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Abstract: The Tigris River Batman-Hasankeyf region sub-basin drainage area is in the Upper Tigris
basin and lies between the area where the Batman stream joins the river and the Yanarsu stream
flows into the river. Intensive agricultural activities are carried out in this region, and irrigation is
generally obtained from groundwater just as it moves away from the riverfront. The study area is a
valuable basin for both Turkey and the Middle East. In this study, the effectiveness of the Geographic
Information System (GIS)-based multicriteria decision-making (MCDM) analytic hierarchy process
(AHP) as a spatial prediction tool was utilized in exploring the groundwater potential of the drainage
area. In the analysis, eight hydrological and hydrogeological criteria were considered as influencing
factors, namely, geomorphology, geology, rainfall, drainage density, slope, lineament density, land
use, and soil properties. The weights of these criteria were determined through the AHP method;
the Arc GIS 10.2.2 program and its submodules were used. The major findings of the study were
that groundwater-potential index values of the basin were derived. Groundwater-potential-zone
evaluation of the basin was obtained as follows: very poor (19%), poor (17%), moderate (34%), good
(17%), very good (13%); and groundwater potential zone (GWPZ) maps of the sub-basin were created.

Keywords: groundwater-potential zone; multicriteria decision making; GIS; analytic hierarchy
process (AHP); Upper Tigris sub-basin

1. Introduction

Groundwater is an important alternative water resource for the development of urban and
rural areas with increasing needs. Demand for fresh water is increasing due to factors such as
population growth, irrigated agricultural activities, and climate change [1]. Climate change and
the threat of droughts, surface-water potential, and the risk of pollution of surface waters caused
by human activities such as agriculture and industrialization [2,3] necessitate the identification of
alternative water resources. Being less polluted than surface water makes groundwater a valuable
essential resource. Groundwater is also an essential water source during alternative-surface-water
shortages, especially in regions with a semiarid climate such as the Tigris Basin. However, unplanned
groundwater use disrupts the natural feeding balance of aquifers. Excessive use of aquifers could have
adverse consequences on the environment, ecology, and economy of the region [4,5]. For this reason,
groundwater-discharge zones need to be determined with a focus on appropriate water management.
While it is always possible to identify groundwater potential with observation-purpose water wells,
it is uneconomical in extensive areas.

Several techniques have been adopted by various researchers that do not require fieldwork,
e.g., the decision-tree model [6], principal component analysis (PCA) [7], and the logistic-regression
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model [8]. Most of these methods are based on multivariate statistical techniques [9]. In contrast,
the analytical hierarchy process (AHP) is considered to be a simple, effective, transparent, and reliable
technique [10]. The AHP method is easy to identify in a useful way by integrating geographic
information system (GIS) and remote sensing (RS) data. Groundwater parameters such as precipitation,
aquifers, land use, and soil type can easily be defined as spatial data in a GIS environment. Thus,
the method is very useful for identifying potential groundwater areas and is well-suited for the useful
identification of groundwater-potential regions [11–13]. AHP is an approach that was developed
by Thomas L. Saaty in the early 1980s [14]. It was developed with planned criteria according to a
certain stage, evaluating the weights of these criteria, and comparing the criteria with other similar
studies [15,16]. It is possible and preferable to determine hydrological and hydrogeological parameters
that influence groundwater formation and their effects on groundwater formation and generate
potential groundwater maps with GIS-based Multicriteria Decision-Making (MCDM) techniques.
GIS-based multicriteria decision analysis (MCDA) has been extensively used in the field of hydrological
and water resources [16,17]. It has gained popularity in the last decade as it provides GIS-based
mapping [18].

