Isohyetal Maps of Daily Maximum Rainfall for Different Return Periods for the Colombian Caribbean Region
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Stationary Frequency Analysis
3.1.1. Gumbel Distribution (Extreme Value Type 1 or Fisher–Tippett Type 1)
3.1.2. Generalized Extreme Value Distribution
3.1.3. Log-Pearson 3
3.2. Goodness-of-Fit Test
3.3. Estimation of P24h-max for Different Return Periods
3.4. Drawing of Isohyetals for Different Return Periods
3.5. Assessing the Interpolation Methods
4. Results and Discussion
4.1. Multiannual Time Series of P24h-max Values
4.2. CDFs and Frequency Analysis
4.3. Interpolation Methods Assessment
4.4. Isohyetal Maps for Different Return Periods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology, 1st ed.; McGraw-Hill: New York, NY, USA, 1988; pp. 350–376. [Google Scholar]
- Bedient, P.B.; Huber, W.C. Hydrology and Floodplain Analysis; Prentice-Hall: Upper Saddle River, NJ, USA, 2002; pp. 168–224. [Google Scholar]
- Vargas, M.R.; Díaz-Granados, M. Colombian Regional Synthetic IDF Curves. Master’s Thesis, University of Los Andes, Bogotá, Colombia, 1998. [Google Scholar]
- IDEAM; PNUD; MADS; DNP; CANCILLERÍA. New Scenarios of Climate Change for Colombia 2011–2100 Scientific Tools for Department-Based Decision Making—National Emphasis: 3rd National Bulletin on Climate Change. 2015. Available online: http://documentacion.ideam.gov.co/openbiblio/bvirtual/022964/documento_nacional_departamental.pdf (accessed on 7 September 2018).
- IDEAM. Intensity-Duration-Frequency Curves (IDF). Available online: http://www.ideam.gov.co/curvas-idf (accessed on 18 March 2018).
- Ministry of Housing, City, and Development (MinVivienda), Republic of Colombia. Resolution 0330 of 8 June 2017, Technical Guidelines for the Sector of Potable Water and Basic Sanitation (RAS). 2017. Available online: http://www.minvivienda.gov.co/ResolucionesAgua/0330%20-%202017.pdf (accessed on 7 September 2018).
- Liu, Y.; Zhang, W.; Shao, Y.; Zhang, K. A Comparison of Four Precipitation Distribution Models Used in Daily Stochastic Models. Adv. Atmos. Sci. 2011, 28, 809–820. [Google Scholar] [CrossRef]
- Chowdhury, A.F.M.K.; Lockart, N.; Willgoose, G.; Kuczera, G.; Kiem, A.S.; Parana Manage, N. Development and evaluation of a stochastic daily rainfall model with long-term variability. Hydrol. Earth Syst. Sci. 2017, 21, 6541–6558. [Google Scholar] [CrossRef] [Green Version]
- Pizarro, R.; Ingram, B.; Gonzalez-Leiva, F.; Valdés-Pineda, R.; Sangüesa, C.; Delgado, N.; García-Chevesich, P.; Valdés, J.B. WEBSEIDF: A Web-Based System for the Estimation of IDF Curves in Central Chile. Hydrology 2018, 5, 40. Available online: https://www.mdpi.com/2306-5338/5/3/40 (accessed on 25 January 2019). [CrossRef]
- Burgess, C.P.; Taylor, M.A.; Stephenson, T.; Mandal, A. Frequency analysis, infilling and trends for extreme precipitation for Jamaica (1895–2100). J. Hydrol. 2015, 3, 424–443. [Google Scholar] [CrossRef] [Green Version]
- Seo, Y.; Hwang, J.; Kim, B. Extreme Precipitation Frequency Analysis Using a Minimum Density Power Divergence Estimator. Water 2017, 9, 81. [Google Scholar] [CrossRef]
- Nguyen, V.-T.-B.; Nguyen, T.-H. Statistical Modeling of Extreme Rainfall Processes (SMExRain): A Decision Support Tool for Extreme Rainfall Frequency Analyses. In Proceedings of the 12th International Conference on Hydroinformatics, Incheon, Korea, 21–26 August 2016; Volume 154, pp. 624–630. Available online: https://ac.els-cdn.com/S1877705816319506/1-s2.0-S1877705816319506-main.pdf?_tid=e587b0ac-b681-4a07-9b9f-2850d1d3ddf6&acdnat=1549752522_fca135a461dacf0f9e6e06a9eeef2e48 (accesses on 8 February 2019).
- Ngoc Phien, H.; Arbhabhirama, A.; Sunchindah, A. Rainfall distribution in northeastern Thailand. Hydrol. Sci. J. 2009, 25, 167–182. [Google Scholar] [CrossRef]
- Ministry of Public Development, General Department of Water, Republic of Chile. Maximum Precipitations for 1, 2, and 3 Days. 1990. Available online: http://bibliotecadigital.ciren.cl/bitstream/handle/123456789/6582/DGA-HUMED32.pdf?sequence=1&isAllowed=y (accessed on 25 January 2019).
