Study of the Degradation of Trimethoprim Using Photo-Fenton Oxidation Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Drugs
2.2. Reagents and Instruments
2.3. Experimental Method
2.3.1. Solution Preparation
2.3.2. Experimental Apparatus
2.3.3. Analytical Test Methods
2.4. Experimental Program
2.4.1. Photo-Fenton Blank Experiment
2.4.2. Photo-Fenton Single-Factor Optimization Experiment
2.4.3. Central Composite Experimental Design
3. Results and Discussion
3.1. Photo-Fenton Blank Experiment
3.2. Photo-Fenton Single-Factor Optimization Experiment
3.2.1. The Influence of pH on Removal Efficiency
3.2.2. The Influence of H2O2 Dosage on Removal Rate
3.2.3. The Influence of FeSO4 Dosage on Removal Rate
3.2.4. The Influence of the Initial Concentration of Trimethoprim on the Removal Rate
3.2.5. The Influence of Different UV Light Intensities on Trimethoprim Degradation
3.3. Central Composite Experimental Design Optimization
pH × Fe − 3.24243 × pH2 − 5722.90348 × Fe2.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rudd, M.; Ankley, G.T.; Boxall, A.B.A.; Brooks, B.W. International scientists’ priorities for research on pharmaceutical and personal care products in the environment. Integr. Environ. Asses. 2014, 4, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Bu, Q.W.; Wang, B.; Huang, J.; Deng, S.B.; Yu, G. Pharmaceuticals and personal care products in the aquatic environment in China: A review. J. Hazard. Mater. 2013, 262, 189–211. [Google Scholar] [CrossRef]
- Aasim, M.M.A.; Roland, K.; Leiv, K.S.; Helene, T.R.; Walied, M.A.; Sultan, A.L. Photolysis of pharmaceuticals and personal care products in the marine environment under simulated sunlight conditions: irradiation and identification. Environ. Sci. Pollut. Res. 2017, 24, 14657–14668. [Google Scholar]
- Yin, L.N.; Wang, B.; Yuan, H.L.; Den, S.B.; Huang, J.; Wan, Y.J.; Yu, G. Pay special attention to the transformation products of PPCPs in environment. Emerg. Contam. 2017, 3, 69–75. [Google Scholar] [CrossRef]
- Mottaleb, M.A.; Meziani, M.J.; Matin, M.A.; Arafat, M.M.; Wahab, M.A. Emerging Micro-Pollutants Pharmaceuticals and Personal Care Products (PPCPs) Contamination Concerns in Aquatic Organisms—LC/MS and GC/MS Analysis. In Emerging Micro-Pollutants in the Environment: Occurrence, Fate, and Distribution; Kurwadkar, S., Zhang, X., Ramirez, D., Mitchell, F.L., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2015; pp. 43–74. [Google Scholar] [CrossRef]
- Raya, S.A.; Mushtaque, A.; Ahmed, A.; Choudri, B.S. Translocation of pharmaceuticals and personal care products (PPCPs) into plant tissues: A review. Emerg. Contam. 2017, 3, 132–137. [Google Scholar]
- Prince, N.; Hyeok, C. Sulfate Radicals Destroy Pharmaceuticals and Personal Care Products. Environ. Eng. Sci. 2011, 28, 605–609. [Google Scholar]
- German, S.M.; Gabriela, R.M.; Dora, S.C.; Rubi, R.; Reyna, N. Advanced Oxidation Processes: Ozonationand Fenton Processes Applied to the Removal of Pharmaceuticals. In Ecopharmacovigilance: Multidisciplinary Approaches to Environmental Safety of Medicines; Gómez-Oliván, L., Ed.; The Handbook of Environmental Chemistry; Springer International Publishing: New York, NY, USA, 2019; Volume 66, pp. 119–142. [Google Scholar]
- Su, J.C.; Wang, Y.L.; Su, J.J. Photocatalytic oxidation of dairy efuent with UV lamp or UV light-emitting diode module and biological treatment processes. Int. J. Environ. Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Mohammad, M.; Nematollah, J.; Abbas, D. Efficiency investigation of photo-Fenton process in removal of sodium dodecyl sulphate from aqueous solutions. Desalin. Water Treat. 2016, 57, 24444–24449. [Google Scholar]
