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Abstract: One critical point of modeling of flow in porous media is the capacity to consider parameters
that are highly variable in space. It is then very challenging to simulate numerically fluid flow on
such heterogeneous porous media. The continuous increase in computing power makes it possible
to integrate smaller and smaller heterogeneities into geological models of up to tens of millions of
cells. On such meshes, despite computer performance, multi-phase flow equations cannot be solved
in an acceptable time for hydrogeologists and reservoir engineers, especially when the modeling
considers several components in each fluid and when taking into account rock-fluid interactions.
Taking average reservoir properties is a common approach to reducing mesh size. During the last
decades, many authors studied the upscaling topic. Two different ways have been investigated to
upscale the absolute permeability: (1) an average of the permeability for each cell, which is then
used for standard transmissibility calculation, or (2) computing directly the upscaled transmissibility
values using the high-resolution permeability values. This paper is related to the second approach.
The proposed method uses the half-block approach and combines the finite volume principles with
algebraic methods to provide an upper and a lower bound of the upscaled transmissibility values.
An application on an extracted map of the SPE10 model shows that this approach is more accurate and
faster than the classical transmissibility upscaling method based on flow simulation. This approach
keeps the contrast of transmissibility values observed at the high-resolution geological scale and
improves the accuracy of field-scale flow simulation for highly heterogeneous reservoirs. Moreover,
the upper and lower bounds delivered by the algebraic method allow checking the quality of the
upscaling and the gridding.

Keywords: upscaling; transmissibility; heterogeneous reservoirs; reservoir simulations; unstructured
grid; multi-scale; hydrogeology; reservoir engineering; numerical method; homogenisation; flow in
porous media; compositional modelling; multi-phase flow; rock-fluid interactions; geological model

1. Introduction

One of the essential points for the hydrogeologists and the reservoir engineers is the transition
from the geological mesh to the reservoir mesh. The properties of the reservoir mesh, being composed
of cells supposed to represent an average of the properties of the geological model, affect the results
of the simulations essential to solving different problems such as history matching, the optimization
of the production, the production forecasting and their associated uncertainties [1]. This upscaling
step is even more critical for geological reservoirs with high-heterogeneous properties, particularly
for the management of aquifers (e.g., seawater intrusion in coastal aquifer [2]), the management of
hydrocarbon reservoirs [3], or the geological sequestration of CO2 [4,5].

Usually, geostatistical approaches are used to model the geological model and stochastically
generate the distribution of the reservoir heterogeneity on meshes of tens of millions of cells. However,
the numerical fluid flow simulations with commercial reservoir simulators are not conceivable with
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such mesh size. Despite the increase in computational speed, an averaging step of the heterogeneous
properties is mandatory to reduce the mesh size and make it possible to perform multi-phase flow
reservoir simulations.

Many authors have investigated several averaging methods of reservoir properties in the last
decades [6–9]. Regarding the averaging of absolute permeability, these methods can be split into
two categories:

(1) Approach #1: first, the absolute permeability is averaged for each reservoir cell, and then the
discretization of the flow equations lead computing the transmissibility values [10–14];

(2) Approach #2: the average transmissibility values are calculated directly from the high-resolution
scale permeability distributions [15–20].

Regardless of the approach chosen, the upscaling step leads to a loss of information. Different
criteria have been proposed to quantify the error introduced by the upscaling step [21–25].

Generally, when the main flow direction is not parallel to the main axes of the grid, the average
permeability should be represented by a full tensor for adequately taking into account the characteristics
of the flow. But, the permeability obtained cannot be used directly in the discretized equation.
A harmonic average between the permeability of two neighboring cells is then usually used to obtain
the transmissibility values. Samier [15] proposes a finite element volume technique with schemes
varying from 9 to 27 points, applied on non-uniform grid spacing. The framework developed by Ding
and Urgelli [16] and Urgelli [17], deliver a technic to calculate the large-scale reservoir transmissibility
values on a shifted block approach with a finite volume discretization of flow equation for Cartesian
grids and corner point geometry (CPG) grids. In addition to the numerical scheme, the choice of the
boundary condition differs according to the methods. The shifted block that has been proved in one
dimension in space (1D) by Urgelli [17] to be more accurate than the use of full blocks (Approach #1).

