Advanced Numerical Modeling of Sediment Transport in Gravel-Bed Rivers
Abstract
:1. Introduction
2. Methodology
2.1. Sediment Transport and Bed Variation Module
- The horizontal surface is unchanged zd = 0, so sediment sorting occurs only in the active layer (1) and the upmost sublayer (2); i.e., the bed consists of only two layers.
- The bed sediment is moving under two forms: infiltration or bed load.
- The flow and sediment transport are one-dimensional.
2.2. Infiltration Process
2.3. Porosity Estimation
3. Results and Discussions
3.1. Infiltration of Fine Sediments into Gravel-Bed
- Case-1: uniform gravel size D = 10 mm and uniform sand with a size d defined from the following size ratios:Critical ratio for tetrahedral packing d/D = 0.154;One and halftime of the critical ratio for tetrahedral packing d/D = 0.231; and,Critical ratio for cubical packing d/D = 0.414.
- Case-2: Multi size fractions of sand and gravel bed:Sand with a mean diameter of dm = 0.26 mm and standard deviation of σ(d) = 1.94; and,Gravel with a mean diameter of Dm = 7.1 mm and a standard deviation of σ(D) = 1.35.
3.2. Bed Form Movement and Porosity Variation
3.3. Sulaiman’s Experiment
3.4. SAFL’s Experiment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dietrich, W.E.; Kirchner, J.W.; Ikeda, H.; Iseya, F. Sediment supply and the development of the coarse surface layer in gravel-bedded rivers. Nature 1989, 340, 215. [Google Scholar] [CrossRef]
- Wilcock, P.R.; DeTemple, B.T. Persistence of armor layers in gravel-bed streams. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Wooster, J.K.; Baker, P.F.; Dusterhoff, S.R.; Sklar, L.S.; Dietrich, W.E. Theory of fine sediment infiltration into immobile gravel bed. J. Hydraul. Eng.-ASCE 2008, 134, 1421–1429. [Google Scholar] [CrossRef]
- Gibson, S.; Abraham, D.; Heath, R.; Schoellhamer, D. Bridging Process Threshold for Sediment Infiltrating into a Coarse Substrate. J. Geotech. Geoenviron. Eng. 2010, 136, 402–406. [Google Scholar] [CrossRef]
- Schälchli, U. The clogging of coarse gravel river beds by fine sediment. Hydrobiologia 1992, 235, 189–197. [Google Scholar] [CrossRef]
- Wu, F.-C.; Huang, H.-T. Hydraulic resistance induced by deposition of sediment in porous medium. J. Hydraul. Eng. 2000, 126, 547–551. [Google Scholar] [CrossRef]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology; Wiley: New York, NY, USA, 1998; Volume 506. [Google Scholar]
- Selby, M.J.; Hodder, A.P.W. Hillslope Materials and Processes; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Frings, R.M.; Schuttrumpf, H.; Vollmer, S. Verification of porosity predictors for fluvial sand-gravel deposits. Water Resour Res. 2011, 47. [Google Scholar] [CrossRef]
- Frings, R.M.; Kleinhans, M.G.; Vollmer, S. Discriminating between pore-filling load and bed-structure load: A new porosity-based method, exemplified for the river Rhine. Sedimentology 2008, 55, 1571–1593. [Google Scholar] [CrossRef]
- Verstraeten, G.; Poesen, J. Variability of dry sediment bulk density between and within retention ponds and its impact on the calculation of sediment yields. Earth Surf. Process. Landf. 2001, 26, 375–394. [Google Scholar] [CrossRef]
- Wilcock, P.R. Two-fraction model of initial sediment motion in gravel-bed rivers. Sciences 1998, 280, 410–412. [Google Scholar] [CrossRef]
- Gayraud, S.; Philippe, M. Influence of Bed-Sediment Features on the Interstitial Habitat Available for Macroinvertebrates in 15 French Streams. Int. Rev. Hydrobiol. 2003, 88, 77–93. [Google Scholar] [CrossRef]
- Toro-Escobar, C.M.; Parker, G.; Paola, C. Transfer function for the deposition of poorly sorted gravel in response to streambed aggradation. J. Hydraul. Res. 1996, 34, 35–53. [Google Scholar] [CrossRef]
- Cui, Y. The Unified Gravel-Sand (TUGS) Model: Simulating Sediment Transport and Gravel/Sand Grain Size Distributions in Gravel-Bedded Rivers. Water Resour Res. 2007, 43. [Google Scholar] [CrossRef]
- Sulaiman, M.; Tsutsumi, D.; Fujita, M. Bed variation model considering porosity change in riverbed material. J. Jpn. Soc. Eros. Control Eng. 2007, 60, 11–18. [Google Scholar]
- Parker, G. 1D Sediment Transport Morphodynamics with Applications to Rivers and Turbidity Currents. 2004. Available online: http://hydrolab.illinois.edu/people/parkerg/morphodynamics_e-book.htm (accessed on 14 January 2019).
