3) across the migration zone between the two reference points.
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Preferential flow amount (cm) was calculated based on soil water storage increase beneath the
reference point:

PrF =

∫ Z2

Z1

θdz (4)

where PrF is preferential flow (cm), Z1 is the depth of the reference point after recovery (cm), and Z2 is
the maximum infiltration depth (cm).

3. Results

3.1. The Evolution of Cl− Profiles following Deforestation

In all the measured profiles, there were large Cl− concentration peaks (Figure 3) with Cl−

concentration ranging from 9 to 48 mmol L−1 (Figure 3). In some profiles, more than one peak appeared,
which may be attributed to unstable fertilization after afforestation. The Cl− concentration stabilized
below the crest area, with concentrations ranging from 0.25 to 1.43 mmol L−1, which was far less than
in the above strata. Moreover, in all paired sites, the shape of the Cl− profile was almost the same
between the recovering site and the standing orchard. This result demonstrated that in each paired
site, spatial variability was quiet small, and therefore, the appeared difference between the Cl− peak
and soil water can be used to investigate water flow mechanisms in deep soil.
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3.2. The Amount of Piston Flow Tracked by Cl− Migration

To accurately determine the migration distance of the Cl− crest, the concentration of Cl− in
each soil layer was divided by the maximum value of that profile (Figure 4). Based on the relative
concentration profiles, the midpoint of the lowest front moved 70, 80, 100 and 70 cm for site 1, 2, 3 and
4, respectively (Figure 4 and Table 1). Accordingly, during the water recovery period, the piston flow
amount was 109.8, 123.6, 154.7 and 165 mm, for site 1, 2, 3 and 4, respectively (Table 1).
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Table 1. Soil water recharge calculated according to the movement of chloride.

Variable Recovery Time (year)

3 (Site 1) 4 (Site 2) 5 (Site 3) 7–15 (Site 4)

MD 0.7 (3.4 to 4.1 m) 0.8 (4 to 4.8 m) 1 (4.6 to 5.6 m) 0.7 (4 to 4.7 m)
PF 109.75 123.64 154.68 164.97

APF 36.58 30.91 30.94 20.62
PrF 107.42 (4.1–7.3 m) 117.24 (4.8–7.6 m) 80.73 (5.6–8.4 m) 307.86 (4.7–10 m)

(PrF + PF) 217.17 240.88 235.41 472.83
PrF/(PrF + PF) 49.46 48.67 34.29 65.11

MD: Moving distance of chloride crest, m; PR: Piston recharge accompanying chloride crest, mm; APF: Average
annual piston recharge, mm yr−1; PrF: Preferential flow below chloride crest, mm; (PrF + PF): Total recharge below
the reference point of the Cl− front before recovery, mm; PrF/(PrF + PF): The percentage of preferential flow in total
recharge, %.

3.3. The Amount of Preferential Flow Derived from Soil Water Increase below the Cl− Front

In the deforested sites, although Cl− migrated to deeper strata during water recovery processes,
an evident increase in soil water content was observed below the Cl− front (Figure 5). The maximum
water infiltration depth, on average, was 2.8~5.3 m ahead of the depth of the Cl− dispersion front,
indicating the existence of preferential flow. According to Equation (4), the amount of preferential flow
was 107, 117, 81 and 308 mm for site 1, 2, 3 and 4, accounting for 49.46%, 48.67%, 34.29% and 65.11% of
the total recharge, respectively (Table 1).
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4. Discussion

4.1. Why Do Piston and Preferential Water Flow Simultaneously Appear in the Deep Strata of Loess during the
Water Recovery Process?

It is well known that water transport in soil is heterogeneous, while most previous research on
water flow mechanisms are focused either on soil columns in the laboratory [36,37] or on shallow soil
in the field [38–40]. In addition, most of these studies were conducted at/near saturated soil due to the
long time need to detect unsaturated water flow [8]. To date, little data are available to quantify piston
and preferential water flow in deep soil. In this study, using the space-for-time substitution method,
we found that although Cl− migrated to deeper strata with infiltration, an evident increase in soil water
content was found below the Cl− front, indicating the presence of both piston and preferential water
flow in the deep loess (Figure 5).

The presented preferential water flow in this study is far different from previous studies and can
be summarized by the following three aspects: (1) in this study, for all sampling sites, preferential flow
appears in soil cores of only 4 cm in diameter. This result suggests that the preferential water flow
in this study is, to a large extent, a widespread phenomenon. This is different from previous finger
flow and macropore flow, where water only migrated in a small part of the soil matrix [41–43]. (2) The
preferential water flow velocity in this study is far smaller than most previous reports. In this study,
the average water velocity was only 125–243 cm yr−1, while in previous reports, the pore water velocity
of preferential water flow could be greater than 7000 cm y−1 [44]. The smaller water velocity is mainly
attributable to the low soil water content under field conditions, which ranged from 0.158 to 0.207 cm3

cm−3 below 3 m before recovery. (3) The presented preferential water flow in this study appeared in
deep soil (from 7.3 to 10 m), while most previous studies reported preferential flow in shallow soil [13].

Evidently, pore water velocity difference remains key to the appearance of preferential water flow.
Pore water velocity can be caused by differences in soil properties at both pore scales [8,31], and can
also be caused by unstable “fingers” by large structural pores in coarse soils [45,46]. In this study,
preferential water flow was observed in the deep loess following deforestation. The appearance of
this type of preferential flow may be attributed to the following reasons: (1) in the deep soil of old
apple orchards, soil water content has close to its lower limit of root water uptake due to intensive
water extraction after afforestation [16]. In desiccated deep soil, water and dissolved Cl− are mainly
concentrated in pores with small diameters and slow pore water velocity [31,41]. (2) After deforestation,
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due to the small evapotranspiration rate of shallow rooted croplands, a relatively large amount of
water infiltrated to deep soil, resulting in greater water pressure gradient around the infiltration front.
Moreover, the infiltrated water was in pores with a larger diameter than the water/Cl− filled pores just
after deforestation. Therefore, during the water recovery process of the deep loess, pores with high
Cl− concentrations moved more slowly than the new infiltrated water, resulting in the appearance of
preferential flow.

4.2. The Implications of Two Different Flow Patterns in Deep Soil on Ecohydrological Processes

Preferential flow significantly impacts ecohydrological responses to precipitation, and therefore,
regulates both groundwater and surface water quantity and quality [8]. Preferential water flow with a
high pore water velocity can hardly be extracted by plant roots before it is converted to streamflow
and groundwater recharge, resulting in the ecohydrological separation of water between trees and
streams [47]. Preferential water flow has been reported as an important channel for groundwater
recharge, and can even contribute to more than 80% of total recharge [48]. Our study demonstrated
that preferential water flow not only happens in shallow soil, but also appears in deep soil under
natural conditions, where pore water velocity was small (Figure 5). This result suggests that chemical
tracers, like Cl−, cannot detect all infiltrated water. Therefore, previous estimations of groundwater
recharge based on the Cl− mass balance method might have considerably underestimated groundwater
recharge [49,50].

5. Conclusions

Based on measured Cl− and soil water profiles in four paired sites, this study quantified long-term
piston and preferential water flow in the deep loess. For all sites, an evident increase of soil water
was found below the downward Cl− front, demonstrating the existence of preferential water flow in
the deep loess under field conditions, where pore water flow velocity was small. According to our
measurements, preferential water flow can account for 34–65% under natural conditions. Our study
revealed the widespread characteristic of preferential water flow and advanced our understanding of
water flow mechanisms in deep soil.
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