Panfili et al. [19] have used upscaled transmissibility to a huge carbonate reservoir, the Kashagan
field, located below the North Caspian Sea, and they have found this approach more accurate by
numerical comparisons with simulations on high-resolution geological cells.

This paper follows the second approach. The half-cell volumes on both sides of the boundaries are
taken into account to preserve the contrast of the heterogeneity better. Compared to previous works,
the shifted block technique is considered, and the finite volume principles are combined with algebraic
approaches to provide the two bounds (upper and lower) of the upscaled transmissibility values.
The presented method uses a combined approach, including the advantages of algebraic methods
and the flow-based method, i.e., the speed and accuracy. Moreover, the two bounds of the upscaled
transmissibility values allow controlling the quality of upscaling and the gridding.

In the next section, the proposed approach is detailed, and the implementation steps are given.
Then, to show the benefits of this method, a comparison of transmissibility estimation that we propose
is done with the results obtains with the “classical” approach (Approach #1), on an extracted map of
the SPE10 model.

2. Local Transmissibility Upscaling Method

The proposed transmissibility upscaling approach extends the algebraic upscaling method initially
introduced by Guérillot et al. [11], called Cardwell and Parsons. We suggest a transmissibility upscaling
version of this approach. This methodology, primarily based on the permeability upscaling techniques,
enables the spatial distribution of local transmissibility values to be taken into account. The precision
of the estimation is improved by considering the neighboring volumes on each side of the edge of the
cells in a way leading to better preserves the transmissibility contrast introduced by the high-resolution
geological cell-scale heterogeneities.

One of the benefits of the algebraic approach is that the upper and lower bounds are given: T+

and T−. The accuracy of the upscaling and the quality of the gridding process can be controlled using
these boundaries. In addition, if T+/T−, the ratio of T+ versus T− is lower than a specified given
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threshold, then the averaged transmissibility values proposed by Guérillot et al. [11] would be the
geometric mean of these two bounds. This geometric mean degenerates well in the case where the
arithmetic average or the harmonic average is the correct solution. A ratio of the bounds above this
given threshold indicates that the griding must be redesigned.

Combining the half-block approach and the finite volume principles with algebraic methods, the
introduced “local” method consists of:

(1) Remeshing each reservoir cell with a high-resolution geological mesh finer than the
geological mesh;

(2) Decomposing each reservoir cell in local sub-domain containing geological cells;
(3) Calculate an upper and lower admissible half-transmissibility values on each sub-domain of each

reservoir cell, by defining for each shifted block, 1D local problems with linear pressure boundary
conditions [11] and apply a finite-volume numerical scheme to discretize these local problems;

(4) Calculate upscaled transmissibility values between each reservoir cells using half-transmissibility
values of corresponding cells weighted by the surface exchange between these cells.

Let us assume that the geological mesh refers to the ensemble of three-dimensions in space (3D)
cells with their associated porosities and permeability tensor used to represent the geological model,
that the simulator mesh can be built independently of the geological mesh, without constraint between
both, and that the geological and reservoir mesh could be both built using cells represented by eight
points in space without restrictions on their alignments. Throughout this paper, the lowercase refers to
variables associated with the geological mesh and the capital letters to the reservoir mesh.

2.1. Remeshing

Each target cell (large reservoir cell), is refined with more cells than the source cells (high-resolution
geological cells). The refining in I, J and K direction is done with an even cell number (cf. Figure 1).

For each source cells (high-resolution geological cells), sampling new high-resolution geological
cells (large reservoir cell refined) is whose centers are contained in the source cell.
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Figure 1. A two dimensional in space (2D) illustration of the sampling method. (left) Large reservoir
cells; (right) high-resolution geological cells associated with each large reservoir cell.