- Cui, Y.; Parker, G. A quasi-normal simulation of aggradation and downstream fining with shock fitting. Int. J. Sediment Res. 1997, 12, 68–82. [Google Scholar]
- Chiu, Y.-J.; Lee, H.-Y.; Wang, T.-L.; Yu, J.; Lin, Y.-T.; Yuan, Y.J.W. Modeling Sediment Yields and Stream Stability Due to Sediment-Related Disaster in Shihmen Reservoir Watershed in Taiwan. Water 2019, 11, 332. [Google Scholar] [CrossRef]
- Petti, M.; Bosa, S.; Pascolo, S.J.W. Lagoon sediment dynamics: A coupled model to study a medium-term silting of tidal channels. Water 2018, 10, 569. [Google Scholar] [CrossRef]
- Bui, M.D.; Rutschmann, P. Numerical investigation of hydro-morphological changes due to training works in the Salzach River. In River Flow 2012; Taylor and Francis Group: London, UK, 2012; Volumes 1–2, pp. 589–594. [Google Scholar]
- Wilcock, P.R.; Crowe, J.C. Surface-based transport model for mixed-size sediment. J. Hydraul. Eng. 2003, 129, 120–128. [Google Scholar] [CrossRef]
- Leonardson, R. Exchange of Fine Sediments with Gravel Riverbeds. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2010. [Google Scholar]
- Wooster, J.K.; Dusterhoff, S.R.; Cui, Y.T.; Sklar, L.S.; Dietrich, W.E.; Malko, M. Sediment supply and relative size distribution effects on fine sediment infiltration into immobile gravels. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Gibson, S.; Abraham, D.; Heath, R.; Schoellhamer, D. Vertical gradational variability of fines deposited in a gravel framework. Sedimentology 2009, 56, 661–676. [Google Scholar] [CrossRef]
- Bui, M.D.; Rutschmann, P. Numerical modelling of non-equilibrium graded sediment transport in a curved open channel. Comput. Geosci. 2010, 36, 792–800. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Church, M. River bed gravels: Sampling and analysis. In Sediment Transport in Gravel-Bed Rivers; Wiley: Hoboken, NJ, USA, 1987; pp. 43–78. [Google Scholar]
- Bui, M.D.; Bui, V.H.; Rutschmann, P. A new concept for modelling sediment transport in gravel bed rivers. In Proceedings of the 21st Vietnam Fluid Mechanics, Quynhon, Vietnam, 10–13 December 2018. (In Vietnamese). [Google Scholar]
- Nunez-Gonzalez, F.; Martin-Vide, J.P.; Kleinhans, M.G. Porosity and size gradation of saturated gravel with percolated fines. Sedimentology 2016, 63, 1209–1232. [Google Scholar] [CrossRef] [Green Version]
- Koltermann, C.E.; Gorelick, S.M. Fractional packing model for hydraulic conductivity derived from sediment mixtures. Water Resour Res. 1995, 31, 3283–3297. [Google Scholar] [CrossRef]
- Kamann, P.J.; Ritzi, R.W.; Dominic, D.F.; Conrad, C.M. Porosity and permeability in sediment mixtures. Groundwater 2007, 45, 429–438. [Google Scholar] [CrossRef]
- Yu, A.B.; Standish, N. Limitation of Proposed Mathematical-Models for the Porosity Estimation of Nonspherical Particle Mixtures. Ind. Eng. Chem. Res. 1993, 32, 2179–2182. [Google Scholar] [CrossRef]
- Yu, A.B.; Standish, N. Estimation of the Porosity of Particle Mixtures by a Linear-Mixture Packing Model. Ind. Eng. Chem. Res. 1991, 30, 1372–1385. [Google Scholar] [CrossRef]
- Zhang, H.; Makse, H. Jamming transition in emulsions and granular materials. Phys. Rev. E. 2005, 72, 011301. [Google Scholar] [CrossRef]
- Kenney, T.; Chahal, R.; Chiu, E.; Ofoegbu, G.; Omange, G.; Ume, C. Controlling constriction sizes of granular filters. Can. Geotech. J. 1985, 22, 32–43. [Google Scholar] [CrossRef]