- Ministry of Development. State Secretary of Infrastructure and Transport, General Direction of Roads. Daily Maximum Rainfall in Peninsular Spain. 1999. Available online: http://epsh.unizar.es/~serreta/documentos/maximas_Lluvias.pdf (accessed on 26 January 2019).
- Liaw, C.-H.; Chiang, Y.-C. Dimensionless Analysis for Designing Domestic Rainwater Harvesting Systems at the Regional Level in Northern Taiwan. Water 2014, 6, 3913–3933. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Commerce (USDOC). Technical Paper No. 40 (TP-40), Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years; Weather Bureau Technical Papers: Washington, DC, USA, 1961.
- Jaramillo-Robledo, A. Lluvias máximas en 24 horas para la región Andina de Colombia (24-hour maximum rainfall for the Colombian Andean region). Cenicafé 2005, 56, 250–268. [Google Scholar]
- Gutiérrez Jaraba, J.; Pérez Márquez, F.; Angulo Blanquicett, G.; Chiriboga Gavidia, G.; Valdés Cervantes, L. Determination of the Intensity-Duration-Frequency (IDF) Curves for the City of Cartagena de Indias for the period between 1970 and 2015. In Proceedings of the Fifteenth LACCEI International Multi-Conference for Engineering, Education, and Technology: Global Partnerships for Development and Engineering Education, Boca Raton, FL, USA, 19–21 July 2017. [Google Scholar]
- Pulgarín Dávila, E.G. Regional Equations for the Estimation of the Intensity-Duration-Frequency Curves based on the Rainfall Scale Properties (Colombian Andean Region). Master’s Thesis, National University of Colombia, Bogotá, Colombia, 2009. [Google Scholar]
- Acosta Castellanos, P.M.; Sierra Aponte, L.X. IDF construction methods’ evaluation, from probability distributions and adjustment’s parameters. Revista Facultad Ingeniería 2013, 22, 25–33. [Google Scholar] [CrossRef]
- Becerra-Oviedo, J.A.; Sánchez-Mazorca, L.F.; Acosta-Castellanos, P.M.; Díaz-Arévalo, J.L. Regionalization of IDF curves for the use of hydrometeorological models in the Western Sabana of Cundinamarca department. Revista Ingeniería Región 2015, 14, 143–150. [Google Scholar] [CrossRef]
- Muñoz, B.J.E.; Zamudio, H.E. Regionalización de Ecuaciones Para el Cálculo de Curvas de Intensidad, Duración y Frecuencia Mediante Mapas de Isolíneas en el Departamento de Boyacá (Regionalization of the Equations for the Calculation of the IDF Curves through Isohyetals Maps in the Department of Boyacá). Available online: http://www.scielo.org.co/pdf/tecn/v22n58/0123-921X-tecn-22-58-31.pdf (accessed on 25 January 2019).
- Hydrographic and Oceanographic Research Center (CIOH). General Circulation of the Atmosphere in Colombia. 2010. Available online: https://www.cioh.org.co/meteorologia/Climatologia/01-InfoGeneralClimatCaribeCol.pdf (accessed on 7 August 2018).
- Poveda, G.; Jaramillo, A.; Gil, M.M.; Quinceno, N.; Mantilla, R.I. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour. Res. 2001, 37, 2169–2178. [Google Scholar] [CrossRef]
- Waylen, P.; Poveda, G. El Niño-Southern Oscillation and aspects of western South American hydro-climatology. Hydrol. Process 2002, 16, 1247–1260. [Google Scholar] [CrossRef]
- Poveda, G.; Álvarez, D.M.; Rueda, O.A. Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim. Dyn. 2011, 36, 2233–2249. [Google Scholar] [CrossRef]
- Hoyos, N.; Escobar, J.; Restrepo, J.C.; Arango, A.M.; Ortiz, J.C. Impact of the 2010–2011 La Niña phenomenon in Colombia, South America: The human toll of an extreme weather event. Appl. Geogr. 2013, 39, 16–25. [Google Scholar] [CrossRef]
- Ramírez-Cerpa, E.; Acosta-Coll, M.; Vélez-Zapata, J. Analysis of the climatic conditions for short term precipitation in urban areas: A case study Barranquilla, Colombia. Idesia 2017, 32, 87–94. [Google Scholar]
- Schneider, L.E.; McCuen, R.H. Statistical guidelines for curve number generation. J. Irrig. Drain. Eng. 2005, 131, 282–290. [Google Scholar] [CrossRef]
- Macvicar, T.H. Frequency Analysis of Rainfall Maximums for Central and South Florida, Technical Publication # 81-3; South Florida Water Management District: West Palm Beach, FL, USA, 1981.
- Ali, A.; Abtew, W. Regional Rainfall Frequency Analysis for Central and South Florida. Technical Publication WRE#380; South Florida Water Management District: West Palm Beach, FL, USA, 1999.
- Pathak, C.S. Frequency Analysis of Rainfall Maximums for Central and South Florida, Technical Publication EMA # 390; South Florida Water Management District: West Palm Beach, FL, USA, 2001.
