Quantifying the Variability in Flow Competence and Streambed Mobility with Water Discharge in a Gravel-Bed Channel: River Esva, NW Spain
Abstract
:1. Introduction
2. Rationale
2.1. Physical Basis for Flow Competence Models
2.2. Recking’s (2016) GTM Model
2.3. Proposed Workflow
3. Study Site
4. Materials and Methods
4.1. Painted Plots
4.2. Grain Size Analysis of Flood Deposits
4.3. Modelling Streambed Mobility in the River Esva
4.4. Comparison to Previous Studies
5. Results
5.1. Painted Plots
5.2. GSD of a Large Flood Deposit
5.3. Calibrating the GTM Model
5.4. Characterizing Streambed Mobility in the River Esva
5.5. Modelling the Long-Term Averaged GSD of the Bed Load
5.6. Comparison to Previous Studies
6. Discussion
6.1. General Discussion
6.2. GSD of the Bed Load and the Streambed Sediment: Implications for Paleo-Hydrological Analysis
6.3. Frequency and Intensity of Streambed Mobility: Implications for Streambed Stability Analysis
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Whitaker, A.C.; Potts, D.F. Analysis of flow competence in an alluvial gravel bed stream, Dupuyer Creek, Montana. Water Resour. Res. 2007, 43, W07433. [Google Scholar] [CrossRef] [Green Version]
- Recking, A. A generalized threshold model for computing bed load grain-size distribution. Water Resour. Res. 2016, 52, 9274–9289. [Google Scholar] [CrossRef] [Green Version]
- Parker, G.; Klingeman, P.C. On why gravel bed streams are paved. Water Resour. Res. 1982, 18, 1409–1423. [Google Scholar] [CrossRef] [Green Version]
- Brayshaw, A.C. Bed microtopography and entrainment thresholds in gravel-bed rivers. GSA Bull. 1985, 96, 218–223. [Google Scholar] [CrossRef]
- Wilcock, P.R. Critical shear stress of natural sediment. J. Hydraul. Eng. 1993, 119, 491–505. [Google Scholar] [CrossRef]
- Haschenburger, J.K. Streambed Disturbance over a Long Flood Series. River Res. Appl. 2017, 33, 753–765. [Google Scholar] [CrossRef]
- Lancaster, J.; Belyea, L.R. Nested hierarchies and scale dependence of mechanisms of flow refugium use. J. N. Am. Benthol. Soc. 1997, 16, 221–238. [Google Scholar] [CrossRef]
- Townsend, C.R.; Scarsbrook, M.R.; Doledec, S. The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnol. Oceanogr. 1997, 42, 939–949. [Google Scholar] [CrossRef] [Green Version]
- Matthaei, C.D.; Townsend, C.R. Long-Term effects of local disturbance history on mobile stream invertebrates. Oecologia 2000, 125, 119–126. [Google Scholar] [CrossRef]
- Pfeiffer, A.M.; Finnegan, N.J. Regional variation in gravel riverbed mobility, controlled by hydrologic regime and sediment supply. Geophys. Res. Lett. 2018, 45, 3097–3106. [Google Scholar] [CrossRef]
- Gilbert, G.K.; Murphy, E.C. The Transportation of Debris by Running Water; US Government Printing Office: Washington, DC, USA, 1914.