- Indraratna, B.; Locke, M. Design methods for granular filters—Critical review. Proc. Inst. Civ. Eng. -Geotech. Eng. 1999, 137, 137–147. [Google Scholar] [CrossRef]
- Sulaiman, M.; Tsutsumi, D.; Fujita, M. Porosity of sediment mixtures with different type of grain size distribution. Annu. J. Hydraul. Eng. 2007, 51, 133–138. [Google Scholar] [CrossRef]
- Paola, C.; Parker, G.; Seal, R.; Sinha, S.K.; Southard, J.B.; Wilcock, P.R. Downstream fining by selective deposition in a laboratory flume. Science 1992, 258, 1757–1760. [Google Scholar] [CrossRef]
- Toro-Escobar, C.M.; Paola, C.; Parker, G.; Wilcock, P.R.; Southard, J.B. Experiments on downstream fining of gravel. II: Wide and sandy runs. J. Hydraul. Eng. 2000, 126, 198–208. [Google Scholar] [CrossRef]
- Seal, R.; Paola, C.; Parker, G.; Southard, J.B.; Wilcock, P.R. Experiments on downstream fining of gravel: I. Narrow-channel runs. J. Hydraul. Eng. 1997, 123, 874–884. [Google Scholar] [CrossRef]
- Seal, R.; Parker, G.; Paola, C.; Mullenbach, B. Laboratory Experiments on Downstream Fining of Gravel, Narrow Channel Runs 1 through 3: Supplemental Methods and Data; External Memorandum M-239; St. Anthony Fall Anthony Falls Hydraulic Laboratory, University of Minnesota: Minneapolis, MN, USA, 1995. [Google Scholar]
Density of Sphere (kg/m3) | Density of Water (kg/m3) | Young’s Modulus (Pa) | Poisson Ratio | Friction Between Grains | Coefficient of Restitution |
---|---|---|---|---|---|
2700 | 1000 | 5.0 × 106 | 0.45 | 0.5 | 0.4 |
Exp. | qw (m2/s) | qs × 10−6 (m2/s) | h (m) | v (m/s) | Fr | τ (Fine) | τ (Coarse) |
---|---|---|---|---|---|---|---|
Run-1 Run-2 | 0.034 0.034 | 0 31.8 | 0.039 0.045 | 0.879 0.754 | 1.428 1.133 | 0.178 0.203 | 0.026 0.030 |
Erosion | Deposition | |||||
---|---|---|---|---|---|---|
Variation | Constant | Sulaiman | Variation | Constant | Sulaiman | |
Bed Elevation | ||||||
R | 0.99510 | 0.99442 | 0.99412 | 0.99451 | 0.99538 | 0.99465 |
RMSE | 0.00585 | 0.00631 | 0.00560 | 0.00347 | 0.00490 | 0.00414 |
MAE | 0.00451 | 0.00546 | 0.00442 | 0.00275 | 0.00424 | 0.00343 |
Fine Fraction | ||||||
R | 0.98936 | 0.98953 | 0.99124 | 0.96269 | 0.98205 | 0.96953 |
RMSE | 0.16423 | 0.17410 | 0.26149 | 0.07897 | 0.09265 | 0.07297 |
MAE | 0.12371 | 0.12518 | 0.18397 | 0.05929 | 0.08579 | 0.05088 |
Exp. | qw (m2/s) | qs (m2/s) | ξd (m) | S0 (%) | fs % | Time (h) |
---|---|---|---|---|---|---|
Run 1 | 0.163 | 2.37 × 10−4 | 0.4 | 0.20 | 33 | 2, 8, 16.83 |
2 h | 8 h | 16 h | |||||||
---|---|---|---|---|---|---|---|---|---|
R | RMSE | MAE | R | RMSE | MAE | R | RMSE | MAE | |
Variation | 0.987 | 0.019 | 0.010 | 0.998 | 0.016 | 0.013 | 0.989 | 0.033 | 0.027 |
Constant | 0.980 | 0.023 | 0.011 | 0.996 | 0.024 | 0.018 | 0.988 | 0.034 | 0.032 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, V.H.; Bui, M.D.; Rutschmann, P. Advanced Numerical Modeling of Sediment Transport in Gravel-Bed Rivers. Water 2019, 11, 550. https://doi.org/10.3390/w11030550
Bui VH, Bui MD, Rutschmann P. Advanced Numerical Modeling of Sediment Transport in Gravel-Bed Rivers. Water. 2019; 11(3):550. https://doi.org/10.3390/w11030550
Chicago/Turabian StyleBui, Van Hieu, Minh Duc Bui, and Peter Rutschmann. 2019. "Advanced Numerical Modeling of Sediment Transport in Gravel-Bed Rivers" Water 11, no. 3: 550. https://doi.org/10.3390/w11030550
APA StyleBui, V. H., Bui, M. D., & Rutschmann, P. (2019). Advanced Numerical Modeling of Sediment Transport in Gravel-Bed Rivers. Water, 11(3), 550. https://doi.org/10.3390/w11030550