Most current studies [19–22] widely applied RS- and GIS-based AHP–MCDM techniques for the
assessment of Groundwater Potential Zones (GWPZs) with effective results. When these studies were
examined, it was found that land use (LU), geomorphology (GM), geology (G), recharge rate (RR),
drainage density (DD), DEM, rainfall (RF), slope (SL), surface water body (SW), lineament density (LD),
lithology (LI), and water table depth (WTD) parameters were used in almost all studies. groundwater
potential index (GWPI) values of the basins were conditioned by overlaying all those criteria weights
with AHP methods [23–26]. These GWPI values were then classified, and GWPZ maps of different
global regions were created [27–30]. However, the thematic layers used to identify GWPZs differ
according to studies and regions, and the selection of qualitative layers is arbitrary. In almost all
studies, the LU, Soil, GM, DD, SL parameters were mainly used. Murthy (2000) added RF in GWPZ
studies of the semiarid Andhra Pradesh region [29]. İbrahim Bathis and Ahmed (2016) [30] also added
the RF and LD parameters. Sikdar et al. (2004) [31], Prasad et al. (2007) [32], Madrucci et al. (2008) [33],
Chowdhury et al. (2009) [34], Senanayake et al. (2016) [13], Zaidi et al. (2015) [35] also took into
account the G parameter. Jha et al. (2010) [36] considered SW even though it is a substrate of Land Use.
Machiwal et al. (2011) [10] utilized SW, RR, and WTD. Senanayake et al. (2016), and Agarwal and
Garg (2016) [37] added the DEM criterion. In pre-2012 studies, LI was also taken into account (Jaiswal
et al., 2003 [38] by Srivastava and Bhattacharya in 2006 [39] and Magesh et al. in 2012 [40]).

In this study, the GIS-based MCDM AHP method was used to produce groundwater-potential
maps of the Tigris River Batman-Hasankeyf drainage area using meteorological, hydrological, and
hydrogeological characteristics without drilling water wells (test drilling) in the area. In this study,
the ArcInfo 10.2.2 GIS program and extensions such as spatial analyst and arc hydro were used to
define groundwater potential. Eight criteria that affect groundwater discharge, namely, land use, slope,
geology, geomorphology, soil map, drainage density, fault density, and precipitation were taken into
account. The relative weights of each criterion were determined by the AHP–MCDM method in a
GIS environment. GWPZ maps of the basin were obtained as a result of this study. The acquired
potential-groundwater-discharge maps properly represent a significant source that helps water-resource
managers to make accurate management plans and much better use of groundwater resources.

2. Materials and Methods

2.1. Study Area

The Tigris river is an important source of water that originates within the borders of Turkey and
discharges into the Persian Gulf. The total length of the Tigris River is 1750 km, about 500 km of
which is within the borders of Turkey. The primary source of the river is in the southeast of Turkey,
from Hazar lake and Hazarbaba mountain (2290 m). Within the borders of Turkey, after crossing the
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Diyarbakir plain and south of the Batman city center, the river passes through Gercüş and historical
Hasankeyf districts. This area is also upstream of the Ilısu dam, which is under the Southeastern
Anatolia Project (GAP). The total discharge area of the sub-basin is 1140 km2 (Figure 1). The Tigris
Batman Discharge area is geographically at between 41◦01′–41◦38′ East longitude and 37◦51′–37◦32′

North latitude.
Tigris River is an important resource that is used for potable and utility water, as well as agricultural

irrigation, with dams constructed in the regions of the river basin. The river has significant agricultural
potential in the drainage area, which is why humans have been living in these basins for 10,000
years [41,42]. The study area comprises the ancient Hasankeyf settlement (which is located southeast
of Turkey) and Tigris valleys. Although some regions along the river basin have rich surface-water
resources, it is solely operated for groundwater use in agricultural irrigation due to incomplete
irrigation projects [43]. Although the study area is a valuable basin for Turkey and the Middle East, the
assessment of water resources has transcended locality and has reached significant value on a global
scale, just like oil and other natural resources.
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Figure 1. Tigris River Batman-Hasankeyf sub-drainage basin (study area) and its location.