2.2. Sub-Domains Decomposition

The half parts of the blocks on each side of the boundaries of the two grid blocks are extracted to
compute the upscaled transmissibility values. Six spatial domains are defined for each cell. Right and
Left domains allow computing the I-Transmissibility values. North and South allow computing the
J-Transmissibility values. Top and bottom domains allow computing the K-Transmissibility values.
Figure 2 presents a 2D illustration of the domains. Then following a spatial clustering of permeability,
a one-dimensional local flow-based transmissibility calculation is done to define the lower and upper
bound transmissibility values. Below, details are given to explain how these bounds are obtained,
and a final estimator for the transmissibility values associated with reservoir mesh is proposed.



Water 2019, 11, 2647 4 of 11Water 2020, 12, x FOR PEER REVIEW 4 of 11 

 

 
Figure 2. A two dimensional (2D) illustration of the cell domains: left (blue) and right (yellow) or 

north (orange) and south (green). 

2.3. Lower and Upper Bounds Transmissibility 

The transmissibility between two cells is given as follows: 𝑡,() = ൬ ଵఛ + ଵఛ()൰ିଵ
, (1)

where 𝜏 is the half-transmissibility for the neighboring cells 𝑖 and 𝑛(𝑖) , defined as follows: 𝜏ఈ = 𝑘ఈ 𝑛ఈ 𝑠 𝑟ఈ|𝑟ఈ|ଶ , 𝛼 = 𝑖, 𝑛(𝑖), (2)

where 𝑘ఈ is the permeability of the cell in the direction 𝛼 , 𝑛ఈ a normal vector to the interface, 𝑠 
the surface between the cells A and B, 𝑟ఈ the vector between the two centers: the cell center and the 
interface center (cf. Figure 3). 

 

Figure 3. Transmissibility calculation. 

2.3.1. Implementation of the Lower Bound Transmissibility 

For each local domain, with n high-resolution geological cells at the cell edge, the computation 
of the lower estimated bound value for the transmissibility is done considering n 1D steady-state 
incompressible flow. 

The finite volume discretization of Darcy’s law for these one-dimensional systems can be written 
as follows: 𝑡ିଵ, (𝑝ିଵ  − 𝑝) + 𝑡,ାଵ (𝑝ାଵ  − 𝑝) = 0 . (3)

Dirichlet boundary conditions are defined to solve this system with a pressure equal to unity on 
one side and zero on the other side. After discretization in space, the following matrix system needs 
to be solved. It is particularly easy as it is a tri-diagonal symmetric matrix: 𝐴𝑢 = 𝑏, (4)

where 𝐴 is the matrix inclosing the transmissibility terms, 𝑢 the unknowns represented by a vector, 
and 𝑏 includes the boundary conditions. The dimension of the matrix 𝐴 is (𝑛௧ + 2) × (𝑛௧ + 2) , 𝑛௧ is the number of cells in each 1D system (cf. Figure 4). 
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2.3. Lower and Upper Bounds Transmissibility

The transmissibility between two cells is given as follows:

ti,n(i) =

(
1
τi

+
1
τn(i)

)−1

, (1)

where τ is the half-transmissibility for the neighboring cells i and n(i) , defined as follows:

τα = kα
nα sAB rα
|rα|2

, α = i, n(i), (2)

where kα is the permeability of the cell in the direction α , nα a normal vector to the interface, sAB
the surface between the cells A and B, rα the vector between the two centers: the cell center and the
interface center (cf. Figure 3).
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2.3.1. Implementation of the Lower Bound Transmissibility

For each local domain, with n high-resolution geological cells at the cell edge, the computation
of the lower estimated bound value for the transmissibility is done considering n 1D steady-state
incompressible flow.