- Obeysekera, J.; Salas, J.D. Quantifying the uncertainty of design floods under nonstationary conditions. J. Hydrol. Eng. 2014, 19, 1438–1446. [Google Scholar] [CrossRef]
- Salas, J.D.; Obeysekera, J.; Vogel, R.M. Techniques for assessing water infrastructure for nonstationary extreme events: A review. Hydrol. Sci. J. 2018, 63, 325–352. [Google Scholar] [CrossRef]
- Faber, B. Current methods for hydrologic frequency analysis. In Proceedings of the Workshop on Nonstationarity, Hydrologic Frequency Analysis, and Water Management, Colorado Water Institute Information Series No. 109, Boulder, CO, USA, 13–15 January 2010; pp. 33–39. [Google Scholar]
- Haan, C.T. Statistical Methods in Hydrology; The Iowa State University Press: Ames, IA, USA, 1977; pp. 97–158. [Google Scholar]
- McCuen, R.H. Microcomputer Applications in Statistical Hydrology; Prentice Hall: Englewood Cliffs, NJ, USA, 1993; pp. 58–69. [Google Scholar]
- Singh, V.P. Entropy-Based Parameter Estimation in Hydrology; Kluwe Academic Dordrecht: London, UK, 1988. [Google Scholar]
- Chin, D.A. Water-Resources Engineering, 3rd ed.; Pearson: London, UK, 2013; pp. 344–395. [Google Scholar]
- Gumbel, E.J. The return period of flood flows. Ann. Math. Stat. 1941, 2, 163–190. [Google Scholar] [CrossRef]
- Gumbel, E.J. Statistical Theory of Extreme Values and Some Practical Applications: A Series of Lectures; U.S. Dept. of Commerce, National Bureau of Standards Applied Mathematics Series 33; U.S. Govt. Print. Office: Springfield, VA, USA, 1954.
- Jenkinson, A.F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. R. Meteorol. Soc. 1955, 81, 158–171. [Google Scholar] [CrossRef]
- Frechet, M. Sur la loi de probabilité de l’ecart máximum (On the probability law of máximum values). Annales Societe Polonaise Mathematique 1927, 6, 93–116. [Google Scholar]
- Weibull, W. A statistical theory of the strength of materials. Proc. Ing. Vetensk Akad. 1939, 51, 5–45. [Google Scholar]
- Lazoglou, G.; Anagnostopoulou, C. An Overview of Statistical Methods for Studying the Extreme Rainfalls in Mediterranean. In Proceedings of the 2nd International Electronic Conference on Atmospheric Sciences, Basel, Switzerland, 16–31 July 2017; Available online: http://sciforum.net/conference/ecas2017 (accessed on 4 September 2018).
- Selaman, O.S.; Said, S.; Putuhena, F.J. Flood Frequency Analysis for Sarawak using Weibull, Gringorten and L-moments Formula. J. Inst. Eng. 2007, 68, 43–52. [Google Scholar]
- Chikobvu, D.; Chifurira, R. Modelling of Extreme Minimum Rainfall Using Generalised Extreme Value Distribution for Zimbabwe. S. Afr. J. Sci. 2015, 111. [Google Scholar] [CrossRef]
- Millington, M.; Das, S.; Simonovic, S.P. The Comparison of GEV, Log-Pearson Type 3 and Gumbel Distributions in the Upper Thames River Watershed under Global Climate Models; Water Resources Research Report (Report # 077); The University of Western Ontario, Department of Civil and Environmental Engineering: London, ON, Canada, 2011; Available online: https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=1039&context=wrrr (accessed on 7 May 2018).
- Koutsoyiannis, D. Statistics of extremes and estimation of extreme rainfall: II. Empirical investigation of long rainfall records. J. Hydrol. Sci. J. 2004, 49, 610. [Google Scholar] [CrossRef]
- Alam, M.A.; Emura, K.; Farnham, C.; Yuan, J. Best-Fit Probability Distributions and Return Periods for Maximum Monthly Rainfall in Bangladesh. Climate 2018, 6, 9. Available online: https://www.mdpi.com/2225-1154/6/1/9 (accessed on 8 August 2018). [CrossRef]
- U.S. Geological Survey (USGS). Flood-Frequency Analyses, Manual of Hydrology: Part 3, Flood-Flow Techniques; U.S. Government Printing Office: Washington, DC, USA, 1960. Available online: https://pubs.usgs.gov/wsp/1543a/report.pdf (accessed on 10 September 2017).
- U.S. Geological Survey (USGS). Theoretical Implications of under Fit Streams, Flood-Flow Techniques; U.S. Government Printing Office: Washington, DC, USA, 1965. Available online: https://pubs.usgs.gov/pp/0452c/report.pdf (accessed on 10 September 2017).
- Lumia, R.; Freehafer, D.A.; Smith, M.J. Magnitude and Frequency of Floods in New York: U.S. Geological Survey Scientific Investigations Report 2006–5112. 2006. Available online: https://pubs.usgs.gov/sir/2006/5112/SIR2006-5112.pdf (accessed on 10 September 2018).