2.2. Method

The GIS–MCDM combination is an excellent evaluation tool that analyzes multiple-criteria
methodologies under a GIS environment [44,45]. It simplifies solving problems and improves the use
of multiple criteria [46]; the Spatial Analyst extension of the Arc GIS program is perfectly suitable to
implement this model. The analysis process was performed with the Spatial Analysis and Overlay
tools taking into account the relative values, and grading and interpolating the final thematic maps.
To determine the groundwater potential of the region, 8parameters were taken into account: GM, LU,
G, LD, DD, S, R, and ST. The relative weight of each parameter was determined by the AHP method.
The binary comparison matrices of these parameters are indicated in Table 1, and the weights of each
parameter obtained as a result of the normalized values of these parameters are indicated in Table 2.
Finally, thematic maps of the groundwater potential of the Upper Tigris Basin Batman subdrainage
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area were acquired with the Arc GIS spatial analyst overlay method. The methodology flowchart of
the entire study is shown in Figure 2.

To obtain groundwater-potential maps of the Batman subdrainage area, 1/25,000 M45 and M46
topographic maps with 5 X 5 m resolution were first digitized; then, DEM maps of the region were
produced (Figure 3a). Hydrological land characteristics were extracted by using drainage-density
maps. Drainage density, as shown in Equation (1), was acquired by dividing the length of the stream
by the drainage area. DD was prepared with DEM data by using the Arc Hydro program. A flow
direction (Fdr) map was obtained (Figure 3b); then, the drainage-density map was extracted by dividing
thematic river maps that were derived from a flow accumulation (Fac) and stream definition (Figure 3c)
operation in the basin area.

DD = L/A (1)

where DD is Drainage Density, L is drainage length, and A is per-unit area [47].
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Figure 2. Study methodology flowchart.

From DEM maps, geomorphological maps were produced with the Arc GIS program Spatial
Analyst, and S maps were created with the 3D Analysis program. First, geological maps and lineament
(fault) lines were converted into kml (Google Earth) format, then into shp format by using the Data
Interoperability command via the Turkish General Directorate of Mineral Research and Exploration
website [48]. Geological formations were converted into raster format with the related representation,
and the geological status of the region was analyzed. Lineament (fault) density (LL) was calculated as
per Equation (2) [49]:

LL =
n∑

i=1

Li/A (2)

where LL is lineament density, Li is lineament length, i is lineament number, and A is area.
Precipitation (rainfall) data were acquired from the Diyarbakır regional office of the Turkish

State Meteorological Service. The average annual-precipitation figures of the last 30 years, observed
by meteorological stations at the Diyarbakır–Batman regions, were analyzed by the Spatial Analyst
Inverse Distance Weighting IDW interpolation method; then, precipitation maps were formed.

The soil-type study was derived from the Turkish General Directorate of Agricultural Research and
Policies. LU data were extracted from the Global Land Cover Facility site as Erdas images. These data
were classified with the Coordination of Information on the Environment (CORINE) method. CORINE
are land-cover/-use data generated by the computer-assisted visual-interpretation method over satellite
imagery and RS data according to land-cover/-use classifications set by the European Environment
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Agency [50]. CORINE is employed to utilize the terrain-classification degree of RS data in a GIS
environment [51]. In satellite imagery, the coordinates of each pixel were defined according to the
coordinates of the ground control points (rectification).
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Stream Definition.

GWPI is a dimensionless magnitude formed by the sum of the relative weights of the parameters
affecting groundwater potential. This coefficient was obtained by calculating the weights of the criteria
that made up the groundwater potential by the AHP and GIS-based MCDM method as shown in
Equation (3) [52]. This indicator gives information about groundwater potential in different regions [53].

It is calculated according to the AHP method as follows:

GWPI = Sr.Sw + LDr.LDw + Gr.Gw + GMr.GMw + LUr.LUw + STr.STw + Rr.Rw + DDr.DDw (3)

where GWPI is groundwater potential index, S is Slope, LD is lineament density, G is geology, GM is
geomorphology, LU is land use, ST is soil type, R is rainfall, and DD is drainage density. In addition,
subscripts r and w refer to the rating and weight of the parameter, respectively.
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2.3. GIS-Based AHP Method