The finite volume discretization of Darcy’s law for these one-dimensional systems can be written
as follows:

ti−1,i (pi−1 − pi) + ti,i+1 (pi+1 − pi) = 0 . (3)

Dirichlet boundary conditions are defined to solve this system with a pressure equal to unity on
one side and zero on the other side. After discretization in space, the following matrix system needs to
be solved. It is particularly easy as it is a tri-diagonal symmetric matrix:

Au = b, (4)

where A is the matrix inclosing the transmissibility terms, u the unknowns represented by a vector,
and b includes the boundary conditions. The dimension of the matrix A is (nct + 2) × (nct + 2) , nct is
the number of cells in each 1D system (cf. Figure 4).
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Figure 4. A two dimensional (2D) illustration of the half transmissibility calculation of the (right) local
part of the cell A (yellow) and the (left) local part of the cell B (blue) for the lower bound transmissibility.

The Darcy’s flux at the interface between the two cells gives:

qi,i+1 = (τ)i,i+1 (pi − pi+1) . (5)

The half-transmissibility can be written as follows:

T−1
2 (β,d)

=
∑

n
qn , (6)

where β is the index of a reservoir large cell, d is the domain: right, left, north, south, top or bottom,
n is the number of high-resolution geological cells at the interface between the two large reservoir cells,
and qn is the high-resolution scale flux.

The lower estimated bound value for the transmissibility between two given large reservoir cells
A and B (cf. Figure 5) is defined as follows:

T− =

 1
SAB
SAd

T−1
2 (A,d)

+
1

SAB
SB

d
T−1

2 (B,d)


−1

, (7)

where sAB is the cell interface area between the cells A and B, sAd is the total surface area between the
cells A and the connected cells on the d domain, d is the opposite domain of the domain d .
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2.3.2. Implementation of the Upper Bound Transmissibility

To compute the upper bound transmissibility value, the cells are clustered to generate slices
perpendicular to the considered direction for each local domain (cf. Figure 6).

The computation of the half-transmissibility value (Equation (2)) between two slices is done
as follow:

• kα is the arithmetic mean of the permeability for each slice perpendicular to the considered direction.
The upper bound of the admissible permeability value and the exact value for a stratified medium
considering a parallel flow is given by arithmetic mean of the permeability values;

• nα is a normalized vector through each cell;
• s is the sum of the areas of the interfaces of the high-resolution geological cells;
• rα is the arithmetic mean of the vector connecting the centers of each high-resolution geological

cell with the center of the interface.
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Equation (1) allows calculating the transmissibility value across each slice. Then, the same strategy
as the lower bound is applied, i.e., the computation of the upper estimated bound value for the
transmissibility is done considering one steady-state incompressible 1D single-phase flow model
without gravity. The pressure equation is solved considering Dirichlet boundary conditions with a
pressure equal to unity on one side and zero on the other side.

The Darcy’s flux at the interface between the two cells can be written as follows:

qi,i+1 = (τ)i,i+1 (pi − pi+1) . (8)

The half-transmissibility can be written as follows:

T+
1
2 (β,d)

= q , (9)

where β is the index of the large reservoir cell, d is the domain: right, left, north, south, top or bottom,
and q is the flux at the interface.

The upper estimated bound value for the transmissibility between two given large reservoir cells
A and B (cf. Figure 7) can be defined as follows:

T+ =

 1
SAB
SAd

T+
1
2 (A,d)

+
1

SAB
SB

d
T+

1
2 (B,d)


−1

, (10)
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where sAB is the cell interface area between cell A and B, sAd is the total surface area between cell A and
the connected cells on the d domain.Water 2020, 12, x FOR PEER REVIEW 7 of 11 
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Figure 7. A two dimensional (2D) illustration of the upper estimated bound value for the transmissibility
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2.4. Quality Control of the Upscaling and Gridding

The quality of the upscaling and the gridding can be evaluated considering the ratio of the upper
and lower bounds. For each large reservoir cell where the ratio of the upper and the lower bounds is
lesser than a given value ε, the upscaled transmissibility value is calculated considering the geometric
mean of these bounds. A ratio of these bounds higher than a given value (larger than 10) highlights
that the gridding must be revisited.

