Flood Monitoring Based on the Study of Sentinel-1 SAR Images: The Ebro River Case Study
Abstract
:1. Introduction
2. Study Area and Data Source
2.1. Hydraulic Parameters Characteristic of the Flood
2.2. Sentinel-1 SAR Data
2.3. Additional Ebro Hydrographic Confederation Data
3. Procedures and Methodologies
3.1. SAR Sentinel-1 Data Pre-Processing
3.2. SAR Sentinel-1 Data Processing
4. Results and Discussion
4.1. RGB Composition Results
4.2. Calibration Threshold Technique Results
4.3. Photointerpretation with Orthophoto Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Poff, N.L. Ecological response to and management of increased flooding caused by climate change. Philos. Trans. A Math. Phys. Eng. Sci. 2002, 360, 1497–1510. [Google Scholar] [CrossRef]
- The United Nations Office for Disaster Risk Reduction (UNISDR). The Human Cost of Weather Related Studies. 2015. Available online: https://www.unisdr.org/2015/docs/climatechange/COP21_Weather DisastersReport_2015_FINAL.pdf (accessed on 5 April 2019).
- European Environment Agency. Flood Risks and Environmental Vulnerability; Exploring the Synergies between Floodplain Restoration, Water Policies and Thematic Policies; European Environment Agency: Copenhagen, Danmark, 2016; pp. 9–15. [Google Scholar]
- Consorcio de compensación de seguros. Guía Para la Reducción de la Vulnerabilidad de los Edificios Frente a las Inundaciones. 2017. Available online: https://www.consorseguros.es/web/documents/10184/48069/ guia_inundaciones_completa_22jun.pdf (accessed on 17 September 2018).
- National Research Council. Hydrologic Hazards Science at the U.S. Geological Survey; The National Academies Press: Washington, DC, USA, 1999. [Google Scholar]
- Merz, B.; Aerts, J.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; et al. Floods and climate: Emerging perspectives for flood risk assessment and management. Nat. Hazards Earth Syst. Sci. 2014, 14, 1921–1942. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—An EU Strategy on Adaptation to Climate Change. 2013. Available online: https://ec.europa.eu/transparency/regdoc/rep/1/2013/EN/1-2013-216-EN-F1-1.pdf (accessed on 17 May 2018).
- Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.F. Fusion of Sentinel-1 and Sentinel-2 image time series for permanent and temporary surface water mapping. Int. J. Remote Sens. 2019, 40, 9026–9049. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Shen, X.; Wang, D.; Mao, K.; Anagnostou, E.; Hong, Y. Inundation Extent Mapping by Synthetic Aperture Radar: A Review. Remote Sens. 2019, 11, 879. [Google Scholar] [CrossRef]
- Tomer, S.T.; Al Bitar, A.; Sekhar, M.; Zribi, M.; Bandyopadhyay, S.; Sreelash, K.; Sharma, A.K.; Corgne, S.; Kerr, Y. Retrieval and Multi-scale Validation of Soil Moisture from Multi-temporal SAR Data in a Semi-Arid Tropical Region. Remote Sens. 2015, 7, 8128–8153. [Google Scholar] [CrossRef]
- Filion, R.; Bernier, M.; Paniconi, C.; Chokmani, K.; Melis, M.; Soddu, A.; Talazac, M.; Lafortune, F.-X. Remote sensing for mapping soil moisture and drainage potential in semi-arid regions: Applications to the Campidano plain of Sardinia, Italy. Sci. Total Environ. 2016, 573, 862–876. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive, Volume 2, Radar Remote Sensing and Surface Scattering and Emission Theory; Addison-Wesley: Reading, MA, USA, 1983; pp. 1840–1852. [Google Scholar]
- Kelly, R.; Davie, T.; Atkinson, P. Explaining temporal and spatial variation in soil moisture in a bare field using SAR imagery. Int. J. Remote. Sens. 2003, 24, 3059–3074. [Google Scholar] [CrossRef]
- Smith, L. Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol. Process. 1997, 11, 1427–1439. [Google Scholar] [CrossRef]
- European Exchange Circle on Flood Mapping (EXCIMAP). Handbook on Good Practices for Flood Mapping in Europe. Available online: https://ec.europa.eu/environment/water/flood_risk/flood_atlas/pdf/ handbook_goodpractice.pdf (accessed on 10 September 2019).