The AHP is one of the most widely used MCDM methods. It was developed by Thomas L. Saaty
in 1980, and it is an approach created by planned criteria (identification of selection criteria) at a certain
stage that involves evaluating criteria weights (relative importance), comparing the alternatives for each
criterion, and determining an overall ranking of the alternatives. The AHP is widely used in areas such
as reducing confusion/complexity in problems, facilitating decisions, finding priorities by applying
expert provisions with comparisons [54], distinguishing resources and solving complexities/confusion,
uncovering best options, and planning [55]. Here, the AHP method was applied in rating the selected
factors. In order to determine the relative importance of selection factors and weight formation, the
AHP methodology was applied, and objective weight assessment was carried out. There had to be at
least 2 criteria and 2 alternatives to the technique [56]. Relative importance was given to these criteria,
so information and experience are particularly important for accurate assessment and analysis. Criteria
could be qualitative and quantitative [57,58]. The GIS-based MCDM as an expert-knowledge-based
approach that is very useful for solving complex problems.

The application of the GIS technique and multicriteria decision analysis provides more flexible
solutions for the prediction of groundwater-potential zones.

Accordingly, a decision matrix was formed on the basis of 1–9 scaling for parameters affecting
a decision. The criteria in the scoring scale were as follows: (1) extremely unimportant, (2) very
unimportant, (3) unimportant, (4) moderately unimportant, (5) equally important, (6) moderately
important, (7) more important, (8) very important, (9) extremely important [59].

In this study, the weighting of various criteria was carried out through field experiences and
literature review. The basic steps for determining the system’s normalized weight and consistency
ratio (CR) were as follows:

Step 1. Establishment of judgment matrices (p) by pairwise comparison:

p =

∣∣∣∣∣∣∣∣∣∣∣
p11 p12 . . . p1n
p21 p22 . . . p2n

. . . . . . . . . . . .
pn1 pn2 . . . pnn

∣∣∣∣∣∣∣∣∣∣∣ (4)

where pn displays the n th indicator unit and pnn is the judgment matrix element.
Step 2. Calculation of normalized weight:

Wn = GMn/
N∑

n=1

GMn (5)

where W is weight vector (column) and GMn is the geometric mean of the i th row of the judgment.
Step 3. CR calculation to verify the coherence of the judgements:

CR = CI/RCI (6)

Consistency index (CI) is denoted as follows:

CI =
λmax−N

N − 1
(7)

where λ is the eigenvalue of judgment matrix and it is calculated as follows:

λ =

n∑
i=1

(PiW)n

N.W
(8)



Water 2019, 11, 2630 7 of 16

Random consistency index (RCI) could be obtained from standard tables [60]. The CR value had
to be about 0.10 or less to be accepted.

3. Results and Discussion

In this study, slope, lineament-density, geology, geomorphology, land-use, soil, rainfall, and
drainage-density criteria were taken into consideration. The pairwise comparison matrix is depicted
in Table 1. The relative normalized weight (W) of the criteria was then calculated and is shown in
Table 2. RCI was calculated as 0.011. Hence, the weight criteria within the criteria were quite consistent.
The distribution in the basin and relative weights of these thematic maps are shown in Table 3. In order
to determine the groundwater-potential zones in the Tigris River Batman drainage area, the derived
parameters of the thematic map are shown in Figure 4. These maps are GM, G, LD, S, R, ST, and LU.
As a result, the GWPZ map extracted by the weights of these parameters is shown in Figure 5.

Table 1. Analytic hierarchy process (AHP) pairwise comparison matrix.

Parameters Slope Lineament
Density Geology Geomorphology Land Use Soil Rainfall Drainage

Density

Slope 1.00 1.80 1.29 1.13 1.50 1.29 1.00 1.29
Lineament dens 0.56 1.00 0.71 0.63 0.83 0.71 0.56 0.71

Geology 0.78 1.40 1.00 0.88 1.17 1.00 0.78 1.00
Geomorphology 0.89 1.60 1.14 1.00 1.33 1.14 0.89 1.14

Land use 0.56 1.20 0.86 0.75 1.00 0.86 0.67 0.86
Soil 0.78 1.40 1.00 0.88 1.17 1.00 0.78 1.00

Rainfall 0.89 1.80 1.29 1.13 1.50 1.29 1.00 1.29
Drainage dens 0.49 1.40 1.00 0.88 1.17 1.00 0.78 1.00

Table 2. Normalized AHP matrix.

