Assessment of Remotely Sensed Near-Surface Soil Moisture for Distributed Eco-Hydrological Model Implementation
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Satellite Datasets
2.3. Eco-Hydrological Model: TETIS
2.4. SM-Based Efficiency Indices
2.5. Optimisation Algorithm and Goodness-of-Fit Indexes
3. Results and Discussion
3.1. Selection of SM-Based OF
3.2. Calibration Period
3.3. Validation Period
3.4. Value of Satellite Information
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bai, P.; Liu, X.; Yang, T.; Li, F.; Liang, K.; Hu, S.; Liu, C. Assessment of the Influences of Different Potential Evapotranspiration Inputs on the Performance of Monthly Hydrological Models under Different Climatic Conditions. J. Hydrometeorol. 2016, 17, 2259–2274. [Google Scholar] [CrossRef]
- Beven, K.; Freer, J. Equifinality, Data Assimilation, and Uncertainty Estimation in Mechanistic Modelling of Complex Environmental Systems Using the GLUE Methodology. J. Hydrol. 2001, 249, 11–29. [Google Scholar] [CrossRef]
- Bitew, M.M.; Gebremichael, M. Evaluation of Satellite Rainfall Products through Hydrologic Simulation in a Fully Distributed Hydrologic Model. Water Resour. Res. 2011, 47, 1–11. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, S.; Cai, Y.; Li, X.; Jiang, Y. Improvement of Hydrological Model Calibration by Selecting Multiple Parameter Ranges. Hydrol. Earth Syst. Sci. 2017, 21, 393–407. [Google Scholar] [CrossRef] [Green Version]
- Parajka, J.; Blöschl, G. The Value of MODIS Snow Cover Data in Validating and Calibrating Conceptual Hydrologic Models. J. Hydrol. 2008, 358, 240–258. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Schaefli, B.; Montanari, A.; Savenije, H.H.G. On the Calibration of Hydrological Models in Ungauged Basins: A Framework for Integrating Hard and Soft Hydrological Information. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Rakovec, O.; Kumar, R.; Mai, J.; Cuntz, M.; Thober, S.; Zink, M.; Attinger, S.; Schäfer, D.; Schrön, M.; Samaniego, L. Multiscale and Multivariate Evaluation of Water Fluxes and States over European River Basins. J. Hydrometeorol. 2016, 17, 287–307. [Google Scholar] [CrossRef]
- Akbar, R.; Das, N.; Entekhabi, D.; Moghaddam, M. Active and Passive Microwave Remote Sensing Synergy for Soil Moisture Estimation. In Satellite Soil Moisture Retrieval; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 187–207. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil Moisture for Hydrological Applications: Open Questions and New Opportunities. Water (Switzerland) 2017, 9, 140. [Google Scholar] [CrossRef]
- Domeneghetti, A.; Tarpanelli, A.; Brocca, L.; Barbetta, S.; Moramarco, T.; Castellarin, A.; Brath, A. The Use of Remote Sensing-Derived Water Surface Data for Hydraulic Model Calibration. Remote Sens. Environ. 2014, 149, 130–141. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 37, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Li, H.T.; Brunner, P.; Kinzelbach, W.; Li, W.P.; Dong, X.G. Calibration of a Groundwater Model Using Pattern Information from Remote Sensing Data. J. Hydrol. 2009, 377, 120–130. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface Soil Moisture Retrievals from Remote Sensing: Current Status, Products & Future Trends. Phys. Chem. Earth 2015, 83–84, 36–56. [Google Scholar] [CrossRef]
- Ruiz-Pérez, G.; González-Sanchis, M.; Del Campo, A.D.; Francés, F. Can a Parsimonious Model Implemented with Satellite Data Be Used for Modelling the Vegetation Dynamics and Water Cycle in Water-Controlled Environments? Ecol. Modell. 2016, 324, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Beck, P.S.A.; Atzberger, C.; Arild, K.; Johansen, B.; Skidmore, A.K. Improved Monitoring of Vegetation Dynamics at Very High Latitudes: A New Method Using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