- Komar, P.D. The competence of turbidity current flow. Geol. Soc. Am. Bull. 1970, 81, 1555–1562. [Google Scholar] [CrossRef]
- Komar, P.D. Selective gravel entrainment and the empirical evaluation of flow competence. Sedimentology 1987, 34, 1165–1176. [Google Scholar] [CrossRef]
- Baker, V.R.; Ritter, D.F. Competence of rivers to transport coarse bedload material. Geol. Soc. Am. Bull. 1975, 86, 975–978. [Google Scholar] [CrossRef]
- Carling, P.A. Bedload transport in two gravel bedded streams. Earth Surf. Process. Landf. 1983, 14, 27–39. [Google Scholar] [CrossRef]
- Costa, J.E. Paleohydraulic reconstruction of flash-flood peaks from boulder deposits in the Colorado Front Range. Geol. Soc. Am. Bull. 1983, 94, 986–1004. [Google Scholar] [CrossRef]
- Williams, G.P. Paleohydrological methods and some Examples from Swedish fluvial environments. Geogr. Ann. 1983, 65, 227–243. [Google Scholar] [CrossRef]
- Komar, P.D.; Carling, P.A. Grain sorting in gravel-bed streams and the choice of particle sizes for flow-competence evaluations. Sedimentology 1991, 38, 489–502. [Google Scholar] [CrossRef]
- O’Connor, J.E. Hydrology, Hydraulics and Geomorphology of the Bonneville Flood; Geological Society of America: Boulder, CO, USA, 1991. [Google Scholar]
- Bradley, W.C.; Mears, A.I. Calculations of flows needed to transport coarse fraction of Boulder Creek alluvium at Boulder, Colorado. Geol. Soc. Am. Bull. 1993, 86, 1057–1090. [Google Scholar]
- Wilcock, P.R. Flow competence: A criticism of a classic concept. Earth Surf. Process. Landf. 1992, 17, 289–298. [Google Scholar] [CrossRef]
- Lorang, M.; Hauer, F. Flow competence and streambed stability: An evaluation of technique and application. J. N. Am. Benthol. Soc. 2003, 22, 475–491. [Google Scholar] [CrossRef]
- Parker, G. Transport of gravel and sediment mixtures. In Sedimentation Engineering: Processes, Measurements, Modeling, and Practice. The ASCE Manuals and Reports in Engineering Practice, No. 110; García, M., Ed.; American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 165–264. [Google Scholar]
- Juez, C.; Hassan, M.A.; Franca, M.J. The origin of fine sediment determines the observations of suspended sediment fluxes under unsteady flow conditions. Water Resour. Res. 2018, 54, 1–16. [Google Scholar] [CrossRef]
- Lisle, T.E. Particle size variations between bed load and bed material in natural gravel bed channels. Water Resour. Res. 1995, 31, 1107–1118. [Google Scholar] [CrossRef]
- Parker, G. Surface-Based bedload transport relation for gravel rivers. J. Hydraul. Res. 1990, 28, 417–428. [Google Scholar] [CrossRef]
- Wilcock, P.R.; Crowe, J.C. Surface-Based transport model for mixed-size sediment. J. Hydraul. Eng. 2003, 129, 120–128. [Google Scholar] [CrossRef]
- Milhous, R.T. Sediment Transport in a Gravel Bottom Stream. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1973. [Google Scholar]
- Andrews, E.D. Marginal bed load transport in a gravel bed stream, Sagehen Creek, California. Water Resour. Res. 1994, 30, 2241–2250. [Google Scholar] [CrossRef]
- Shields, A. Application of Similarity Principles and Turbulence Research to Bedload Movement. Ph.D. Theisis, California Institute of Technology, Pasadena, CA, USA, 1936. Originally published in German in 1936, English translation by W.P. Ott and J.C. van Uchelen, available in Hydrodynamics Laboratory Publication No. 167. Hydrodynamics Laboratory. [Google Scholar]
- Hjülstrom, F. Studies of morphological activity of rivers as illustrated by the River Fyris, Upsala Mineral. Geologis. Inst. Bull. 1935, 25, 221–527. [Google Scholar]
- Sundborg, A. The river Klarälven a study of fluvial processes. Geogr. Ann. 1956, 38, 125–316. [Google Scholar]
- Buffington, J.M.; Montgomery, D.R. A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour. Res. 1997, 33, 1993–2027. [Google Scholar] [CrossRef] [Green Version]
- Parker, G. 1D Sediment Transport Morphodynamics with Applications to Rivers and Turbidity Currents. 2004. Available online: http://hydrolab.illinois.edu/people/parkerg//morphodynamics_e-book.htm (accessed on 26 February 2019).