Parameters Slope Lineament
Density Geology Geomorphology Land Use Soil Rainfall Drainage

Density
Normalized

Weight

Slope 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
Lineament dens 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.12

Geology 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.11
Geomorphology 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13

Land use 0.09 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.12
Soil 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.11

Rainfall 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.14
Drainage Dens 0.08 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13

λmax = 8.12, CI = 0.02, RCI = 1.41, CR = 0.011 < 0.1: acceptable.

3.1. Geomorphology

Geomorphology maps (Figure 4A) are topographic maps showing mountainous, lowland,
hilly, and alluvial regions of the region. Alluvial regions have the highest groundwater potential,
while mountainous regions have the lowest. The geomorphological distribution of the study
area is as follows: mountainous areas (23%), hilly areas (21%), alluvial areas (1%), plains (43%),
and plateaus (12%).

3.2. Geology

The geological parameter is one of the most important parameters in terms of groundwater
potential. Geological characteristics are important in terms of reflecting aquifer status, which shows
groundwater storage. The geological thematic map of the basin is shown in Figure 4B. Limestone,
and sandstone and conglomerate ratios were the highest in the basin with 43% and 17%, respectively.
Water-retention capacity is higher in these formations. Evaporite rocks and moraine formations are at
22% in the region. The percentage of other formations is shown in Table 3.
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Table 3. Summarized AHP assessment of parameter sub-properties.

Weight Criteria Sub-Feature Area
Cover (%) Sub-Rank

7 Geomorphology

Alluvion 1 9
Plain 43 7

Plateau 12 5
Hill 21 3

Mountain 23 1

7 Geology

Shale 10.9 1
Sandstone–conglomerate 17.1 7

Evaporites/moraine 21.7 3
Clayey limestone/basalt/quartz 0.6 5

Pebble–sandstone–conglomerate 5.0 7
Limestone 43.7 8
Alluvion 1.0 9

5 Lineament density (%)

0–0.01 93.7 1
0.01–1.5 1.4 3
1.5–3.5 2.6 5
3.5–6.50 2.3 7

9 Slope (%)

0–2 9 9
2–4 6 7
4–8 12 5

8–15 25 3
>15 48 1

7 Rainfall (mm/year)

448–478 43.57 5
479–508 32.16 6
509–548 17.08 7
549–592 7.18 8

6 Soil

Alluvial soil 0.10 9
Brown forestry soil 56.90 6

Brown Soil 41.30 4
Reddish-brown soil 1.70 3

5 Drainage density (%)
0–0.01 55.5 1
0.1–2 4.1 7

2–4.06 40.5 9

Bare rock 7.23 1
Discrete rural building 0.13 3

Non-irrigated agricultural field/vineyards 28.92 4
Agricultural areas with natural

vegetation/non-irrigated orchard 12.32 5

Sparse plant areas 30.23 6
Grassland 19.79 7

Irrigated area 0.17 8
Water bodies 1.21 9

3.3. Lineament Density

Lineament density is an important geological feature that shows rainfall penetration into the
ground [61]. Feeding is more common in underground fractured areas. Although fractured areas
create discontinuity between regions, they enable rainfall to be fed to underground aquifers in less
time. In areas where lineament density is high, groundwater feeding is higher; in areas where density
is low, groundwater feeding is less.

Results of the lineament-density map of the basin (Figure 4C) are summarized in Table 3.
Accordingly, there is no fault density in 94% of the basin. The area covered by a density of <1.5 part in
the basin is 1%, with a density 1.5–3.5 is 3%, and with a density of 3.5–6.5 is 2%.
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3.4. Slope

Precipitation infiltration (leakage) is an effective hydrological parameter in obtaining groundwater
potential [62]. In low-slope locations, infiltration into the ground is more common as surface flow will
be less. As slope ratio increases, surface flow increases, and infiltration into the ground is less. As seen
in Figure 4D, the slope is greater than 15% in 48% of the basin. The slope at 25% of the study area is
between 8%–15%. Areas having the ideal slope rate (less than 2%) for groundwater formation are 9%.
A further 2%–4% of the slope rate areas are 6% in the basin.

