Effects of ENSO on Temperature, Precipitation, and Potential Evapotranspiration of North India’s Monsoon: An Analysis of Trend and Entropy
Abstract
:1. Introduction
- Evaluation of the long-term trend and shift patterns of temperature, precipitation, and PET across North India in various ENSO phases using nonparametric statistical tests;
- Determination of the spatiotemporal relationships between the selected variables during the monsoon and at each of the monsoonal months over century-wide data;
- Comparison between the major shift points during monsoon and the phases of ENSO, which might have resulted in extreme climate events, throughout the study period;
- Analyses of apportionment entropy to quantify how the detected variations were distributed temporally over the years (annually) and during the months (seasonally) of monsoon along the study area.
2. Study Area and Data
3. Methodology
3.1. Trend and Shift Tests
3.2. Entropy Test
4. Results and Discussion
4.1. Temperature Change Patterns
4.1.1. Changes Associated with ENSO
4.1.2. All-Year Change Patterns
4.2. Precipitation Change Patterns
4.2.1. Changes Associated with ENSO
4.2.2. All-Year Change Patterns
4.3. Potential Evapotranspiration Change Patterns
4.3.1. Changes Associated with ENSO
4.3.2. All-Year Change Patterns
4.4. Entropy
4.4.1. Temperature Entropy
4.4.2. Precipitation Entropy
4.4.3. Potential Evapotranspiration Entropy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diffenbaugh, N.S.; Swain, D.L.; Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA 2015, 112, 3931–3936. [Google Scholar] [CrossRef]
- Seager, R.; Hoerling, M.; Schubert, S.; Wang, H.; Lyon, B.; Kumar, A.; Nakamura, J.; Henderson, N. Causes of the 2011–2014 California drought. J. Clim. 2015, 28, 6997–7024. [Google Scholar] [CrossRef]
- Williams, A.P.; Seager, R.; Abatzoglou, J.T.; Cook, B.I.; Smerdon, J.E.; Cook, E.R. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett. 2015, 42, 6819–6828. [Google Scholar] [CrossRef]
- Yoon, J.H.; Wang, S.S.; Gillies, R.R.; Kravitz, B.; Hipps, L.; Rasch, P.J. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming. Nat. Commun. 2015. [Google Scholar] [CrossRef]
- Griffin, D.; Anchukaitis, K.J. How unusual is the 2012–2014 California drought? Geophys. Res. Lett. 2014, 41, 9017–9023. [Google Scholar] [CrossRef]
- Robeson, S.M. Revisiting the recent California drought as an extreme value. Geophys. Res. Lett. 2015, 42, 6771–6779. [Google Scholar] [CrossRef]
- Wei, J.; Jin, Q.; Yang, Z.; Dirmeyer, P.A. Role of ocean evaporation in California droughts and floods. Geophys. Res. Lett. 2016, 6554–6562. [Google Scholar] [CrossRef]
- Shukla, S.; Safeeq, M.; AghaKouchak, A.; Guan, K.; Funk, C. Temperature impacts on the water year 2014 drought in California. Geophys. Res. Lett. 2015, 42, 4384–4393. [Google Scholar] [CrossRef]
- Bhandari, S.; Kalra, A.; Tamaddun, K.; Ahmad, S. Relationship between Ocean-Atmospheric Climate Variables and Regional Streamflow of the Conterminous United States. Hydrology 2018, 5, 30. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis; IPCC: Geneva, Switzerland, 2013; p. 33. [Google Scholar] [CrossRef]