- Einstein, H.A.; Chien, N. Transport of Sediment Mixtures with Large Range of Grain Size; University of California, Institute of Engineering Research: Oakland, CA, USA, 1953. [Google Scholar]
- Egiazaroff, I.V. Calculation of nonuniform sediment concentrations. J. Hydraul. Div. 1965, 91, 225–247. [Google Scholar]
- Wilcock, P.R. Toward a practical method for estimating sediment transport rates in gravel-bed rivers. Earth Surf. Process. Landf. 2001, 26, 1395–1408. [Google Scholar] [CrossRef]
- Church, M.; Hassan, M.A.; Wolcott, J.F. Stabilizing self-organized structures in gravel-bed stream channels: Field and experimental observations. Water Resour. Res. 1998, 34, 3169–3179. [Google Scholar] [CrossRef]
- Ashworth, P.J.; Ferguson, R.I. Size-selective entrainment of bed load in gravel bed streams. Water Resour. Res. 1989, 25, 627–634. [Google Scholar] [CrossRef]
- Lenzi, M.A.; D’Agostino, V.; Billi, P. Bedload transport in the instrumented catchment of the Rio Cordon, part I: Analysis of bedload records, conditions and threshold of bedload entrainment. Catena 1989, 36, 171–190. [Google Scholar] [CrossRef]
- Powell, D.M.; Reid, I.; Laronne, J.B. Evolution of bed load grain-size distribution with increasing flow strength and the effect of flow duration on the caliber of bed load sediment yield in ephemeral gravel bed rivers. Water Resour. Res. 2001, 37, 1463–1474. [Google Scholar] [CrossRef]
- Parker, G.; Klingeman, P.C.; McLean, D.G. Bed load and size distribution in gravel-bed streams. J. Hydraul. Div. Am. Soc. Civ. Eng. 1982, 108, 544–571. [Google Scholar]
- Andrews, E.D. Entrainment of gravel from naturally sorted riverbed material. Geol. Soc. Am. Bull. 1983, 94, 1225–1231. [Google Scholar] [CrossRef]
- Wilcock, P.R.; Southard, J.B. Experimental study of incipient motion in mixed-size sediment. Water Resour. Res. 1988, 24, 1137–1151. [Google Scholar] [CrossRef] [Green Version]
- Andrews, E.D.; Smith, J.D. A theoretical model for calculating marginal bedload transport rates of gravel. In Dynamic of Gravel Bed Rivers; Billi, P., et al., Eds.; John Wiley: Chichester, UK, 1992; pp. 41–52. [Google Scholar]
- Wilcock, P.R.; McArdell, B.W. Partial transport of a sand/gravel sediment. Water Resour. Res. 1997, 33, 235. [Google Scholar] [CrossRef] [Green Version]
- Proffitt, G.T.; Sutherland, A.J. Transport of non uniform sediments. J. Hydraul. Res. 1983, 21, 33–43. [Google Scholar] [CrossRef]
- Gomez, B. Temporal variations in bedload transport rates: The effect of progressive bed armoring. Earth Surf. Process. Landf. 1983, 8, 41–54. [Google Scholar] [CrossRef]
- Parker, G.; Sutherland, A.J. Fluvial armor. J. Hydraul. Res. 1990, 28, 529–544. [Google Scholar] [CrossRef]
- Richards, K.; Clifford, N.J. Fluvial geomorphology: Structured beds in gravelly rivers. Prog. Phys. Geogr. 1991, 15, 407–422. [Google Scholar] [CrossRef]
- Hassan, M.A.; Egozi, R.; Parker, G. Experiments on the effect of hydrograph characteristics on vertical grain sorting in gravel bed rivers. Water Resour. Res. 2006, 42, W09408. [Google Scholar] [CrossRef]
- Venditti, J.G.; Nelson, P.A.; Bradley, R.W.; Haught, D.; Gitto, A.B. Bedforms, structures, patches, and sediment supply in gravel-bed rivers. In Gravel-Bed Rivers: Processes and Disasters; Tsutsumi, D., Laronne, J.B., Eds.; John Wiley: Chichester, UK, 2017; pp. 439–466. [Google Scholar]
- Recking, A. An analysis of nonlinearity effects on bed load transport prediction. J. Geophys. Res. Earth Surf. 2013, 118, 1264–1281. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, L.G.; Eaton, B.C.; Church, M. Breaking from the average: Why large grains matter in gravel-bed streams. Earth Surf. Process. Landf. 2018, 43, 3190–3196. [Google Scholar] [CrossRef]
- Vázquez-Tarrío, D.; Tal, M.; Camenen, B.; Piegay, H. Effects of continuous embankments and sucessive run-of-the-river dams on bedload transport capacities along the Rhône River, France. Sci. Total. Environ. (STOTEN) 2019, 658, 1375–1389. [Google Scholar] [CrossRef] [PubMed]
- Wolman, M. A method for sampling coarse river-bed material. Trans. Am. Geophys. Union 1954, 35, 951–956. [Google Scholar] [CrossRef]
- Buffington, J.M. An alternative method for determining subsurface grain-size distributions of gravel-bedded rivers, Supplement to EOS. AGU Trans. 1996, 77, 250. [Google Scholar]
- Bunte, K.; Abt, S.R. Sampling Surface and Subsurface Particle-Size Distributions in Wadable Gravel-and Cobble-Bed Streams for Analyses in Sediment Transport, Hydraulics, and Streambed Monitoring; Gen. Tech. Rep. RMRS-GTR-74; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2001; p. 428.