- Webster, V.L.; Stedinger, J. Log-Pearson Type 3 Distribution and Its Application in Flood Frequency Analysis. I: Distribution Characteristics. J. Hydrol. Eng. 2007, 12. [Google Scholar] [CrossRef]
- Greis, N.P. Flood frequency analysis: A review of 1979–1982. Rev. Geophys. 1983, 21, 699–706. [Google Scholar] [CrossRef]
- Vogel, R.M.; McMahon, T.A.; Chiew, F.H.S. Floodflow frequency model selection in Australia. J. Hydrol. 1993, 146, 421–449. [Google Scholar] [CrossRef]
- Jam, P.; Singh, V.J. Estimating parameters of EV 1 distribution for flood frequency analysis. J. Am. Water Resour. Assoc. 1987, 23, 59–71. [Google Scholar] [CrossRef]
- Ngoc Phien, H. A review of methods of parameter estimation for the extreme value type-1 distribution. J. Hydrol. 1987, 90, 251–268. [Google Scholar] [CrossRef]
- Fathi, K.; Bagheri, S.F.; Alizadeh, M.; Alizadeh, M. A study of methods for estimating in the exponentiated Gumbel distribution. J. Stat. Theory Appl. 2017, 16, 81–95. [Google Scholar] [CrossRef]
- Sarangi, A.; Cox, C.A.; Madramootoo, C.A. Geostatistical Methods for Prediction of Spatial Variability of Rainfall in a Mountainous Region. Trans. ASAE 2005, 48, 943–954. Available online: http://digitool.library.mcgill.ca/webclient/StreamGate?folder_id=0&dvs=1546993372127~978 (accessed on 5 February 2018). [CrossRef]
- Bhunia, G.S.; Shit, P.K.; Maiti, R. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). J. Saudi Soc. Agric. Sci. 2018, 17, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Boer, E.P.J.; De Beursl, K.M.; Hartkampz, A.D. Kriging and thin plate splines for mapping climate variables. J. Appl. Genet. 2001, 3, 146–154. [Google Scholar] [CrossRef]
- Gonzalez, A.; Temimi, M.; Khanbilvardi, R. Adjustment to the curve number (NRCS-CN) to account for the vegetation effect on hydrological processes. Hydrol. Sci. J. 2015, 60, 591–605. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.532.2506&rep=rep1&type=pdf (accessed on 20 October 2018). [CrossRef]
- Gonzalez-Alvarez, A.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Ramos, H.M. Effect of the Non-Stationarity of Rainfall Events on the Design of Hydraulic Structures for Runoff Management and Its Applications to a Case Study at Gordo Creek Watershed in Cartagena de Indias, Colombia. Fluids 2018, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hagen, S.C.S.; Alizad, K. Climate change impact and uncertainty analysis of extreme rainfall events in the Apalachicola River basin, Florida. J. Hydrol. 2012, 480, 125–135. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. A Review of Spatial Interpolation Methods for Environmental Scientists; Geoscience Australia: Canberra, ACT, Australia, 2008. Available online: https://pdfs.semanticscholar.org/686c/29a81eab59d7f6b7e2c4b060b1184323a122.pdf (accessed on 23 August 2018).
- Mitas, L.; Mitasova, H. Spatial Interpolation. In Geographic Information Systems: Principles, Techniques, Management and Applications, 2nd ed.; Wiley: Longley, PA, USA, 2005; Volume 1, pp. 481–492. [Google Scholar]
- Ikechukwu, M.N.; Ebinne, E.; Idorenyin, U.; Raphael, N.I. Accuracy Assessment and Comparative Analysis of IDW, Spline and Kriging in Spatial Interpolation of Landform (Topography): An Experimental Study. Earth Environ. Sci. 2017, 9, 354–371. [Google Scholar] [CrossRef]