- Carrier, C.; Kalra, A.; Ahmad, S. Long-range precipitation forecast using paleoclimate reconstructions in the western United States. J. Mt. Sci. 2016, 13, 614–632. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Brubaker, K.L. Evidence for trends in the northern hemisphere water cycle. Geophys. Res. Lett. 2006, 33, L14712. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Kramer, R.; Bounoua, L.; Zhang, P.; Wolfe, R.; Huntington, T.; Imhoff, M.; Thome, K.; Noyce, G. Evapotranspiration Trends over the Eastern United States during the 20th Century. Hydrology 2015, 2, 93–111. [Google Scholar] [CrossRef]
- Levis, S.; Foley, J.A.; Pollard, D. Large-scale vegetation feedbacks on a doubled CO2 climate. J. Clim. 2000, 13, 1313–1325. [Google Scholar] [CrossRef]
- Bounoua, L.; Hall, F.G.; Sellers, P.J.; Kumar, A.; Collatz, G.J.; Tucker, C.J.; Imhoff, M.L. Quantifying the negative feedback of vegetation to greenhouse warming: A modeling approach. Geophys. Res. Lett. 2010, 37, L23701. [Google Scholar] [CrossRef]
- Tamaddun, K.; Kalra, A.; Ahmad, S. Potential of rooftop rainwater harvesting to meet outdoor water demand in arid regions. J. Arid Land 2018, 10, 68–83. [Google Scholar] [CrossRef]
- Sellers, P.J.; Field, C.B.; Jensen, T.G.; Bounoua, L.; Collatz, G.J.; Randall, D.A.; Dazlich, D.A.; Los, S.O.; Berry, J.A.; Fung, I. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 1996, 271, 1402–1406. [Google Scholar] [CrossRef]
- Guillevic, P.; Koster, R.D.; Suarez, M.J.; Bounoua, L.; Collatz, G.J.; Los, S.O.; Mahanama, S.P.P. Influence of the interannual variability of vegetation on the surface energy balance—A global sensitivity study. J. Hydrometeorol. 2002, 3, 617–629. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef]
- Tiwari, P.R.; Kar, S.C.; Mohanty, U.C.; Dey, S.; Kumari, S.; Sinha, P. Seasonal prediction skill of winter temperature over North India. Theor. Appl. Climatol. 2016, 124, 15–29. [Google Scholar] [CrossRef]
- Tiwari, P.R.; Kar, S.C.; Mohanty, U.C.; Dey, S.; Kumari, S.; Sinha, P.; Raju, P.; Shekhar, M.S. Simulations of Tropical Circulation and Winter Precipitation over North India: An Application of a Tropical Band Version of Regional Climate Model (RegT-Band). Pure Appl. Geophys. 2016, 173, 657–674. [Google Scholar] [CrossRef]
- Khare, D.; Mondal, A.; Kundu, S.; Mishra, P.K. Climate change impact on soil erosion in the Mandakini River Basin, North India. Appl. Water Sci. 2016. [Google Scholar] [CrossRef]
- Singh, Y. Social Science Textbook for Class IX Geography; VK Publications: New Delhi, India, 2010; ISBN 978-81-89611-15-6. [Google Scholar]
- Dimri, A.P. Relationship between ENSO phases with Northwest India winter precipitation. Int. J. Climatol. 2013, 33, 1917–1923. [Google Scholar] [CrossRef]
- Rathore, L.S.; Attri, S.D.; Jaswal, A.K. State level climate change trends in India. Environ. Meteorol. 2013, 1, 11. [Google Scholar]
- Abeysingha, N.S.; Singh, M.; Sehgal, V.K.; Khanna, M.; Pathak, H. Analysis of trends in streamflow and its linkages with rainfall and anthropogenic factors in Gomti River basin of North India. Theor. Appl. Climatol. 2016, 123, 785–799. [Google Scholar] [CrossRef]
- Singh, S. India: Lonely Planet Guide; Lonely Planet: Gurgaon, India, 2003; ISBN 1-74059-421-5. [Google Scholar]
- Kaul, H. Rediscovery of Ladakh; Indus Publishing: New Delhi, India, 1998; ISBN 9788173870866. [Google Scholar]