- Diplas, P.; Fripp, J.B. Properties of various sediment sampling procedures. J. Hydraul. Eng. 1992, 118, 955–970. [Google Scholar] [CrossRef]
- Rickenmann, D.; Recking, A. Evaluation of flow resistance in gravel-bed rivers through a large field data set. Water Resour. Res. 2011, 47, W07538. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, R. Flow resistance equations for gravel and boulder bed streams. Water Resour. Res. 2007, 43, W05427. [Google Scholar] [CrossRef] [Green Version]
- Recking, A. Theoretical development on the effects of changing flow hydraulics on incipient bed load motion. Water Resour. Res. 2009, 45, W04401. [Google Scholar] [CrossRef]
- Recking, A. Simple method for calculating reach-averaged bed-load transport. J. Hydraul. Eng. 2013, 139, 70–75. [Google Scholar] [CrossRef]
- Hinton, D.; Hotchkiss, R.H.; Cope, M. Comparison of Calibrated Empirical and Semi-Empirical Methods for Bedload Transport Rate Prediction in Gravel Bed Streams. J. Hydraul. Eng. 2018, 144, 04018038. [Google Scholar] [CrossRef]
- Plumb, B.D.; Juez, C.; Annable, W.K.; McKie, C.W.; Franca, M.J. The impact of hydrograph variability and frequency on sediment transport dynamics in a gravel-bed flume. Earth Surf. Process. Landf. 2019. [Google Scholar] [CrossRef]
- Rice, S.; Church, M. Sampling surficial fluvial gravels: the precision of size distribution percentile estimates. J. Sediment. Res. 1996, 66, 654–665. [Google Scholar] [CrossRef]
- Moog, D.B.; Whiting, P.J. Annual hysteresis in bed load rating curves. Water Resour. Res. 1998, 34, 2393–2399. [Google Scholar] [CrossRef]
- Hassan, M.A.; Church, M. Sensitivity of bed load transport in Harris Creek: Seasonal and spatial variation over a cobble-gravel bar. Water Resour. Res. 2001, 37, 813–825. [Google Scholar] [CrossRef]
- Church, M.; Hassan, M. Upland gravel-bed rivers with low sediment transport. In Developments in Earth Surface Processes 7; Garcia, C., Batalla, R.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 7, pp. 141–168. [Google Scholar]
- Recking, A.; Piton, G.; Vázquez-Tarrío, D.; Parker, G. Quantifying the morphological print of bedload transport. Earth Surf. Process. Landf. 2016, 41, 809–822. [Google Scholar] [CrossRef]
- Reid, I.; Frostick, L.E. Particle interaction and its effect on the thresholds of initial and final bedload motion in coarse alluvial channels. In Sedimentology of Gravels and Conglomerates; Koster, E.H., Steel, R.J., Eds.; Canadian Society of Petroleum Geologists: Calgary, AB, Canada, 1984; pp. 61–68. [Google Scholar]
- Church, M.; Wolcott, J.; Maizels, J.K. Paleovelocity: A parsimonious proposal. Earth Surf. Process. Landf. 1990, 15, 475–480. [Google Scholar] [CrossRef]
- Rotnicki, A. Retroduction and palaeodischarges of meandering and sinuous alluvial rivers and its palaeohydroclimatic implications. In Temperate Palaeohydrology; Starkel, L., Gregory, K.J., Thorne, J.B., Eds.; John Wiley: Chichester, UK, 1991; pp. 431–471. [Google Scholar]
- Paola, C.; Morhrig, D. Paleohydraulics revisited: Paleoslope estimation in coarse grained braided rivers. Basin Res. 1996, 8, 243–254. [Google Scholar] [CrossRef]