- Curtarelli, M.; Leão, J.; Ogashawara, I.; Lorenzzetti, J.; Stech, J. Assessment of Spatial Interpolation Methods to Map the Bathymetry of an Amazonian Hydroelectric Reservoir to Aid in Decision Making for Water Management. Int. J. Geo-Inf. 2015, 4, 220–235. [Google Scholar] [CrossRef] [Green Version]
- Simpson, G.; Wu, Y.H. Accuracy and Effort of Interpolation and Sampling: Can GIS Help Lower Field Costs? Int. J. Geo-Inf. 2014, 3, 1317–1333. [Google Scholar] [CrossRef] [Green Version]
- Di Piazza, A.; Lo Conti, F.; Viola, F.; Eccel, E.; Noto, L.V. Comparative Analysis of Spatial Interpolation Methods in the Mediterranean Area: Application to Temperature in Sicily. Water 2015, 7, 1866–1888. [Google Scholar] [CrossRef] [Green Version]
- Phillips, D.L.; Dolph, J.; Marks, D. A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agric. For. Meteorol. 1992, 58, 119–141. [Google Scholar] [CrossRef]
- Luo, W.; Taylor, M.C.; Parker, S.R. A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. Int. J. Clim. 2008, 28, 947–959. [Google Scholar] [CrossRef] [Green Version]
Department | No. of Rain Gauges | Total P24h-max Observations | P24h-max Value (mm) | Year of Installation of the Oldest Rain Gauge | ||
---|---|---|---|---|---|---|
Max | Min | Avg. | ||||
Guajira | 44 | 1834 | 247.6 | 5.4 | 77.6 | 1937 |
Cesar | 60 | 2478 | 271.0 | 20.0 | 99.8 | 1931 |
Magdalena | 55 | 2159 | 267.0 | 15.0 | 98.7 | 1956 |
Atlántico | 13 | 568 | 250.0 | 30.0 | 83.8 | 1941 |
Bolívar | 57 | 2153 | 280.0 | 24.5 | 104.4 | 1941 |
Sucre | 32 | 1232 | 301.0 | 32.0 | 101.9 | 1945 |
Córdoba | 53 | 2184 | 250.0 | 34.0 | 96.4 | 1959 |
Antioquia | 3 | 115 | 254.0 | 54.0 | 106.4 | 1974 |
Santander | 1 | 61 | 100.0 | 20.0 | 45.48 | 1956 |
Norte de Santander | 1 | 44 | 152.0 | 38.4 | 77.0 | 1974 |
Total | 318 | 12,828 |
Dept. | Rain Gauge Name |
---|---|
Atlántico | Hibaracho, Lena, Polo Nuevo, Puerto (Pto.) Giraldo, Casa de Bombas, Repelón, Sabanalarga, Los Campanos, Hacienda (Hda.) El Rabón, Aeropuerto (Apto.) Ernesto Cortissoz, Ponedera, San Pedrito Alerta, and Usiacurí. |
Bolívar | Bayunca, Apto. Rafael Núñez, Escuela Naval-Centro de Investigaciones Oceanográficas e Hidrográficas (CIOH), Santa (Sta.) Ana, Guacamayo, Guaranda, Buenavista, Rionuevo, Arenal, Arjona, Rocha, Sincerín, Barranco Loba, El Limón, La Esperanza, Córdoba, Carmen de Bolívar, Camarón, Pozón, Aguadas La Alerta, San Antonio, Barraco Yuca, Coyongal Alertas, Barbosa, Baracoa, Gamero, San Basilio, El Viso, Chilloa, Flamenco, La Calma, Níspero, Plátano, Mampuján, Presa Arroyo Grande, Nueva Florida, San Pablo, Sta. Cruz, Candelaria, Guaymaral, Mompox, Pinillos, Regidor, San Estanislao, Sta. Rosa, El Jolón, San Cristobal, Casa Piedra, Caimital, La Candelaria, Astilleros, La Raya, San Cayetano, Playitas, Zambrano, Hda. Indugan, and Cañaveral. |
Cesar | Villa Marlene, Patillal, Atanquez, París de Francia, La Esperanza, Caracolí, San Ángel, Villa Rosa, El Callao, Apto. Alfonso López, Guaymaral, Barranca Lebrija, Totumal, Aguas Claras, Hda. Las Playas, Hda. Sta. Teresa, Codazzi del Cesar (DC), Hda. Centenario, El Retorno, Motilonia Codazzi, Astrea, El Yucal, Socomba, Bosconia, Palmariguaní, Hda. Manature, El Canal, Saloa, Hda. El Terror, Chimichagua, Rincón Hondo, Chiriguaná, Curumaní, Zapatoza, Poponte, La Primavera, La Loma, El Paso, Puerto Mosquito, Gamarra, La Gloria, La Vega, La Jagua, Manaure, La Raya, Sta. Isabel, Pueblo Bello, San Sebastián de Rábago, Río de Oro, Los Ángeles, Hda. San Daniel, El Líbano, San Alberto, Los Planes, San Benito, San Gabriel, Leticia, El Rincón, La Dorada, and Tamalameque. |