- Rowell, G. Many people come, looking, looking; Mountaineers: Seattle, WA, USA, 1980; ISBN 9780916890865. [Google Scholar]
- Datta, R.; Gupta, M. Synoptic study of the formation and movements of Western Depressions. Ind. J. Meteorol. Geophys. India 1968, 18, 45–50. [Google Scholar]
- Dimri, A. Models to improve winter minimum surface temperature forecasts, Delhi, India. Meteorol. Appl. 2004, 11, 129–139. [Google Scholar] [CrossRef]
- Wang, B. The Asian Monsoon; Springer: Berlin, Germany, 2006; ISBN 3-540-40610-7. [Google Scholar]
- Ju, J.; Slingo, J. The Asian summer monsoon and ENSO. Quart. J. R. Meteorol. Soc. 1995, 121, 1133–1168. [Google Scholar] [CrossRef]
- Kumar, K.; Rajagopalan, B.; Cane, M. On the weakening relationship between the Indian monsoon and ENSO. Science 1999, 284, 2156–2159. [Google Scholar] [CrossRef]
- Tamaddun, K.A.; Kalra, A.; Bernardez, M.; Ahmad, S. Multi-Scale Correlation between the Western U.S. Snow Water Equivalent and ENSO/PDO Using Wavelet Analyses. Water Resour. Manag. 2017, 31, 2745–2759. [Google Scholar] [CrossRef]
- Ropelewski, C.F.; Halpert, M.S. North American precipitation and temperature patterns associated with El-Niño-Southern Oscillation (ENSO). Mon. Weather Rev. 1986, 114, 2165–2352. [Google Scholar] [CrossRef]
- Kahya, E.; Dracup, J.A. U.S. streamflow patterns in relation to the El Niño/ Southern Oscillation. Water Resour. Res. 1993, 29, 2491–2503. [Google Scholar] [CrossRef]
- Tamaddun, K.A.; Kalra, A.; Ahmad, S. Wavelet analysis of western U.S. streamflow with ENSO and PDO. J. Water Clim. Chang. 2017, 1–15. [Google Scholar] [CrossRef]
- Sagarika, S.; Kalra, A.; Ahmad, S. Pacific Ocean and SST and Z500 climate variability and western U.S. seasonal streamflow. Int. J. Climatol. 2016, 36, 1515–1533. [Google Scholar] [CrossRef]
- Kumar, K.; Rajagopalan, B.; Hoerling, M.; Bates, G.; Cane, M. Unraveling the Mystery of Indian Monsoon Failure during El Niño. Science 2006, 314, 115–119. [Google Scholar] [CrossRef]
- Webster, P.J.; Yang, S. Monsoon and ENSO: Selectively interactive systems. Q. J. R. Meteorol. Soc. 1992, 118, 877–926. [Google Scholar] [CrossRef]
- Ashok, K.; Guan, Z.; Yamagata, T. Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett. 2001, 28, 4499–4502. [Google Scholar] [CrossRef]
- Wang, P.; Clemens, S.; Beaufort, L.; Braconnot, P.; Ganssen, G.; Jian, Z.; Kershaw, P.; Sarnthein, M. Evolution and variability of the Asian monsoon system: State of the art and outstanding issues. Quat. Sci Rev. 2005, 24, 595–629. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Q.; Xie, S.P.; Liu, Z.; Wu, L. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Xie, S.P.; Hu, K.; Hafner, J.; Tokinaga, H.; Du, Y.; Huang, G.; Sampe, T. Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J. Clim. 2009, 22, 730–747. [Google Scholar] [CrossRef]
- Torrence, C.; Webster, P. Interdecadal changes in the ENSO-monsoon system. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, Y. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Ashok, K.; Guan, Z.; Saji, N.H.; Yamagata, T. Individual combined influences of the ENSO and Indian Ocean Dipole on the Indian summer monsoon. J. Clim. 2004, 17, 3141–3155. [Google Scholar] [CrossRef]
- Krishnamurthi, V.; Goswami, B.N. Indian Monsoon ENSO relationship on interdecadal timescale. Am. Meteorol. Soc. 2000, 13, 579–595. [Google Scholar] [CrossRef]