• For cells with Tα+
Tα− < ε: Tα =

√
Tα+Tα−.

• For cells with Tα+
Tα− > ε: reconsidering of gridding.

3. Application to the SPE-10 Model

The presented method is applied to a two-dimensional synthetic case corresponding to an extracted
layer of the “SPE-10 2nd comparative solution” project [26]. This map corresponding to the 51st layer
is located in the lower part (Upper-Ness formation) of the model.

Figure 8 shows the permeability distribution in I and J-direction and the porosity distribution.
The range of the permeability varies by 8 orders of magnitude (1.5 × 10−3 mD to 2 × 105 mD). The range
of the porosity varies from 10−3 to 0.4.

One injector well and one producer well are considered. The location of the wells is given in
Table 1. Both wells are vertical with perforation throughout the formation of the reservoir.

Table 1. Coordinates of well locations.

Wells I-Coordinate J-Coordinate

Injector 3 3
Producer 58 218

The scenario is an eight-year CO2 injection. The fluid injection rate is equal to 100 m3/day
constraints by a maximum Bottom hole pressure at 690 bar. The fluid is produced at a constant bottom
hole pressure of 275 bar.

The breakthrough curves obtained with the high-resolution geological scale and large-scale
reservoir simulation have been compared. Figure 9 shows that the results of geological high-resolution
scale simulation and large-scale reservoir simulation with the local transmissibility upscaling method
are similar. The arriving time is the same. The large-scale reservoir simulation with a classical
transmissibility upscaling approach based on flow calculation shows an offset on the breakthrough time.
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4. Conclusions

Reservoir engineering procedures require the upscaling of geological grid properties to
perform reservoir simulations. The upscaling process affects these properties, especially in highly
heterogeneous reservoirs.

In this paper, a new approach has been developed to upscale transmissibility values. This method
uses the half-block approach and combines the finite volume principles with algebraic methods to provide
an upper and a lower bound of the upscaled transmissibility values. The upscaled transmissibility
calculation is done considering the half parts of the blocks on each side of the boundaries of the
two grid blocks to keep the heterogeneity contrast observed at the high-resolution geological scale.
The combination of 1D numerical solutions and algebraic averaging leads to a rapid approach.

In this paper, we have shown on an extracted map of the SPE10 model that:

(1) This approach is more accurate than classical transmissibility upscaling method based on
flow simulation;
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(2) This approach keeps the contrast of transmissibility values observed at the high-resolution
geological scale and improves the accuracy of field-scale flow simulation for highly
heterogeneous reservoirs;

(3) The upper and lower bounds delivered by the algebraic method allow checking the quality of the
upscaling and the gridding.

In this paper, the problematic of the transmissibility upscaling in fractured reservoirs [27–30]
has not been addressed. An extension of the proposed method will be proposed to upscale the
“matrix-fracture” transmissibility values for the dual-continuum models.
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Nomenclature

A the matrix containing the transmissibility values terms
b the vector containing the boundary condition terms
d the domain: Right, Left, North, South, Top or Bottom
d the opposite domain of the domain d
kα the cell permeability value in the direction α (mD)
n the number of geological cells at the interface between the two reservoir cells
nct the number of cells in each 1D system
nα a normal vector going through the center of a face
pi the pressure in the cell i (bar)
qn the high-resolution scale flux (m3

·s−1)
qi,i+1 the Darcy’s flux at the interface of the cells i and i + 1 (m3

·s−1)
rα a vector connecting the center of the cell with the center of the interface
sAB the cell interface area between the cells A and B (m2)
sAd the surface area between the cell A and the connected cells on the d domain (m2)
T+ the upper estimated bound value for the transmissibility (mD·m)
T− the lower estimated bound value for the transmissibility (mD·m)
T−1

2 (β,d) the lower bound half-transmissibility value (mD·m)

T+
1
2 (β,d) the upper bound half-transmissibility value (mD·m)

u the vector containing the pressure unknown
β the large reservoir cell index
τi the half-transmissibility value for the cell i (mD·m)
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