- Jones, S.J.; Frostick, L.E. Inferring bedload transport from stratigraphic successions: Examples from cenozoic and pleistocene rivers, south central pyrenees, spain. In Landscapes Evolution: Denudation, Climate and Tectonics over Different Time and Space Scales; Gallagher, K., Jones, S.J., Wainwright, J., Eds.; Special Publications of the Geological Society: London, UK, 2008; pp. 129–145. [Google Scholar]
- Reid, I.; Frostick, L.E. Role of settling, entrainment and dispersive equivalence and of interstice trapping in placer formation. J. Geol. Soc. 1985, 142, 739–746. [Google Scholar] [CrossRef]
- Pähtz, T.; Durán, O. The cessation threshold of nonsuspended sediment transport across aeolian and fluvial environments. J. Geophys. Res. Earth Surf. 2018, 123, 1638–1666. [Google Scholar]
- Kuhnle, R.A.; Willis, J.C. Mean size distribution of bed load on Goodwin Creek. J. Hydraul. Eng. 1992, 118, 1443–1446. [Google Scholar] [CrossRef]
- Segura, C.; Pitlick, J. Coupling fluvial-hydraulic models to predict gravel transport in spatially variable flows. J. Geophys. Res. Earth Surf. 2015, 120, 834–855. [Google Scholar] [CrossRef]
- Downes, B.J.; Glaister, A.; Lake, P.S. Spatial variation in the force required to initiate rock movement in 4 upland streams: Implications for estimating disturbance frequencies. J. N. Am. Benthol. Soc. 1997, 16, 203–220. [Google Scholar] [CrossRef]
- Duncan, M.J.; Suren, A.M.; Brown, S.L.R. Assessment of streambed stability in steep, bouldery streams: Development of a new analytical technique. J. N. Am. Benthol. Soc. 1999, 18, 445–456. [Google Scholar] [CrossRef]
- Scrimgeour, G.J.; Davidson, R.J.; Davidson, J.M. Recovery of benthic macroinvertebrate and epilithic communities following a large flood, in an unstable, Braided, New Zealand River. N. Z. J. Mar. Freshw. Res. 1998, 22, 337–344. [Google Scholar] [CrossRef]
- Robinson, C.T.; Aebischer, S.; Uehlinger, U. Immediate and habitat-specific responses of macroinvertebrates to sequential, experimental floods. J. N. Am. Benthol. Soc. 2004, 23, 853–867. [Google Scholar] [CrossRef]
- Gibbins, C.; Vericat, D.; Batalla, R.J. When is stream invertebrate drift catastrophic? The role of hydraulics and sediment transport in initiating drift during flood events. Freshw. Biol. 2007, 52, 2369–2384. [Google Scholar] [CrossRef]
- Power, M.E.; Parker, M.S.; Dietrich, W.E. Seasonal reassembly of a river food web: Floods, droughts, and impacts of fish. Ecol. Monogr. 2008, 78, 263–282. [Google Scholar] [CrossRef] [Green Version]
- Wilcock, P.R.; Mc Ardell, B.W. Surface-Based fractional transport rates: Mobilization thresholds and partial transport of a sand-gravel sediment. Water Resour. Res. 1993, 29, 1297–1312. [Google Scholar] [CrossRef]
- Lisle, T.E.; Nelson, J.M.; Pitlick, J.; Madej, M.A.; Barkett, B.L. Variability of bed mobility in natural gravel-bed channels and adjustments to sediment load at local and reach scales. Water Resour. Res. 2000, 36, 3743–3755. [Google Scholar] [CrossRef]
- Haschenburger, J.K.; Wilcock, P.R. Partial transport in a natural gravel bed channel. Water Resour. Res. 2003, 39, 1020. [Google Scholar] [CrossRef]