- Sánchez Fabre, M.; Ballarán Ferrer, D.; Mora, D.; Ollero, A.; Serrano-Notivoli, R.; Saz, M. Las Crecidas del Ebro Medio en el Comienzo del Siglo XXI; XXIV Congreso de la Asociación de Geógrafos Españoles. Análisis espacial y representación geográfica: Innovación y aplicación; Universidad de Zaragoza y Asociación de Geógrafos Españoles: Zaragoza, Spain, 2015; pp. 1853–1862. [Google Scholar]
- Confederación Hidrográfica del Ebro, CHE. Available online: http://www.chebro.es (accessed on 15 February 2019).
- Galván Plaza, R. Cuatro grandes inundaciones históricas del Ebro en la ciudad de Zaragoza: 1643, 1775, 1871 y 1961. Pap. De Geogr. 2018, 64, 7–25. [Google Scholar] [CrossRef]
- Pueyo Anchuela, Ó.; Revuelto, C.; Casas Sainz, A.; Rajamo Cordero, J.; Pocovi, A. Las crecidas del Ebro de febrero/marzo de 2015. ¿Qué hemos aprendido y qué falta por aprender? Geogaceta 2016, 60, 119–122. [Google Scholar]
- Sistema Automático de Información Hidrológica de la Cuenca Hidrográfica del Ebro (SAIH of the CHE). Available online: http://www.saihebro.com/saihebro/index.php (accessed on 12 March 2019).
- Polanco Fernández, L. Obras de restauración fluvial en el ámbito del Plan PIMA Adapta. In Proceedings of the Conference: La Gestión del Riesgo de Inundación Fluvial en el Contexto del Cambio Climático, Madrid, Spain, 10 December 2018. [Google Scholar]
- Rodríguez Marcos, F.J. Principales episodios de inundaciones de 2018. In Proceedings of the Conference: La Gestión del Riesgo de Inundación Fluvial en el Contexto del Cambio Climático, Madrid, Spain, 10 December 2018. [Google Scholar]
- Martínez, J.M.; Toan, T. Mapping of flood dynamics and vegetation spatial distribution in the Amazon floodplain using multitemporal SAR data. Remote Sens. Environ. 2007, 108, 209–223. [Google Scholar] [CrossRef]
- Cunjian, Y.; Yiming, W.; Siyuan, W.; Zengxiang, Z.; Shifeng, H. Extracting the flood extent from satellite SAR image with thesupport of topographic data. In Proceedings of the International Conferences on Info-Tech and Info-Net. Networks (ICII 2001), Beijing, China, 29 October–1 November 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 1, pp. 87–92. [Google Scholar]
- Argenti, F.; Lapini, A.; Alparone, L. A tutorial on speckle reduction in synthetic aperture radar images, IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–35. [Google Scholar]
- European Space Agency (ESA). The ASAR User Guide. Available online: https://earth.esa.int/handbooks/asar/toc.html (accessed on 10 July 2019).
- Gorrab, A.; Zribi, M.; Baghdadi, N.; Mougenot, B.; Fanise, P.; Chabaane, Z.L. Retrieval of both soil moisture and texture using TerraSAR-X images. Remote Sens. 2015, 7, 10098–10116. [Google Scholar] [CrossRef]
- Zribi, M.; Dechambre, M. A new empirical model to retrieve soil moisture and roughness from C-band radar data. Remote Sens. Environ. 2002, 84, 42–52. [Google Scholar] [CrossRef]
- Twele, A.; Cao, W.X.; Plank, S.; Martinis, S. Sentinel-1-based flood mapping: A fully automated processing chain. Int. J. Remote Sens. 2016, 37, 2990–3004. [Google Scholar] [CrossRef]
- European Space Agency (ESA). Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 2 May 2019).