3.5. Rainfall

Rainfall (precipitation) is one of the most important groundwater parameters. Groundwater
is formed by rainfall infiltrating the ground. Accordingly, 43.57% of the basin has a rainfall rate
of 448–478 mm/year and 32.16% has 479–508 mm/year. Only 7% of the basin has a rainfall rate of
549–592 mm/year (Figure 4E).

3.6. Soil

Soil is an important parameter that influences rainfall infiltration into the ground. The rate
and amount of infiltration vary depending on grain structure. In coarse-grained porous structures,
groundwater infiltration is higher. In fine-grained soils such as clay, infiltration is slower and less.
Porosity and permeability both play an important role in groundwater movement and recovery. In the
soil map of the study area (Figure 4F), we can see that, in the basin, alluvial soil: 0.10%, brown forestry
soil: 56.90%, brown soil: 41.30%, and reddish-brown soil: 1.70% (Table 3).

3.7. Drainage Density

Drainage density is one of the parameters affecting the groundwater-potential index. In river
flows, drainage density is low in areas with low infiltration [63]. Where drainage density is small,
infiltration occurs at a higher speed because the flow is slow. Hence, the performance coefficient of
ratios with low drainage density was taken as a higher value. Drainage density is generally low in the
basin (Figure 4G).

3.8. Land Use

Land use is directly related to rainfall leaking into the ground. It is therefore an important criterion
for groundwater formation. Due to urbanization in construction sites, leakage is rare and surface flow
rate is therefore higher. Wetlands and water bodies are considered to have the highest evaluation
score. Similarly, in rivers, alluvial deposits have a high leakage rate. In addition, irrigated agricultural
areas’ water infiltration into the ground is also high. In a similar way, there is a high rate of leakage in
plant zones, partly in land form, because surface flow is prevented by plantations. Land-use rate and
utilization classification are shown in Table 4. As depicted in the table, water mass and irrigated areas
in the Batman discharge area are very small. By majority, there are non-irrigated agricultural areas
(28%), pastures (19%), and areas with different vegetation.

Table 4. Tigris Batman drainage field GWPZ evaluation.

Evaluation km2 %

Very poor 262.45 19
Poor 241.71 17

Moderate 484.22 34
Good 234.53 17

Very good 177.09 13
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3.9. GWPZ Delination

GWPI is a coefficient showing the groundwater potential of the region. This coefficient is defined
on the probability of obtaining groundwater resources for that area. The GWPI of an area varies
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according to the variability of properties that make up groundwater potential and, predominantly,
the coefficient of significance. This final map shows the low–medium–high rate GW discharge regions
for potential.

The GWPZ map was derived by periodic GWPI classification, shown in Figure 5. Accordingly,
the GWPZ evaluation of the basin is summarized in Table 4 as follows: very poor (262.45 km2;
19%), poor (241.71 km2; 17%), moderate (484.22 km2; 34%), good (234.53 km2; 17%), and very good
(177.09 km2; 13%). As depicted, the maximum weight of the basin is 34% moderate GWPZ.
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3.10. Discussion

GIS-based multicriteria decision analysis is a flexible tool that supports decision makers in
identifying groundwater potential. Therefore, a major challenge in the proposed GIS-based multicriteria
decision analysis is the selection of criteria for groundwater-potential-zone mapping. Criteria selection
requires good knowledge of the site and watershed data, the accurate weighting of criteria by
hydrogeologist experts, and accurate cooperation between selected factors. One of the most important
stages of the decision-making process is the determination of the criteria weight, in other words,
their importance. Weights given to the criteria directly affect the outcome of the decision analysis.
Analysis accuracy depends on the determination of the weights with sufficient accuracy. There are
several methods for determining criteria weights, and since these methods differ from each other in
terms of accuracy, ease of use, clarity, and theoretical structure, which method to use in determining
weights varies according to the priorities of the decision maker. Although ranking and scoring
methods are easier to use, binary comparison and preference priority analysis methods give more
accurate results.