- Shu, Y.; Stisen, S.; Jensen, K.H.; Sandholt, I. Estimation of Regional Evapotranspiration over the North China Plain Using Geostationary Satellite Data. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 192–206. [Google Scholar] [CrossRef]
- Stisen, S.; Jensen, K.H.; Sandholt, I.; Grimes, D.I.F. A Remote Sensing Driven Distributed Hydrological Model of the Senegal River Basin. J. Hydrol. 2008, 354, 131–148. [Google Scholar] [CrossRef]
- Lettenmaier, D.P.; Alsdorf, D.; Dozier, J.; Huffman, G.J.; Pan, M.; Wood, E.F. Inroads of Remote Sensing into Hydrologic Science during the WRR Era. Water Resour. Res. 2015, 51, 7309–7342. [Google Scholar] [CrossRef]
- Demirel, M.C.; Mai, J.; Mendiguren, G.; Koch, J.; Samaniego, L.; Stisen, S. Combining Satellite Data and Appropriate Objective Functions for Improved Spatial Pattern Performance of a Distributed Hydrologic Model. Hydrol. Earth Syst. Sci. 2018, 22, 1299–1315. [Google Scholar] [CrossRef] [Green Version]
- Herman, M.R.; Nejadhashemi, A.P.; Abouali, M.; Hernandez-Suarez, J.S.; Daneshvar, F.; Zhang, Z.; Anderson, M.C.; Sadeghi, A.M.; Hain, C.R.; Sharifi, A. Evaluating the Role of Evapotranspiration Remote Sensing Data in Improving Hydrological Modeling Predictability. J. Hydrol. 2018, 556, 39–49. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Droogers, P. Calibration of a Distributed Hydrological Model Based on Satellite Evapotranspiration. J. Hydrol. 2008, 349, 411–424. [Google Scholar] [CrossRef]
- Rajib, A.; Evenson, G.R.; Golden, H.E.; Lane, C.R. Hydrologic Model Predictability Improves with Spatially Explicit Calibration Using Remotely Sensed Evapotranspiration and Biophysical Parameters. J. Hydrol. 2018, 567, 668–683. [Google Scholar] [CrossRef]
- Silvestro, F.; Gabellani, S.; Delogu, F.; Rudari, R.; Boni, G. Exploiting Remote Sensing Land Surface Temperature in Distributed Hydrological Modelling: The Example of the Continuum Model. Hydrol. Earth Syst. Sci. 2013, 17, 39–62. [Google Scholar] [CrossRef] [Green Version]
- Zink, M.; Mai, J.; Cuntz, M.; Samaniego, L. Conditioning a Hydrologic Model Using Patterns of Remotely Sensed Land Surface Temperature. Water Resour. Res. 2018, 54, 2976–2998. [Google Scholar] [CrossRef]
- Contreras, S.; Jobbágy, E.G.; Villagra, P.E.; Nosetto, M.D.; Puigdefábregas, J. Remote Sensing Estimates of Supplementary Water Consumption by Arid Ecosystems of Central Argentina. J. Hydrol. 2011, 397, 10–22. [Google Scholar] [CrossRef]
- Ramón-Reinozo, M.; Ballari, D.; Cabrera, J.J.; Crespo, P.; Carrillo-Rojas, G. Altitudinal and Temporal Evapotranspiration Dynamics via Remote Sensing and Vegetation Index-Based Modelling over a Scarce-Monitored, High-Altitudinal Andean Páramo Ecosystem of Southern Ecuador. Environ. Earth Sci. 2019, 78, 340. [Google Scholar] [CrossRef]
- Ruiz-Pérez, G.; Koch, J.; Manfreda, S.; Caylor, K.; Francés, F. Calibration of a Parsimonious Distributed Ecohydrological Daily Model in a Data-Scarce Basin by Exclusively Using the Spatio-Temporal Variation of NDVI. Hydrol. Earth Syst. Sci. 2017, 21, 6235–6251. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Kalra, A.; Stephen, H. Estimating Soil Moisture Using Remote Sensing Data: A Machine Learning Approach. Adv. Water Resour. 2010, 33, 69–80. [Google Scholar] [CrossRef]
- Kornelsen, K.C.; Coulibaly, P. Reducing Multiplicative Bias of Satellite Soil Moisture Retrievals. Remote Sens. Environ. 2015, 165, 109–122. [Google Scholar] [CrossRef]
- Li, Y.; Grimaldi, S.; Pauwels, V.R.N.; Walker, J.P. Hydrologic Model Calibration Using Remotely Sensed Soil Moisture and Discharge Measurements: The Impact on Predictions at Gauged and Ungauged Locations. J. Hydrol. 2018, 557, 897–909. [Google Scholar] [CrossRef]
- Schlerf, M.; Atzberger, C. Inversion of a Forest Reflectance Model to Estimate Structural Canopy Variables from Hyperspectral Remote Sensing Data. Remote Sens. Environ. 2006, 100, 281–294. [Google Scholar] [CrossRef]