- May, C.L.; Pryor, B.; Lisle, T.E.; Lang, M. Coupling hydrodynamic modeling and empirical measures of bed mobility to predict the risk of scour and fill of salmon redds in a large regulated river. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- McKean, J.; Tonina, D. Bed stability in unconfined gravel bed mountain streams: With implications for salmon spawning viability in future climates. J. Geophys. Res. Earth Surf. 2013, 118, 1227–1240. [Google Scholar] [CrossRef]
River | Source | S | W | D50s | D50ss | D50bl | Dmax | Qbkf | Q | Sample |
---|---|---|---|---|---|---|---|---|---|---|
Oak creek | [28] | 0.0094 | 3.7 | 54 | 20 | 3–27 | 8–98 | 3.4 | 0.2–3.4 | Vortex sampler |
Sagehen creek | [29] | 0.0102 | 2.6 | 58 | 30 | 12–65 | 31–126 | 0.3 | 0.2–0.6 | HS |
Bambi creek | [25] | 0.0082 | 3.6 | - | 9 | 3 | 22 | 1.7 | 2.5 | HS |
Goodwin creek | [25] | 0.0033 | 12.9 | 12 | 8 | 8 | 24 | 90.0 | 81 | HS |
Jacoby creek | [25] | 0.0063 | 17.2 | 27 | 8 | 4 | 25 | 9.0 | 34.2 | HS |
NF Caspar creek | [25] | 0.0130 | 4.4 | 15 | 9 | 4 | 80 | 3.1 | 6.2 | Pit |
Redwood creek 1 | [25] | 0.0140 | 44.6 | 5 | 4 | 1 | 30 | 430.0 | 374.1 | HS |
Tanana river | [25] | 0.0008 | 315.0 | 13 | 1 | 17 | 22 | - | 2040 | HS |
Tom Mac Donald Creek | [25] | 0.0060 | 6.1 | 19.8 | 11 | 8 | 22 | 3.6 | 12.6 | HS |
Turkey brook | [25] | 0.0086 | 3.0 | 22 | 16 | 11 | 100 | 13.0 | 16.9 | Pit |
Dupuyer creek | [1] | 0.0100 | 8.0 | 54 | - | 47–60 | 88–155 | 6.5 | 4.6–10.3 | Basket sampler |
River Esva | This study | 0.0030 | 25.2 | 59 | 22 | - | 16–208 | - | 31.3–183.9 | Painted stones |
Date | Painted Plot | Q (m3/s) | τ*/τc* | Dmax | % Recovery | L (m) |
---|---|---|---|---|---|---|
17/01/2017 | PP1 | 41.93 | 0.73 | 54.5 | 86 | ~0.2 |
02/03/2017 | PP1 | 74.63 | 0.98 | 90 | 82 | 4.0 |
29/05/2017 | PP1 | 31.34 | 0.63 | 0 | 82 | 0.0 |
12/11/2017 | PP1 | 183.95 | 1.55 | 208 | 82 | 35.2 |
29/05/2017 | PP2 | 31.34 | 0.63 | 16 | 96 | <0.1 |
12/11/2017 | PP2 | 183.95 | 1.55 | 158 | 3 | 19 |
GSD | % Particles < 8 mm | D16 (mm) | D50 (mm) | D84 (mm) |
---|---|---|---|---|
Surface | 0 | 34 (34) | 59 (59) | 107 (107) |
Subsurface | 8 | 11 (20) | 22 (30) | 47 (58) |
January 2019 (flood deposit) | 22 | 3 (20) | 22 (30) | 42 (49) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Tarrío, D.; Fernández-Iglesias, E.; Fernández García, M.; Marquínez, J. Quantifying the Variability in Flow Competence and Streambed Mobility with Water Discharge in a Gravel-Bed Channel: River Esva, NW Spain. Water 2019, 11, 2662. https://doi.org/10.3390/w11122662
Vázquez-Tarrío D, Fernández-Iglesias E, Fernández García M, Marquínez J. Quantifying the Variability in Flow Competence and Streambed Mobility with Water Discharge in a Gravel-Bed Channel: River Esva, NW Spain. Water. 2019; 11(12):2662. https://doi.org/10.3390/w11122662
Chicago/Turabian StyleVázquez-Tarrío, Daniel, Elena Fernández-Iglesias, María Fernández García, and Jorge Marquínez. 2019. "Quantifying the Variability in Flow Competence and Streambed Mobility with Water Discharge in a Gravel-Bed Channel: River Esva, NW Spain" Water 11, no. 12: 2662. https://doi.org/10.3390/w11122662
APA StyleVázquez-Tarrío, D., Fernández-Iglesias, E., Fernández García, M., & Marquínez, J. (2019). Quantifying the Variability in Flow Competence and Streambed Mobility with Water Discharge in a Gravel-Bed Channel: River Esva, NW Spain. Water, 11(12), 2662. https://doi.org/10.3390/w11122662