- Klemas, V. Remote sensing of floods and flood-prone areas: An overview. J. Coast. Res. 2015, 31, 1005–1013. [Google Scholar] [CrossRef]
- ESA Sentinel Online. User Guides and Technical Guides of Sentinel-1 SAR. Available online: https://sentinel.esa.int/web/sentinel (accessed on 8 August 2019).
- ESA Sentinel Online. Product Types and Processing Levels. Available online: https://sentinel.esa.int/web/ sentinel/user-guides/sentinel-1-sar/product-types-processing-levels (accessed on 8 August 2019).
- Confederación Hidrográfica del Ebro, CHE. Ministerio Para la Transición Ecológica; Gobierno de España. Vuelos aéreos de reconocimiento para la inundación del río Ebro en abril de 2018; CHE: Zaragoza, Spain, 2018. [Google Scholar]
- SNAP Software Version 6.0.0. Available online: https://step.esa.int/main/download/snap-download (accessed on 22 December 2018).
- Tavus, B.; Kocaman, S.; Gokceoglu, C.; Nefeslioglu, H.A. Considerations on the use of Sentinel-1 data in flood mapping in urban areas: Ankara (Turkey) 2018 floods. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-5, 575–581. [Google Scholar] [CrossRef]
- Ban, H.-J.; Kwon, Y.-J.; Shin, H.; Ryu, H.-S.; Hong, S. Flood monitoring using satellite-based RGB composite imagery and refractive index retrieval in visible and near-infrared bands. Remote Sens. 2017, 9, 313. [Google Scholar] [CrossRef]
- Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.-P. A method for automatic and rapid mapping of water surfaces from Sentinel-1 imagery. Remote Sens. 2018, 10, 217. [Google Scholar] [CrossRef]
- Martinis, S.; Rieke, C. Backscatter analysis using multi-temporal and multi-frequency SAR data in the context of flood mapping at river Saale, Germany. Remote Sens. 2015, 7, 7732–7752. [Google Scholar] [CrossRef]
- Henry, J.-B.; Chastanet, P.; Fellah, K.; Desnos, Y.-L. Envisat multipolarized ASAR data for flood mapping. Int. J. Remote Sens. 2006, 27, 1921–1929. [Google Scholar] [CrossRef]
- Kudahetty, C. Flood Mapping Using Synthetic Aperture Radar in the Kelani Ganga and the Bolgoda Basins, Sri Lanka; Master of Science in Geo-information Science and Earth Observation; University of Twente: Enschede, The Netherlands, 2012. [Google Scholar]
- Senthilnath, J.; Handiru, V.; Rajendra, R.; Omkar, S.N.; Mani, V.; Diwakar, P. Integration of speckle de-noising and image segmentation using Synthetic Aperture Radar image for flood extent extraction. J. Earth Syst. Sci. 2013, 122, 559–572. [Google Scholar] [CrossRef]
- Park, J.-M.; Song, W.J.; Pearlman, W.A. Speckle filtering of SAR images based on adaptive windowing. IEE Proc. Vis. Image Signal Process. 1999, 146, 191–197. [Google Scholar] [CrossRef]
- Borah, S.B.; Sivasankar, T.; Ramya, M.N.S.; Raju, P.L.N. Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data. Environ. Monit. Assess. 2018, 190, 520. [Google Scholar] [CrossRef]
- Ezzine, A.; Darragi, F.; Rajhi, H.; Ghatassi, A. Evaluation of Sentinel-1 data for flood mapping in the upstream of Sidi Salem dam (Northern Tunisia). Arab. J. Geosci. 2018, 11, 170. [Google Scholar] [CrossRef]
- García, R.; González, C.; De la Vega, R.; Valverde, A.; Seben, E. Análisis del Comportamiento de Filtros de Reducción de Speckle en Imágenes ERS2-SAR; Teledetección y Desarrollo Regional; X Congreso de Teledetección: Cáceres, Spain, 2003; pp. 325–328. [Google Scholar]
- Chapman, B.; McDonald, K.; Shimada, M.; Rosenqvist, A.; Schroeder, R.; Hess, L. Mapping regional inundation with spaceborne L-Band SAR. Remote Sens. 2015, 7, 5440–5470. [Google Scholar] [CrossRef]