- Domingues, E.; Gomes, J.; Quina, M.J.; Quinta-Ferreira, R.M.; Martins, R.C. Detoxification of Olive Mill Wastewaters by Fenton’s Process. Catalysts 2018, 8, 662. [Google Scholar] [CrossRef]
- Wang, S.Z.; Wang, J.L. Trimethoprim degradation by Fenton and Fe(II)-activated persulfate processes. Chemosphere 2018, 191, 97–105. [Google Scholar] [CrossRef]
- Martínez-Costa, J.I.; Rivera-Utrilla, J.; Leyva-Ramos, R.; Sánchez-Polo, M.; Velo-Gala, I.; Mota, A.J. Individual and simultaneous degradation of the antibiotics sulfamethoxazole and trimethoprim in aqueous solutions by Fenton, Fenton-like and photo-Fenton processes using solar and UV radiations. J. Photochem. Photobiol. A 2018, 360, 95–108. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Li, M.; Liu, X.; Zhang, Q.; Liu, R.; Wang, Z.L.; Shi, X.T.; Quan, J.; Shen, X.H.; Zhang, F.W. Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism. Front. Environ. Sci. Eng. 2018, 12. [Google Scholar] [CrossRef]
- Alharbi, S.K.; Price, W.E.; Kang, J.; Fujioka, T.; Nghiem, L.D. Ozonation of carbamazepine, diclofenac, sulfamethoxazole and trimethoprim and formation of major oxidation products. Desalin. Water Treat. 2016, 57, 29340–29351. [Google Scholar] [CrossRef]
- Brown, K.D.; Kulis, J.; Thomson, B.; Chapman, T.H.; Mawhinney, D.B. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci. Total Environ. 2006, 366, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K.L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225, 109–118. [Google Scholar] [CrossRef]
- Yilmaz, G.; Kaya, Y.; Vergili, I.; Gönder, Z.B.; Özhan, G.; Celik, B.O.; Altinkum, S.M.; Bagdatli, Y.; Boergers, A.; Tuerk, J. Characterization and toxicity of hospital wastewaters in Turkey. Environ. Monit. Assess. 2017, 189. [Google Scholar] [CrossRef] [PubMed]
- Celic, M.; Gros, M.; Farre, M.; Barcelo, D.; Petrovic, M. Pharmaceuticals as chemical markers of wastewater contamination in the vulnerable area of the Ebro Delta (Spain). Sci. Total Environ. 2019, 652, 952–963. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.C.; Garcia-Segura, S.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode. Appl. Catal. B 2014, 160–161, 492–505. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Mostafa, E.; Baltruschat, H. Could NOx be released during mineralization of pollutants containing nitrogen by hydroxyl radical? Ascertaining the release of N-volatile species. Appl. Catal. B 2017, 207, 376–384. [Google Scholar] [CrossRef]
- Archana, G.; Dhodapkar, R.; Kumar, A. Offline solid-phase extraction for preconcentration of pharmaceuticals and personal care products in environmental water and their simultaneous determination using the reversed phase high-performance liquid chromatography method. Environ. Monit. Assess. 2016, 188, 512. [Google Scholar] [CrossRef]
- Funai, D.H.; Didier, F.; Giménez, J.; Esplugas, S.; Marco, P.; Machulek, A. Photo-Fenton treatment of valproate under UVC, UVA and simulated solar radiation. J. Hazard. Mater. 2017, 323, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Michael, S.G.; Michael-Kordatou, I.; Beretsou, V.G.; Jäger, T.; Michael, C.; Schwartz, T.; Fatta-Kassinos, D. Solar photo-Fenton oxidation followed by adsorption on activated carbon for the minimisation of antibiotic resistance determinants and toxicity present in urban wastewater. Appl. Catal. B 2019, 244, 871–880. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Anotai, J.; Singhadech, S.; Lu, M.C. Enhancement of biodegradability of o -toluidine effluents by electro-assisted photo-Fenton treatment. Process Saf. Environ. Prot. 2017, 106, 60–67. [Google Scholar] [CrossRef]