- Yang, H.; Xiong, L.; Ma, Q.; Xia, J.; Chen, J.; Xu, C.-Y. Utilizing Satellite Surface Soil Moisture Data in Calibrating a Distributed Hydrological Model Applied in Humid Regions Through a Multi-Objective Bayesian Hierarchical Framework. Remote Sens. 2019, 11, 1335. [Google Scholar] [CrossRef] [Green Version]
- Yassin, F.; Razavi, S.; Wong, J.S.; Pietroniro, A.; Wheater, H. Hydrologic-Land Surface Modelling of a Complex System under Precipitation Uncertainty: A Case Study of the Saskatchewan River Basin, Canada. Hydrol. Earth Syst. Sci. Discuss. 2019, 2019, 1–40. [Google Scholar] [CrossRef]
- Barrett, B.; Pratola, C.; Gruber, A.; Dwyer, E. Intercomparison of Soil Moisture Retrievals From In Situ, ASAR, and ECV SM Data Sets Over Different European Sites; Elsevier Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef] [Green Version]
- Legates, D.R.; Mahmood, R.; Levia, D.F.; DeLiberty, T.L.; Quiring, S.M.; Houser, C.; Nelson, F.E. Soil Moisture: A Central and Unifying Theme in Physical Geography. Prog. Phys. Geogr. 2011, 35, 65–86. [Google Scholar] [CrossRef]
- Perry, M.A.; Niemann, J.D. Analysis and Estimation of Soil Moisture at the Catchment Scale Using EOFs. J. Hydrol. 2007, 334, 388–404. [Google Scholar] [CrossRef]
- Western, A.W.; Blöschl, G. On the Spatial Scaling of Soil Moisture. J. Hydrol. 1999, 217, 203–224. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Bogena, H.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the Value of Soil Moisture Measurements in Vadose Zone Hydrology: A Review. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Zink, M.; Kumar, R.; Cuntz, M.; Samaniego, L. A High-Resolution Dataset of Water Fluxes and States for Germany Accounting for Parametric Uncertainty. Hydrol. Earth Syst. Sci. 2017, 21, 1769–1790. [Google Scholar] [CrossRef] [Green Version]
- Barrett, B.; Helan, P.W.; Wyer, E.D. Detecting Changes in Surface Soil Moisture Content Using Differential SAR Interferometry (DInSAR). Int. J. Remote Sens. 2009, 34, 7091–7112. [Google Scholar] [CrossRef] [Green Version]
- Kerr, Y.H.; Wigneron, J.P.; Al Bitar, A.; Mialon, A.; Srivastava, P.K. Soil Moisture from Space: Techniques and Limitations; Elsevier Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Wigneron, J.; Chanzy, A.; Waldteufel, P.; Kerr, Y.; Huet, S. Retrieving Surface Soil Moisture over a Wheat Field: Comparison of Different Methods. Remote Sens. Environ. 2003, 87, 334–344. [Google Scholar] [CrossRef]
- Sánchez García, A.; Francés García, F. Estudio Del Régimen Hídrico En La Rambla de La Viuda (Provincia de Castellón). In Análisis de La Influencia de La Información Estándar En El Modelo Hidrológico; Universitat Politécnica de València: Valencia, Spain, 2015. [Google Scholar]
- Montalvo Montenegro, C.I.; Francés García, F. Estimación de Pérdidas de Cauce, Modelización de Transporte de Sedimentos y Cambio Climático de Una Cuenca Mediterránea (Rambla de La Viuda); Universitat Politécnica de València: Valencia, Spain, 2017. [Google Scholar]
- Herrera, S.; Fernández, J.; Gutiérrez, J.M. Update of the Spain02 Gridded Observational Dataset for EURO-CORDEX Evaluation: Assessing the Effect of the Interpolation Methodology. Int. J. Climatol. 2016, 36, 900–908. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, G.H.; Samani, Z. Reference Crop Evapotranspiration From Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Pablos, M.; González-Haro, C.; Barcelona Expert Center Team. BEC SMOS Land Products Description; Barcelona Expert Center: Barcelona, Spain, 2019. [Google Scholar]
- Piles, M.; Pou, X.; Camps, A.; Vall-llosera, M. Quality Report: Validation of SMOS-BEC L4 High Resolution Soil Moisture Products, Version 3.0 or “All-Weather”. Tech. Rept. 2015. Available online: http://bec.icm.csic.es/doc/BEC-SMOS-L4SMv3-QR.pdf (accessed on 10 December 2019).