- Martinis, S.; Twele, A.; Voigt, S. Unsupervised extraction of flood-induced backscatter changes in SAR data using Markov image modeling on irregular graphs. IEEE Trans. Geosci. Remote Sens. 2011, 49, 251–263. [Google Scholar] [CrossRef]
- Perrou, T.; Garioud, A.; Parcharidis, I. Use of Sentinel-1 imagery for flood management reservoir-regulated river basin. Front. Earth Sci. 2018, 12, 506–520. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, H.; Wang, C.; Zhang, B. Operational Flood Detection Using Sentinel-1 SAR Data over Large Areas. Water 2019, 11, 786. [Google Scholar] [CrossRef]
- Martinis, S.; Twele, A.; Voigt, S. Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data. Nat. Hazards Earth Syst. Sci. 2009, 9, 303–314. [Google Scholar] [CrossRef]
- Psomiadis, E. Flash flood area mapping utilising Sentinel-1 radar data. In Proceedings of the SPIE 10005, Earth Resources and Environmental Remote Sensing/GIS Applications, Dresden, Germany, 11 November 2013; VII 100051G. SPIE: Edimburgh, UK, 2016. [Google Scholar]
- Dumitrascu, N.; Oniga, E.; Florian, S.; Marcu, C. Floods damage estimation using sentinel-1 satellite images. Case study: Galati County, Romania. RevCAD. J. Geod. Cadas. 2017, 22, 115–122. [Google Scholar]
- Pham-Duc, B.; Prigent, C.; Aires, F. Surface Water Monitoring within Cambodia and the Vietnamese Mekong Delta over a Year, with Sentinel-1 SAR Observations. Water 2017, 9, 366. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wdowinski, S.; Oliver-Cabrera, T.; Koirala, R.; Jo, M.J.; Osmanoglu, B. Mapping the extent and magnitude of severe flooding induced by hurricane Irma with multi-temporal Sentinel-1 SAR and InSAR observations. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-3, 2237–2244. [Google Scholar] [CrossRef] [Green Version]
- Amitrano, D.; Guida, R.; Ruello, G. Multitemporal SAR RGB Processing for Sentinel-1 GRD Products: Methodology and Applications. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1497–1507. [Google Scholar] [CrossRef]
- Westerhoff, R.S.; Kleuskens, M.P.H.; Winsemius, H.C.; Huizinga, H.J.; Brakenridge, G.R.; Bishop, C. Automated global water mapping based on wide-swath orbital synthetic-aperture radar. Hydrol. Earth Syst. Sci. 2013, 17, 651–663. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Hong, Y.; Qin, Q.; Chen, S.; Grout, T. A backscattering enhanced canopy scattering model based on mimics. In Proceedings of the American Geophysical Union (AGU) 2010 Fall Meeting, San Francisco, CA, USA, 13–17 December 2010. [Google Scholar]
- Townsend, P.A. Relationships between forest structure and the detection of flood inundation in forested wetlands using C-band SAR. Int. J. Remote Sens. 2002, 23, 443–460. [Google Scholar] [CrossRef]
- Matgen, P.; Schumann, G.; Henry, J.-B.; Hoffmann, L.; Pfister, L. Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 247–263. [Google Scholar] [CrossRef]
- Manjusree, P.; Prasanna Kumar, L.; Bhatt, C.M.; Srinivasa Rao, G.; Bhanumurthy, V. Optimization of threshold ranges for rapid flood inundation mapping by evaluating backscatter profiles of high incidence angle SAR images. Int. J. Disaster Risk Sci. 2012, 3, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Clement, M.; Kilsby, C.; Moore, P. Multi-temporal SAR flood mapping using change detection. J. Flood Risk Manag. 2017, 11, 152–168. [Google Scholar] [CrossRef]
- Nguyen, D. Automatic detection of surface water bodies from Sentinel-1 SAR images using Valley-Emphasis method. Vietnam Earth Sci. 2016, 37, 328–343. [Google Scholar]
- Ministerio para la Transición Ecológica, MITECO. 2017. Available online: https://www.miteco.gob.es/es/cartografia-y-sig/ide/descargas/agua/zi-lamina.aspx (accessed on 6 May 2019).