Córdoba | Sta. Lucía, Hda. Sta. Cruz, Loma Verde, Galán, San Anterito, Buenos Aires, Maracayo, Boca de la Ceiba, Sabanal, Universidad de Córdoba, Apto. Los Garzones, Los Pájaros, Cecilia, Ayapel, Buenavista, Rabolargo, Canalete, Cereté, Turipana, Chimá, Chinú, Turipana, El Salado, La Apartada, La Doctrina, Lorica, Momil, Pica Pica, San Francisco, Hda. Cuba, Centro Alegre, Planeta Rica, Cintura, Hda. Sajondía, Jaramagal, Cristo Rey, Hda. Las Acacias, Sahagún, Jobo El Tablón, Trementino, Colomboy, El Limón, San Bernardo del Viento, San Carlos, Sta. Rosa, Carrizal, Callemar, Corozal 2, San Antonio, Carrillo, Uré, Tierra Alta, and Carmelo. |
Guajira | Matitas, Camarones, Los Remedios, Apto. Almirante Padilla, La Arena, Cuestecita, Hda. La Esperanza, Lagunitas, Sabanas de Manuela, Dibulla, Las Lomitas, El Juguete, El Conejo, La Paulina, Escuela Ceura, Paraguachón, Escuela Agropecuaria Carraipía, El Pájaro, Mayapo, Caracas, Manaure, Cañaverales, Hatico de los Indios, San Juan del Cesar, Santana Urraich, Nuevo Ambiente, Buenos Aires, Kauraquimaná, Irraipa, Perpana, Carrizal, Jojoncito, Caimito, Puerto Estrella, Orochón, Sipanao, Siapana, Sillamaná, Jasay, Puerto López, Nazareth, Rancho Grande, Urumita, and Villanueva. |
Magdalena | Vista Nieves, Buritaca, Minca, Apto. Simón Bolívar, Guacacha, San Lorenzo, Palomino, Cenizo, La María, Villa Concepción, Campamento El Difícil, Hda. La Cabaña, San Pablo, La Ye, La Palma, Menchiquejo, El Palmor, Sevillano, San Roque, Tiogollo, Negritos, Las Flores, El Bongo, El Destino, Gavilán, La Florida, Bellavista, Bayano, Fundación Rosa de Lima, Nueva Granada, Irán, Doña María, Monterrubio, Garrapata, Apure El Agrado, Tasajera, La Esperanza, Palo Alto, San Rafael, San Ángel, San Sebastián, Salamina, San Zenón, El Brillante, Tierra Grata, La Mecha, El Pueblito, Los Cocos, El Carmen, El Enano, Prado Sevilla, Los Proyectos, and La Unión. |
Sucre | Hda. La Frontera, Caimito, Primates, Hato Nuevo, Apto. Rafael Bravo, Galeras, Villanueva, Pto. Asis, Palmarito, Zapata, Majagual, Las Tablitas, Santiago Apóstol, San Benito de Abad, Hda. Eureka, Hda. El Torno, Tolú, Hda. Santa Ángela, Tolú Viejo, San Onofre, Sabanas de Mucacal, Sabanatica, Hda. La Argentina, Chalán, Hda. Belén, Villa Cecilia, San Pedro, Palo Alto, Campo Alegre, San Luis, Berrugas, and Isla de Coco. |
Additional Rain Gauges Used | |
Antioquia | Yondó, El Mellito, and San Rita. |
Santander | Apto. Palonegro. |
Norte de Santander | Labateca. |
Interpolation Method | Z-Value | Cell Size | Search Radius |
---|---|---|---|
Spline (Regularized) | 2 | 0.021 |
|
Ordinary Kriging | 2 | 0.021 |
|
IDW | 2 | 0.021 |
|
Department | Best-Fit CDF | Total | ||
---|---|---|---|---|
GEV | Gumbel | LP3 | ||
Guajira | 21 | 18 | 5 | 44 |
Cesar | 27 | 21 | 12 | 60 |
Magdalena | 26 | 15 | 14 | 55 |
Atlántico | 7 | 6 | 0 | 13 |
Bolívar | 23 | 22 | 12 | 57 |
Sucre | 16 | 14 | 2 | 32 |
Córdoba | 26 | 12 | 14 | 52 |
Antioquia | 3 | 0 | 0 | 3 |
Santander | 1 | 0 | 0 | 1 |
Norte de Santander | 0 | 1 | 0 | 1 |
Total | 150 | 109 | 59 | 318 |
Department | EV Type Equivalence of the GEV | Total | |
---|---|---|---|
EV-3 (Weibull) (k > 0) | EV-2 (Fréchet) (k < 0) | ||
Guajira | 12 | 9 | 21 |
Cesar | 17 | 10 | 27 |
Magdalena | 19 | 7 | 26 |
Atlántico | 6 | 1 | 7 |
Bolívar | 19 | 4 | 23 |
Sucre | 10 | 6 | 16 |
Córdoba | 16 | 10 | 26 |