- Reason, C.J.C.; Allan, R.J.; Lindesay, J.A.; Ansell, T.J. Enso and climatic signals across the Indian Ocean basin in the global context: Part I, Interannual composite patterns. Int. J. Climatol. 2000, 20, 1285–1327. [Google Scholar] [CrossRef]
- Allan, R.J.; Reason, C.J.C.; Lindesay, J.A.; Ansell, T.J. Protracted ENSO episodes and their impacts in the Indian Ocean region. Deep Sea Res. 2003, 50, 2331–2347. [Google Scholar] [CrossRef]
- Gadgil, S.; Vinaychandran, P.N.; Francis, P.A.; Gadgil, S. Extremes of Indian summer monsoon rainfall, ENSO, equatorial Indian Ocean Oscillation. Geophys. Res. Lett. 2004, 31, L12213. [Google Scholar] [CrossRef]
- Klein, S.A.; Soden, B.J.; Lau, N.C. Remote Sea Surface Temperature Variations during ENSO: Evidence for a Tropical Atmospheric Bridge. J. Clim. 1999, 12, 917–932. [Google Scholar] [CrossRef]
- Loo, Y.Y.; Billa, L.; Singh, A. Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci. Front. 2015, 6, 817–823. [Google Scholar] [CrossRef]
- Mazdiyasni, O.; AghaKouchak, A. Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl. Acad. Sci. USA 2015, 112, 11484–11489. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econ. J. Econ. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Pettitt, A. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell. Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Geological Survey of India (GSI). Geological Survey of India, MOI, Government of India. 2016. Available online: http://www.portal.gsi.gov.in/ (accessed on 10 March 2016).
- India Water Portal (IWP). India Water Portal Met Data. 2016. Available online: http://www.indiawaterportal.org/met_data/ (accessed on 12 March 2016).
- National Oceanic and Atmospheric Administration (NOAA). Niño 3.4: Standard PSD Format. 2015. Available online: http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino34/ (accessed on 14 March 2016).
- Zhang, X.; David Harvey, K.; Hogg, W.D.; Yuzyk, T.R. Trends in Canadian streamflow. Water Resour. Res. 2001, 37, 987–998. [Google Scholar] [CrossRef]
- Tamaddun, K.; Kalra, A.; Ahmad, S. Identification of Streamflow Changes across the Continental United States Using Variable Record Lengths. Hydrology 2016, 3, 24. [Google Scholar] [CrossRef]
- Mauget, S.A. Multidecadal regime shifts in U.S. streamflow, precipitation, and temperature at the end of the twentieth century. J. Clim. 2003, 16, 3905–3916. [Google Scholar] [CrossRef]
- Kalra, A.; Sagarika, S.; Pathak, P.; Ahmad, S. Hydro-climatological changes in the Colorado River Basin over a century. Hydrol. Sci. J. 2017, 62, 2280–2296. [Google Scholar] [CrossRef]
- Sagarika, S.; Kalra, A.; Ahmad, S. Evaluating the effect of persistence on long-term trends and analyzing step changes in streamflows of the continental United States. J. Hydrol. 2014, 517, 36–53. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity is dead: Whither water management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef]
- Lins, H.; Slack, J. Streamflow trends in the United States. Geophys. Res. Lett. 1999, 26, 227–230. [Google Scholar] [CrossRef]
- Önöz, B.; Bayazit, M. The power of statistical tests for trend detection. Turk. J. Eng. Environ. Sci. 2003, 27, 247–251. [Google Scholar]