- Yan, K.; Park, T.; Yan, G.; Chen, C.; Yang, B.; Liu, Z.; Nemani, R.R.; Knyazikhin, Y.; Myneni, R.B. Evaluation of MODIS LAI/FPAR Product Collection 6. Part 1: Consistency and Improvements. Remote Sens. 2016, 8, 359. [Google Scholar] [CrossRef] [Green Version]
- Francés, F.; Vélez, J.I.; Vélez, J.J. Split-Parameter Structure for the Automatic Calibration of Distributed Hydrological Models. J. Hydrol. 2007, 332, 226–240. [Google Scholar] [CrossRef]
- Francés García, F.; Benito Casado, J. La Modelación Distribuida Con Pocos Parámetros de Las Crecidas. Ing. Del Agua 1995, 2, 7–24. [Google Scholar] [CrossRef] [Green Version]
- Pasquato, M.; Medici, C.; Friend, A.D.; Francés, F. Comparing Two Approaches for Parsimonious Vegetation Modelling in Semiarid Regions Using Satellite Data. Ecohydrology 2015, 1036, 1024–1036. [Google Scholar] [CrossRef]
- Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B. Empirical Orthogonal Functions and Related Techniques in Atmospheric Science: A Review. Int. J. Climatol. 2007, 27, 1119–1152. [Google Scholar] [CrossRef]
- Obukhov, A.M. The Statistically Orthogonal Expansion of Empirical Functions. Bull. Acad. Sci. USSR. Geophys. Ser. (Engl. Transl.) 1960, 1, 288–291. [Google Scholar]
- Obukhov, A.M. Statistically Homogeneous Fields on a Sphere. Usp. Mat. Nauk 1947, 2, 196–198. [Google Scholar]
- Vereecken, H.; Huisman, J.A.; Pachepsky, Y.; Montzka, C.; van der Kruk, J.; Bogena, H.; Weihermüller, L.; Herbst, M.; Martinez, G.; Vanderborght, J. On the Spatio-Temporal Dynamics of Soil Moisture at the Field Scale. J. Hydrol. 2012, 516, 76–96. [Google Scholar] [CrossRef]
- Koch, J.; Koch, J.; Jensen, A.K.H.; Stisen, S. Evaluating Spatial Patterns in Hydrological Modelling. Ph.D. Thesis, University of Copenhagen, Copenhagen, Denmark, December 2016. [Google Scholar] [CrossRef]
- Hargrove, W.; Hoffman, F.; Hessburg, P. Mapcurves: A Quantitative Method for Comparing Categorical Maps. J. Geogr. Syst. 2006, 8, 187–208. [Google Scholar] [CrossRef]
- Ji, L.; Gallo, K. An Agreement Coefficient for Image Comparison. Photogramm. Eng. Remote Sens. 2006, 73, 823–833. [Google Scholar] [CrossRef]
- Björnsson, H.; Venegas, S.A. A Manual for EOF and SVD Analyses of Climatic Data. CCGCR Rep. 1997, 97, 112–134. [Google Scholar]
- Gebler, S.; Franssen, H.H.; Kollet, S.J.; Qu, W.; Vereecken, H. High Resolution Modelling of Soil Moisture Patterns with TerrSysMP: A Comparison with Sensor Network Data. J. Hydrol. 2017, 547, 309–331. [Google Scholar] [CrossRef]
- Preisendorfer, R.W.; Mobley, C. Principal Component Analysis in Meteorology and Oceanography; Elsevier: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Koch, J.; Jensen, K.H.; Stisen, S. Toward a True Spatial Model Evaluation in Distributed Hydrological Modeling: Kappa Statistics, Fuzzy Theory, and EOF-Analysis Benchmarked by the Human Perception and Evaluated against a Modeling Case Study. Int. J. Climatol. 2015, 51, 1225–1246. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and Efficient Global Optimization for Conceptual Rainfall-runoff Models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Abdulla, F.A.; Lettenmaier, D.P. Development of Regional Parameter Estimation Equations for a Macroscale Hydrologic Model. J. Hydrol. 1997, 197, 230–257. [Google Scholar] [CrossRef]
- Post, D.; Jones, J.; Grant, G. An Improved Methodology for Predicting the Daily Hydrologic Response of Ungauged Catchments. Environ. Model. Softw. 1998, 13, 395–403. [Google Scholar] [CrossRef]
- Wagener, T.; Wheater, H.; Gupta, H.V. Rainfall-Runoff Modelling in Gauged and Ungauged Catchments; World Scientific; Imperial College Press: London, UK, 2004. [Google Scholar]