Antioquia | 1 | 2 | 3 |
Santander | 0 | 1 | 1 |
Norte de Santander | N/A | N/A | 0 |
Total | 100 | 50 | 150 |
Rain Gauge Name (Department) | P24h-max (mm) | CDF | Chi-Squared (X2) | ||||||
---|---|---|---|---|---|---|---|---|---|
Return Period (Year) | |||||||||
2 | 5 | 10 | 20 | 25 | 50 | 100 | |||
Santa Ana (Bolívar) | 101.1 | 124.7 | 135.9 | 144.3 | 146.6 | 152.5 | 157.2 | GEV | 2.15 |
96.0 | 126.9 | 147.3 | 166.9 | 173.1 | 192.3 | 211.3 | Gumbel | 6.52 | |
99.2 | 124.7 | 138.2 | 149.1 | 152.2 | 161.0 | 168.5 | LP3 | 3.12 | |
Palo Alto (Magdalena) | 95.4 | 126.8 | 149.0 | 171.5 | 178.8 | 202.2 | 226.7 | GEV | 2.91 |
96.5 | 127.3 | 147.7 | 167.2 | 173.4 | 192.5 | 211.5 | Gumbel | 6.04 | |
96.1 | 127.5 | 148.9 | 169.9 | 176.6 | 197.7 | 219.3 | LP3 | 4.48 |
Watershed | Area (ha) | Distance to Nearest Rain Gauge in km |
---|---|---|
W-1 | 651.7 | 3.3 (Bayunca) |
W-2 | 2146.5 | 9.2 (Cañaveral) |
W-3 | 710.7 | 11.2 (Escuela Naval-CIOH) |
W-4 | 52.4 | 0.0 (rain gauge Bayunca is within the watershed) |
W-5 | 154.0 | 0.0 (rain gauge Cañaveral is within the watershed) |
W-6 | 460.4 | 0.0 (rain gauge Loma Grande is within the watershed) |
W-7 | 200.6 | 6.0 (Loma Grande) |
W-8 | 204.6 | 9.2 (Loma Grande) |
Rain Gauge | P24h-max-RG (mm) | |||||||
Tr (Years) | ||||||||
2 | 5 | 10 | 20 | 25 | 50 | 100 | ||
Bayunca | 100.5 | 127.6 | 140.6 | 150.5 | 153.5 | 160.5 | 166.3 | |
Cañaveral | 86.6 | 115.7 | 136.4 | 157.2 | 164.1 | 185.8 | 208.5 | |
Escuela Naval-CIOH | 87.5 | 116.7 | 133.7 | 148.6 | 153.0 | 165.9 | 177.6 | |
Loma Grande | 75.4 | 101.3 | 118.4 | 134.8 | 140.0 | 156.1 | 172.0 | |
Interpolation Method | Watershed | Areal P24h-max-IM (mm) | ||||||
IDW Adjusted | W-1 | 95.0 | 125.0 | 135.0 | 146.2 | 155.0 | 155.4 | 165.0 |
W-2 | 89.9 | 115.0 | 135.0 | 162.4 | 169.0 | 181.4 | 187.1 | |
W-3 | 85.0 | 115.0 | 135.0 | 155.5 | 156.5 | 170.7 | 180.1 | |
W-4 | 96.7 | 125.0 | 138.8 | 154.0 | 155.0 | 163.7 | 165.0 | |
W-5 | 85.0 | 115.0 | 135.0 | 155.0 | 165.0 | 175.0 | 205.0 | |
W-6 | 70.0 | 100.0 | 110.0 | 120.0 | 122.2 | 136.9 | 155.0 | |
W-7 | 75.0 | 100.0 | 110.0 | 124.9 | 129.0 | 145.0 | 155.0 | |
W-8 | 75.0 | 100.0 | 114.2 | 135.0 | 137.1 | 149.1 | 155.0 | |
Spline | W-1 | 91.8 | 116.7 | 128.8 | 138.7 | 141.4 | 149.8 | 157.1 |
W-2 | 76.5 | 100.7 | 115.1 | 129.9 | 133.9 | 149.7 | 161.6 | |
W-3 | 75.0 | 91.9 | 104.4 | 115.2 | 117.0 | 129.3 | 140.9 | |
W-4 | 103.8 | 127.1 | 144.0 | 154.1 | 155.0 | 164.3 | 167.7 | |
W-5 | 80.0 | 115.0 | 139.0 | 155.0 | 165.0 | 185.0 | 206.8 | |
W-6 | 70.0 | 95.0 | 110.0 | 120.0 | 123.2 | 133.1 | 178.1 | |
W-7 | 70.0 | 95.0 | 110.0 | 125.0 | 125.0 | 142.3 | 156.5 | |
W-8 | 75.0 | 100.0 | 115.0 | 135.0 | 142.4 | 158.8 | 142.4 | |
Ordinary Kriging | W-1 | 95.0 | 125.0 | 125.0 | 136.3 | 145.0 | 155.0 | 165.0 |
W-2 | 86.0 | 116.9 | 125.4 | 145.0 | 145.0 | 155.0 | 165.0 | |
W-3 | 95.0 | 119.3 | 127.0 | 145.0 | 145.0 | 155.0 | 165.0 | |
W-4 | 95.0 | 125.0 | 125.0 | 145.0 | 145.0 | 155.0 | 165.0 | |
W-5 | 85.0 | 115.0 | 125.0 | 135.0 | 145.0 | 155.0 | 165.0 | |
W-6 | 80.0 | 100.0 | 120.0 | 130.0 | 140.0 | 150.0 | 160.0 | |
W-7 | 80.0 | 100.0 | 120.0 | 131.4 | 140.0 | 150.0 | 160.0 | |
W-8 | 80.5 | 100.0 | 121.2 | 135.0 | 140.0 | 153.1 | 164.0 |
Int. Method | Watershed | Relative Error | ||||||
---|---|---|---|---|---|---|---|---|
Tr (Years) | ||||||||
2 | 5 | 10 | 20 | 25 | 50 | 100 | ||
IDW Adjusted | W-1 | 5.8% | 2.1% | 4.2% | 3.0% | 1.0% | 3.3% | 0.8% |