- Burn, D.H. Climatic influences on streamflow timing in the headwaters of the Mackenzie River Basin. J. Hydrol. 2008, 352, 225–238. [Google Scholar] [CrossRef]
- Villarini, G.; Serinaldi, F.; Smith, J.A.; Krajewski, W.F. On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Kumar, S.; Merwade, V.; Kam, J.; Thurner, K. Streamflow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains. J. Hydrol. 2009, 374, 171–183. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Adv. Stud. Theor. Appl. Econ. 1950, 23, 345–381. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Wilks, D.S. On “Field Significance” and the false discovery rate. J. Appl. Meteorol. Climatol. 2006, 45, 1181–1189. [Google Scholar] [CrossRef]
- Mishra, A.K.; Özger, M.; Singh, V.P. An entropy-based investigation into the variability of precipitation. J. Hydrol. 2009, 370, 139–154. [Google Scholar] [CrossRef]
- Singh, V.P. The use of entropy in hydrology and water resources. Hydrol. Process. 1997, 11, 587–626. [Google Scholar] [CrossRef]
- Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A.; Nagao, T.; Kamogawa, M.; Tanaka, H.; Uyeda, S. Seismicity order parameter fluctuations in Japan. Proc. Natl. Acad. Sci. USA 2013, 110, 13734. [Google Scholar] [CrossRef]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S.; Lazaridou, M.S. Seismic Electric Signals: An additional fact showing their physical interconnection with seismicity. Tectonophysics 2013, 589, 116. [Google Scholar] [CrossRef]
- Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A.; Ramírez-Rojas, A.; Flores-Márquez, E.L. Natural time analysis: On the deadly Mexico M8.2 earthquake on 7 September 2017. Physica A 2018, 506, 625. [Google Scholar] [CrossRef]
- Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A. A remarkable change of the entropy of seismicity in natural time under time reversal before the super-giant M9 Tohoku earthquake on 11 March 2011. Europhys. Lett. 2018, 124, 29001. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Tzanis, C.; Cracknell, A.P. Precursory signals of the major El Niño Southern Oscillation events. Theor. Appl. Climatol. 2016, 124, 903. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Tzanis, C.G.; Sarlis, N.V. On the progress of the 2015–2016 El Niño event. Atmos. Chem. Phys. 2016, 16, 2007–2011. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Sarlis, N.V.; Efstathiou, M. On the association between the recent episode of the quasi-biennial oscillation and the strong El Niño event. Theor. Appl. Climatol. 2018, 133, 569. [Google Scholar] [CrossRef]
- Charles, C.D. Interaction between the ENSO and the Asian Monsoon in a Coral Record of Tropical Climate. Science 1997, 69, 27–42. [Google Scholar] [CrossRef]
- Singh, R.P.; Roy, S.; Kogan, F. Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int. J. Remote Sens. 2003, 24, 4393–4402. [Google Scholar] [CrossRef]
- Kohli, R.K.; Batish, D.R.; Singh, H.P.; Dogra, K.S. Status, invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L., Ageratum conyzoides L., Lantana camara L.) in India. Biol. Invasions 2006, 8, 1501–1510. [Google Scholar] [CrossRef]
El Niño Years | La Niña Years | Non-El Niño Years | Non-La Niña Years | ||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Change Type | Increasing | Decreasing | Increasing | Decreasing | Increasing | Decreasing | Increasing | Decreasing |