- Yadav, M.; Wagener, T.; Gupta, H. Regionalization of Constraints on Expected Watershed Response for Improved Predictions in Ungauged Basins. Adv. Water Resour. 2007, 30, 1756–1774. [Google Scholar] [CrossRef]
- Wagener, T.; Montanari, A. Convergence of Approaches toward Reducing Uncertainty in Predictions in Ungauged Basins. Water Resour. Res. 2011, 47, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wagener, T.; Wheater, H.S. Parameter Estimation and Regionalization for Continuous Rainfall-Runoff Models Including Uncertainty. J. Hydrol. 2006, 320, 132–154. [Google Scholar] [CrossRef]
- Kunnath-Poovakka, A.; Ryu, D.; Renzullo, L.J.; George, B. The Efficacy of Calibrating Hydrologic Model Using Remotely Sensed Evapotranspiration and Soil Moisture for Streamflow Prediction. J. Hydrol. 2016, 535, 509–524. [Google Scholar] [CrossRef]
- Manfreda, S.; Mita, L.; Dal Sasso, S.F.; Samela, C.; Mancusi, L. Exploiting the Use of Physical Information for the Calibration of a Lumped Hydrological Model. Hydrol. Process. 2018, 32, 1420–1433. [Google Scholar] [CrossRef]
- Boyle, D.P.; Barth, C.; Bassett, S. Towards Improved Hydrologic Model Predictions in Ungauged Snow-Dominated Watersheds Utilizing a Multi-Criteria Approach and SNODAS Estimates of SWE. Putt. Predict. Ungauged Basins Pract. Can. Water Resour. Assoc. Int. Assoc. Hydrol. Sci. Nepean 2013, 17, 231–242. [Google Scholar]
- Milella, P.; Bisantino, T.; Gentile, F.; Iacobellis, V.; Liuzzi, G.T. Diagnostic Analysis of Distributed Input and Parameter Datasets in Mediterranean Basin Streamflow Modeling. J. Hydrol. 2012, 472, 262–276. [Google Scholar] [CrossRef]
Configuration | Streamflow-Based | SM-Based | ||
---|---|---|---|---|
Index | NSE (Q) | STE (SM) | NSE (Q) | STE (SM) |
Calibration | 0.91 | 0.01 | 0.54 | 0.63 |
Validation | 0.47 | 0.03 | 0.44 | 0.58 |
ΔIndex(cal-val) | 0.44 | 0.02 | 0.10 | 0.05 |
Configuration | Streamflow-Based | SM-Based | ||||
---|---|---|---|---|---|---|
Index | NSE (SM) | R (SM) | BE (SM) | NSE (SM) | R (SM) | BE (SM) |
Calibration | 0.63 | −0.12 | −4.20 | 0.94 | 0.71 | −9.50 |
Validation | 0.39 | 0.11 | −31.00 | 0.50 | 0.70 | −21.40 |
ΔIndex(cal-val) | 0.24 | 0.23 | 26.80 | 0.44 | 0.01 | 11.90 |
Configuration | Streamflow-Based | SM-Based | ||||
---|---|---|---|---|---|---|
Index | NSE (LAI) | R (LAI) | BE (LAI) | NSE (LAI) | R (LAI) | BE (LAI) |
Calibration | −99.01 | −0.35 | 3.90 | −0.15 | 0.45 | −6.30 |
Validation | −0.86 | −0.20 | −25.00 | 0.32 | 0.48 | −24.90 |
ΔIndex(cal-val) | 98.95 | 0.15 | 21.10 | 0.47 | 0.03 | 18.60 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echeverría, C.; Ruiz-Pérez, G.; Puertes, C.; Samaniego, L.; Barrett, B.; Francés, F. Assessment of Remotely Sensed Near-Surface Soil Moisture for Distributed Eco-Hydrological Model Implementation. Water 2019, 11, 2613. https://doi.org/10.3390/w11122613
Echeverría C, Ruiz-Pérez G, Puertes C, Samaniego L, Barrett B, Francés F. Assessment of Remotely Sensed Near-Surface Soil Moisture for Distributed Eco-Hydrological Model Implementation. Water. 2019; 11(12):2613. https://doi.org/10.3390/w11122613
Chicago/Turabian StyleEcheverría, Carlos, Guiomar Ruiz-Pérez, Cristina Puertes, Luis Samaniego, Brian Barrett, and Félix Francés. 2019. "Assessment of Remotely Sensed Near-Surface Soil Moisture for Distributed Eco-Hydrological Model Implementation" Water 11, no. 12: 2613. https://doi.org/10.3390/w11122613
APA StyleEcheverría, C., Ruiz-Pérez, G., Puertes, C., Samaniego, L., Barrett, B., & Francés, F. (2019). Assessment of Remotely Sensed Near-Surface Soil Moisture for Distributed Eco-Hydrological Model Implementation. Water, 11(12), 2613. https://doi.org/10.3390/w11122613