- Malik, P.K.; Saha, S.K. Oxidation of Direct Dyes with Hydrogen Peroxide Using Ferrous Ion as Catalyst. Sep. Purif. Technol. 2003, 31, 241–250. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Electro-Fenton Degradation of Synthetic Dyes. Water Res. 2009, 43, 339–344. [Google Scholar] [CrossRef]
- Maezono, T.; Tokumura, M.; Sekine, M.; Kawase, Y. Hydroxyl Radical Concentration Profile in photo-Fenton Oxidation Process Generation and Consumption of Hydroxyl Radicals during the Discoloration of Azo-Dye Orange Ii. Chemosphere 2011, 82, 1422–1430. [Google Scholar] [CrossRef]
- Inmaculada, V.G.; Jesús, J.L.P.; Manuel, S.P.; José, R.U. Comparative study of oxidative degradation of sodium diatrizoate in aqueous solution by H2O2/Fe2+, H2O2/Fe3+, Fe (VI) and UV, H2O2/UV, K2S2O8/UV. Chem. Eng. J. 2014, 241, 504–512. [Google Scholar]
- Boonrattanakij, N.; Sakul, W.; Garcia-Segura, S.; Lu, M.C. Implementation of fluidized-bed Fenton as pre-treatment to reduce chemical oxygen demand of wastewater from screw manufacture: Influence of reagents feeding mode. Sep. Purif. Technol. 2018, 202, 275–280. [Google Scholar] [CrossRef]
- Ghafari, S.; Aziz, H.A.; Isa, M.H.; Zinatizadeh, A.A. Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J. Hazard. Mater. 2009, 163, 650–656. [Google Scholar] [CrossRef]
Factor | Unit | −1 1 | 0 | 1 | Alpha (−) | Alpha (+) |
---|---|---|---|---|---|---|
pH | 2.5 | 4 | 5.5 | 1.47731 | 6.52269 | |
H2O2 concentration | mmol/L | 1.5 | 3 | 4.5 | 0.477311 | 5.52269 |
Fe2+ concentration | mmol/L | 0.03 | 0.06 | 0.09 | 0.009542 | 0.110454 |
Design Sequence | Operation Sequence | pH | H2O2 Concentration (mmol/L) | Fe2+ Concentration (mmol/L) | Degradation Rate (%) |
---|---|---|---|---|---|
18 | 1 | 4.00 | 3.0 | 0.06 | 87.98 |
17 | 2 | 4.00 | 3.0 | 0.06 | 89.97 |
10 | 3 | 6.52 | 3.0 | 0.06 | 75.23 |
14 | 4 | 4.00 | 3.0 | 0.11 | 92.96 |
12 | 5 | 4.00 | 5.5 | 0.06 | 97.62 |
16 | 6 | 4.00 | 3.0 | 0.06 | 89.21 |
19 | 7 | 4.00 | 3.0 | 0.06 | 88.75 |
6 | 8 | 5.50 | 1.5 | 0.09 | 92.03 |
3 | 9 | 2.50 | 4.5 | 0.03 | 70.74 |
11 | 10 | 4.00 | 0.5 | 0.06 | 84.27 |
2 | 11 | 5.50 | 1.5 | 0.03 | 37.21 |
5 | 12 | 2.50 | 1.5 | 0.09 | 83.37 |
7 | 13 | 2.50 | 4.5 | 0.09 | 89.79 |
13 | 14 | 4.00 | 3.0 | 0.01 | 65.81 |
8 | 15 | 5.50 | 4.5 | 0.09 | 95.98 |
20 | 16 | 4.00 | 3.0 | 0.06 | 87.38 |
9 | 17 | 1.48 | 3.0 | 0.06 | 71.40 |
4 | 18 | 5.50 | 4.5 | 0.03 | 54.74 |
1 | 19 | 2.50 | 1.5 | 0.03 | 57.06 |
15 | 20 | 4.00 | 3.0 | 0.06 | 91.33 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value Prob > F |
---|---|---|---|---|---|
Model | 4306.57 | 9 | 478.51 | 8.20 | 0.0014 significant |
Residual | 583.46 | 1 | 58.35 | ||
Pure Error | 10.06 | 5 | 2.01 | ||
Corrected Total | 4890.04 | 19 | |||
Standard Deviation | 7.64 | R2 | 0.8807 | ||
Mean | 80.14 | Adjusted R2 | 0.7733 | ||
Adequate Precision | 9.358 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Pang, W.; Mao, Y.; Sun, Q.; Zhang, P.; Ke, Q.; Yu, H.; Dai, C.; Zhao, M. Study of the Degradation of Trimethoprim Using Photo-Fenton Oxidation Technology. Water 2019, 11, 207. https://doi.org/10.3390/w11020207
Wang Q, Pang W, Mao Y, Sun Q, Zhang P, Ke Q, Yu H, Dai C, Zhao M. Study of the Degradation of Trimethoprim Using Photo-Fenton Oxidation Technology. Water. 2019; 11(2):207. https://doi.org/10.3390/w11020207
Chicago/Turabian StyleWang, Qi, Wenjing Pang, Yingdan Mao, Quan Sun, Pengfei Zhang, Qiang Ke, Hengguo Yu, Chuanjun Dai, and Min Zhao. 2019. "Study of the Degradation of Trimethoprim Using Photo-Fenton Oxidation Technology" Water 11, no. 2: 207. https://doi.org/10.3390/w11020207
APA StyleWang, Q., Pang, W., Mao, Y., Sun, Q., Zhang, P., Ke, Q., Yu, H., Dai, C., & Zhao, M. (2019). Study of the Degradation of Trimethoprim Using Photo-Fenton Oxidation Technology. Water, 11(2), 207. https://doi.org/10.3390/w11020207