Temperature | Trends | _ | 125 | _ | 47 | 1 | 53 | _ | 84 |
Shifts | _ | 99 | _ | 20 | _ | 23 | _ | 102 | |
Precipitation | Trends | 43 | 3 | 16 | 33 | 5 | 47 | 20 | 6 |
Shifts | 22 | 18 | 4 | 2 | 23 | 25 | 41 | 41 | |
Pot. Evap. | Trends | _ | 120 | _ | 15 | _ | 15 | _ | 78 |
Shifts | _ | 88 | _ | 52 | _ | 52 | _ | 88 |
Monsoon | June | July | August | September | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Change Type | Increasing | Decreasing | Increasing | Decreasing | Increasing | Decreasing | Increasing | Decreasing | Increasing | Decreasing |
Temperature | Trends | _ | 109 | _ | 49 | _ | 76 | _ | 60 | _ | 92 |
Shifts | _ | 122 | _ | 99 | _ | 86 | _ | 76 | 1 | 113 | |
Precipitation | Trends | 35 | 32 | 23 | 6 | 24 | 33 | 25 | 38 | _ | _ |
Shifts | 45 | 43 | 43 | 7 | 31 | 38 | 41 | 40 | _ | 1 | |
Pot. Evap. | Trends | _ | 93 | _ | 14 | _ | 31 | _ | 31 | _ | 53 |
Shifts | _ | 140 | _ | 93 | _ | 89 | _ | 113 | _ | 146 |
TSA Range | |||||
---|---|---|---|---|---|
Variable (Slope) | Monsoon | June | July | August | September |
Temperature (°C/time unit) | −0.97 to +0.31 | −1.50 to +0.22 | −1.12 to +0.18 | −0.85 to +0.09 | −1.08 to +0.54 |
Precipitation (cm/time unit) | −26.30 to +14.55 | −8.33 to +3.61 | −11.20 to +7.34 | −9.43 to +9.65 | −3.54 to +2.34 |
Pot. Evap. (cm/day/time unit) | −2.56 to −0.04 | −0.63 to +0.16 | −0.65 to −0.06 | −0.62 to +0.00 | −0.42 to −0.06 |
Variable | Earliest Shift | Latest Shift | Major Intervals |
---|---|---|---|
Temperature | 1908 | 1997 | 1915–1932 1947–1973 1985–1986 |
Precipitation | 1905 | 1996 | 1908–1917 1920–1934 1939–1978 1980–1996 |
Pot. Evap. | 1920 | 1976 | 1920–1930 1941–1958 1970–1975 |
Variable | Annual Apportionment Entropy (AEa) | Seasonal Apportionment Entropy (AEs) | ||
---|---|---|---|---|
Range (from 0 to 6.6725) | Apportionment (Years) (from 1 to 102) | Range (from 0 to 2) | Apportionment (Months) (from 1 to 4) | |
Temperature | 6.6187 to 6.6723 | 98.27 to 101.99 | 1.9481 to 1.9985 | 3.86 to 3.99 |
Precipitation | 6.6007 to 6.6506 | 97.05 to 100.47 | 1.5982 to 1.8742 | 3.02 to 3.67 |
Pot. Evap. | 6.6701 to 6.6724 | 101.84 to 101.99 | 1.9787 to 1.9973 | 3.94 to 3.99 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamaddun, K.A.; Kalra, A.; Bernardez, M.; Ahmad, S. Effects of ENSO on Temperature, Precipitation, and Potential Evapotranspiration of North India’s Monsoon: An Analysis of Trend and Entropy. Water 2019, 11, 189. https://doi.org/10.3390/w11020189
Tamaddun KA, Kalra A, Bernardez M, Ahmad S. Effects of ENSO on Temperature, Precipitation, and Potential Evapotranspiration of North India’s Monsoon: An Analysis of Trend and Entropy. Water. 2019; 11(2):189. https://doi.org/10.3390/w11020189
Chicago/Turabian StyleTamaddun, Kazi Ali, Ajay Kalra, Miguel Bernardez, and Sajjad Ahmad. 2019. "Effects of ENSO on Temperature, Precipitation, and Potential Evapotranspiration of North India’s Monsoon: An Analysis of Trend and Entropy" Water 11, no. 2: 189. https://doi.org/10.3390/w11020189
APA StyleTamaddun, K. A., Kalra, A., Bernardez, M., & Ahmad, S. (2019). Effects of ENSO on Temperature, Precipitation, and Potential Evapotranspiration of North India’s Monsoon: An Analysis of Trend and Entropy. Water, 11(2), 189. https://doi.org/10.3390/w11020189