- Ministerio para la Transición Ecológica, MITECO. Guía Metodológica Para el Desarrollo del Sistema Nacional de Cartografía de Zonas Inundables, 1st ed.; Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2011; pp. 19–52.
Station Annual Gauging Average | Annual Average Level of Ebro (m) | Annual Average Flow of Ebro (m3/s) | Day | Hour | Annual Maximum Level of Ebro (m) | Annual Maximum Flow of Ebro (m3/s) |
---|---|---|---|---|---|---|
Castejón | 2.31 | 226 | 6 February 2003 | 02:45 | 7.54 | 2847 |
2.63 | 261 | 27 February 2015 | 00:00 | 7.78 | 2691 | |
2.82 | 265 | 13 April 2018 | 9:30 | 7.77 | 2682 | |
Zaragoza | 1.41 | 258.78 | 9 February 2003 | 03:00 | 5.76 | 2237 |
1.38 | 268.95 | 2 March 2015 | 02:00 | 6.10 | 2448 | |
1.5 | 288.52 | 15 April 2018 | 19:45 | 5.36 | 2037 |
Gauging Station | 2018 | Day | Hour | Annual Maximum Level of Ebro (m) | Annual Maximum Flow of Ebro (m3/s) | |
---|---|---|---|---|---|---|
Annual Average Level of Ebro (m) | Annual Average Flow of Ebro (m3/s) | |||||
Castejón | 2.82 | 265 | 13 April 2018 | 9:30 | 7.77 | 2682 |
Tudela | 1.22 | 270 | 14 April 2018 | 01:00 | 5.34 | 2413 |
Novillas | 2.63 | - | 14 April 2018 | 11:45 | 8.24 | - |
Pradilla de Ebro | 3.11 | - | 14 April 2018 | 20:30 | 8.51 | - |
Alagón | 0.88 | - | 14 April 2018 | 07:30 | 2.26 | - |
Zaragoza—Ronda Norte | 2.61 | - | 15 April 2018 | 17:15 | 8.02 | 2041 |
Zaragoza | 1.5 | 288.52 | 15 April 2018 | 19:45 | 5.36 | 2037 |
Image | Mission Identifier | Date of Capture | Hour of Capture |
---|---|---|---|
A | Sentinel-1A | 6 April 2018 | 18:03 |
B | Sentinel-1B | 13 April 2018 | 17:55 |
Filter | Total Area (ha) |
---|---|
No filter | 1822.01 |
Lee 3 × 3 | 1122.15 |
Lee 5 × 5 | 880.53 |
Lee 7 × 7 | 762.90 |
Refined Lee | 1115.54 |
Lee Sigma 5 × 5 | 910.17 |
Gamma Map 3 × 3 | 1093.30 |
Gamma Map 5 × 5 | 890.62 |
Flood area RADAR 13 April 2018 | 2640.61 ha |
Flood area Ortophotography 14 April 2018 | 4653.13 ha |
Common flood area | 1767.88 ha |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carreño Conde, F.; De Mata Muñoz, M. Flood Monitoring Based on the Study of Sentinel-1 SAR Images: The Ebro River Case Study. Water 2019, 11, 2454. https://doi.org/10.3390/w11122454
Carreño Conde F, De Mata Muñoz M. Flood Monitoring Based on the Study of Sentinel-1 SAR Images: The Ebro River Case Study. Water. 2019; 11(12):2454. https://doi.org/10.3390/w11122454
Chicago/Turabian StyleCarreño Conde, Francisco, and María De Mata Muñoz. 2019. "Flood Monitoring Based on the Study of Sentinel-1 SAR Images: The Ebro River Case Study" Water 11, no. 12: 2454. https://doi.org/10.3390/w11122454
APA StyleCarreño Conde, F., & De Mata Muñoz, M. (2019). Flood Monitoring Based on the Study of Sentinel-1 SAR Images: The Ebro River Case Study. Water, 11(12), 2454. https://doi.org/10.3390/w11122454