W-2 | 3.7% | 0.6% | 1.0% | 3.2% | 2.9% | 2.4% | 11.4% | |
W-3 | 3.0% | 1.5% | 1.0% | 4.5% | 2.3% | 2.8% | 1.4% | |
W-4 | 4.0% | 2.1% | 1.3% | 2.3% | 1.0% | 1.9% | 0.8% | |
W-5 | 1.8% | 0.6% | 1.0% | 1.4% | 0.5% | 6.2% | 1.7% | |
W-6 | 7.8% | 1.3% | 7.6% | 12.3% | 14.6% | 14.0% | 11.0% | |
W-7 | 0.6% | 1.3% | 7.6% | 7.9% | 8.5% | 7.7% | 11.0% | |
W-8 | 0.6% | 1.3% | 3.7% | 0.1% | 2.1% | 4.7% | 11.0% | |
Spline | W-1 | 9.5% | 9.4% | 9.2% | 8.5% | 8.6% | 7.1% | 5.8% |
W-2 | 13.2% | 14.9% | 18.5% | 21.0% | 22.6% | 24.1% | 29.0% | |
W-3 | 16.7% | 17.0% | 28.1% | 29.0% | 30.7% | 28.3% | 26.1% | |
W-4 | 3.2% | 0.4% | 2.3% | 2.3% | 1.0% | 2.3% | 0.8% | |
W-5 | 8.2% | 0.6% | 1.9% | 1.4% | 0.5% | 0.4% | 0.8% | |
W-6 | 7.8% | 6.6% | 7.6% | 12.3% | 13.6% | 17.3% | 3.4% | |
W-7 | 7.8% | 6.6% | 7.6% | 7.8% | 12.0% | 9.7% | 9.9% | |
W-8 | 0.6% | 1.3% | 3.0% | 0.1% | 1.7% | 1.7% | 20.8% | |
Ordinary Kriging | W-1 | 5.8% | 2.1% | 12.5% | 10.5% | 5.9% | 3.6% | 0.8% |
W-2 | 0.6% | 1.0% | 8.7% | 8.4% | 13.2% | 19.9% | 26.4% | |
W-3 | 7.9% | 2.2% | 5.2% | 2.5% | 5.5% | 7.0% | 7.6% | |
W-4 | 5.8% | 2.1% | 12.5% | 3.8% | 5.9% | 3.5% | 0.8% | |
W-5 | 1.8% | 0.6% | 9.1% | 16.4% | 13.2% | 19.9% | 26.4% | |
W-6 | 5.7% | 1.3% | 1.3% | 3.7% | 0.0% | 4.1% | 7.5% | |
W-7 | 5.7% | 1.3% | 1.3% | 2.6% | 0.0% | 4.1% | 7.5% | |
W-8 | 6.2% | 1.3% | 2.3% | 0.1% | 0.0% | 2.0% | 4.9% | |
Root Mean Squared Error (RMSE) | ||||||||
IDW Adjusted | All Watersheds | 0.37 | 0.15 | 0.45 | 0.62 | 0.66 | 0.76 | 0.96 |
Spline | 0.80 | 1.06 | 1.23 | 1.40 | 1.53 | 1.60 | 1.78 | |
Ord. Kriging | 0.52 | 0.17 | 0.85 | 0.86 | 0.85 | 1.22 | 1.62 | |
Mean Deviation (Bias) | ||||||||
IDW Adjusted | All Watersheds | 2.05 | 1.53 | 3.74 | 1.93 | 2.43 | 6.21 | 9.50 |
Spline | 5.74 | 8.23 | 9.59 | 11.95 | 13.16 | 14.32 | 16.52 | |
Ord. Kriging | −1.07 | 0.75 | 6.79 | 8.21 | 7.90 | 12.34 | 16.78 | |
Nash–Sutcliffe Coefficient (NSC) | ||||||||
IDW Adjusted | All Watersheds | 0.88 | 0.97 | 0.76 | 0.39 | 0.37 | 0.49 | 0.54 |
Spline | 0.56 | 0.26 | −0.11 | −0.29 | −0.36 | −0.26 | −0.09 | |
Ord. Kriging | 0.76 | 0.97 | 0.27 | 0.24 | 0.23 | 0.08 | 0.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Álvarez, Á.; Viloria-Marimón, O.M.; Coronado-Hernández, Ó.E.; Vélez-Pereira, A.M.; Tesfagiorgis, K.; Coronado-Hernández, J.R. Isohyetal Maps of Daily Maximum Rainfall for Different Return Periods for the Colombian Caribbean Region. Water 2019, 11, 358. https://doi.org/10.3390/w11020358
González-Álvarez Á, Viloria-Marimón OM, Coronado-Hernández ÓE, Vélez-Pereira AM, Tesfagiorgis K, Coronado-Hernández JR. Isohyetal Maps of Daily Maximum Rainfall for Different Return Periods for the Colombian Caribbean Region. Water. 2019; 11(2):358. https://doi.org/10.3390/w11020358
Chicago/Turabian StyleGonzález-Álvarez, Álvaro, Orlando M. Viloria-Marimón, Óscar E. Coronado-Hernández, Andrés M. Vélez-Pereira, Kibrewossen Tesfagiorgis, and Jairo R. Coronado-Hernández. 2019. "Isohyetal Maps of Daily Maximum Rainfall for Different Return Periods for the Colombian Caribbean Region" Water 11, no. 2: 358. https://doi.org/10.3390/w11020358
APA StyleGonzález-Álvarez, Á., Viloria-Marimón, O. M., Coronado-Hernández, Ó. E., Vélez-Pereira, A. M., Tesfagiorgis, K., & Coronado-Hernández, J. R. (2019). Isohyetal Maps of Daily Maximum Rainfall for Different Return Periods for the Colombian Caribbean Region. Water, 11(2), 358. https://doi.org/10.3390/w11020358