The GIS-based MCDM method is a good alternative in this research area. MCDM techniques
are used very effectively to solve problems in various and different areas [64–66]. Despite the many
methods used in MCDM applications, the most common is AHP. In the selection of the appropriate
areas, considering the relative impact of the various criteria in relation to each other [67] gives useful
results in groundwater-discharge assessment [68–71]. The model used in this study allowed us to
identify areas with high, medium, and low potential for groundwater charging zones. The presence of
the thematic data obtained with this approach requires that accuracy is checked on the field. This is not
always an economical and fast method, but it is possible to compare the water budgets of the basins
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with the field test. However, results achieved by this approach play an important role in this type of
groundwater-management study.

In this study, it was concluded that places with the highest groundwater potential are in river
crossings and the alluvial zone near the Tigris river. Findings showed that this method is suitable
for the Batman-Hasankeyf sub-basin. Another feature of this region is that the slope is very low.
Similar studies using the same method in different regions had varying results. In an Indian study,
the Indian Hooghly district was classified into three groundwater-potential zones, ‘good’, ‘moderate’,
and ‘poor’, covering 71%, 23%, and 6%, respectively. ‘Good’ GWPZ indicated that the alluvial plain
has excellent groundwater potential [22]. Madrucci et al. studied groundwater-favorability mapping
on a fractured terrain in the eastern portion of the state of São Paulo, Brazil [33]. They determined
a “moderate favorability” GW potential level in almost half of the basin. Results obtained from the
study are acceptable when compared with well logs on the field. GWPZs were calculated by a similar
method in the Yamuna basin, another basin of India, and it was found that about half of the basin had
good–very good value, and 24% had weak potential [25]. In a study on the Manuba aquifers in NE
Tunisia with the GIS-based MCDM method [66], it was found that only 24% of the basin had a low GW
potential. GWPZ values of a region vary according to hydrological and hydrogeological conditions.
However, it is crucial to evaluate the GW potential of a basin by correctly using these variables.

4. Conclusions

In this study, groundwater potential was explored in the Tigris river Batman region sub-basin
drainage area by integrating spatial-analyzer tools with MCDM. The MCDM–AHP technique was
successfully applied to the normalized weight and rank of each parameter and its sub-properties
affecting the groundwater potential of the basin. In total, eight layers were used in system integration.
As a result of the overlay of these maps, GWPI values of the basin were extracted. These GWPI values
were reclassified into five classes: very poor, poor, moderate, good, and very good. By utilizing this
method, local GWPZ maps of the basin were derived.

The final maps showed that 34% of the basin has moderate groundwater potential. However,
36% of the basin demonstrated poor potential, while 30% of the basin has good potential. This GWPZ
map should be taken into account in watershed planning by managers. On the basis of the findings,
controlled groundwater use should be made in the poor-potential areas of the basin. In these
regions, groundwater should only be used as potable water. The use of groundwater can be realized
in agricultural areas at moderate-potential zones, but large-scale agricultural irrigation should be
prevented. In areas with good potential, groundwater can be used in agricultural irrigation. However,
water-well drillings must be properly controlled and opened at wide intervals on the field.

It is more accurate to learn the groundwater potential of a narrow area by drilling several
observation wells. However, in large-scale basins, this is both expensive and time-consuming. It is
purely logical and valuable to preferably discover the groundwater potential of large-scale basins in
the macroplan with the MCDM method. Hydrological and hydrogeological data are now easier and
relatively cheaper to obtain with RS and satellite methods. This method could be applied not only
to the upstream Tigris basin but to anywhere else in the world as well. The most important topic to
consider is that specific hydrological and meteorological criteria that affect groundwater and their
weight might change depending on each region’s condition.
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