Dominant Hydro-Climatic Drivers of Water Temperature, Salinity, and Flow Variability for the Large-Scale System of the Baltic Coastal Wetlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Baltic Sea
2.2. Data
2.3. The Model FVCOM
2.4. Simulation Approach
3. Results and Discussion
3.1. Data-Given Correlations among the Hydro-Climatic Forcing Variables
3.2. Simulation Results
3.2.1. Model Validation for the Baltic Sea
3.2.2. Water Temperature (Physical Condition a)
3.2.3. Salinity (Physical Condition b)
3.2.4. Flow Structure (Physical Condition c)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- EU Habitats Directive. Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora; European Commission: Brussels, Belgium, 1992. [Google Scholar]
- Ward, R.D.; Teasdale, P.A.; Burnside, N.G.; Joyce, C.B.; Sepp, K. Recent rates of sedimentation on irregularly flooded Boreal Baltic coastal wetlands: Responses to recent changes in sea level. Geomorphology 2014, 217, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Hannerz, F.; Destouni, G. Spatial characterization of the Baltic Sea drainage basin and its unmonitored catchments. Ambio 2006, 35, 214–219. [Google Scholar] [CrossRef]
- Johansson, M.M.; Kahma, K.K.; Boman, H. An improved estimate for the long-term mean sea level on the Finnish coast. Geophysica 2003, 39, 51–73. [Google Scholar]
- Strandmark, A.; Bring, A.; Cousins, S.A.O.; Destouni, G.; Kautsky, H.; Kolb, G.; de la Torre-Castro, M.; Hambäck, P.A. Climate change effects on the Baltic Sea borderland between land and sea. Ambio 2015, 44, 28–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, A.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nuun, P.; et al. Sea level change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; ISBN 9781107057999. [Google Scholar]
- Van Belzen, J.; Bouma, T.; Skov, M.; Zhang, L.; Yuan, L.; Salt marshes in Europe and Temporal Variability. Coastal Wiki Hosted and Developed by the Flanders Marine Institute. Available online: http://www.coastalwiki.org/wiki/Salt_marshes_in_Europe_and_temporal_variability#cite_note-10 (accessed on 29 December 2018).
- Sterr, H. Assessment of vulnerability and adaptation to sea- level rise for the coastal zone of Germany. J. Coast. Res. 2008, 24, 380–393. [Google Scholar] [CrossRef]
- Ward, R.D.; Burnside, N.G.; Joyce, C.B.; Sepp, K.; Teasdale, P.A. Improved modelling of the impacts of sea level rise on coastal wetland plant communities. Hydrobiologia 2016, 774, 203–216. [Google Scholar] [CrossRef]
- Ward, R.D.; Niall, G.; Burnside, N.G.; Joyce, C.B.; Sepp, K. Importance of Microtopography in Determining Plant Community Distribution in Baltic Coastal Wetlands. J. Coast. Res. 2016, 32, 1062–1070. [Google Scholar] [CrossRef]
- Thorslund, J.; Jarsjö, J.; Jaramillo, F.; Jawitz, J.W.; Manzoni, S.; Basu, N.B.; Chalov, S.R.; Cohen, M.J.; Creed, I.F.; Goldenberg, R.; et al. Wetlands as large-scale nature-based solutions: Status and challenges for research.; engineering and management. Ecol. Eng. 2017, 108, 489–497. [Google Scholar] [CrossRef]
- Lehmann, A.; Hinrichsen, H.H. Water, heat and salt exchanges between the deep basins of the Baltic Sea. Boreal Environ. Res. 2002, 7, 405–415. [Google Scholar]
- Lehmann, A.; Hinrichsen, H.H. On the thermohaline variability of the Baltic Sea. J. Mar. Syst. 2000, 25, 333–357. [Google Scholar] [CrossRef]
- Meier, H.E.; Kauker, F. Modeling decadal variability of the Baltic Sea: 2. Role of freshwater inflow and large-scale atmospheric circulation for salinity. J. Geophys. Res. Ocean 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Vigouroux, G.; Destouni, G.; Jönsson, A.; Cvetkovic, V. A scalable dynamic characterisation approach for water quality management in semi-enclosed seas and archipelagos. Mar. Pollut. Bull. 2019, 139, 311–327. [Google Scholar] [CrossRef] [PubMed]
- Conley, D.J.; Björck, S.; Bonsdorff, E.; Carstensen, J.; Destouni, G.; Gustafsson, B.G.; Hietanen, S.; Kortekaas, M.; Kuosa, H.; Markus Meier, H.E.; et al. Hypoxia-related processes in the Baltic Sea. Environ. Sci. Technol. 2009, 43, 3412–3420. [Google Scholar] [CrossRef] [PubMed]
- Conley, D.J.; Carstensen, J.; Aigars, J.; Axe, P.; Bonsdorff, E.; Eremina, T.; Haahti, B.M.; Humborg, C.; Jonsson, P.; Kotta, J.; et al. Hypoxia is increasing in the coastal zone of the Baltic Sea. Environ. Sci. Technol. 2011, 45, 6777–6783. [Google Scholar] [CrossRef]
- Chen, C.; Liu, H.; Beardsley, R.C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar] [CrossRef]
- Helsinki Commission (HELCOM). The Fifth Baltic Sea Pollution Load Compilation (PL-5) Baltic Sea Environment Proceedings (No. 128); Helsinki Commission: Helsinki, Finland, 2011. [Google Scholar]
- Destouni, G.; Fischer, I.; Prieto, C. Water quality and ecosystem management: Data-driven reality check of effects in streams and lakes. Water. Resour. Res. 2017, 53, 6395–6404. [Google Scholar] [CrossRef]
- Bring, A.; Rogberg, P.; Destouni, G. Variability in climate change simulations affects needed long-term riverine nutrient reductions for the Baltic Sea. Ambio 2015, 44, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Dargahi, B.; Kolluru, V.; Cvetkovic, V. Multi-Layered Stratification in the Baltic Sea: Insight from a Modeling Study with Reference to Environmental Conditions. J. Mar. Sci. Eng. 2017, 5, 2. [Google Scholar] [CrossRef]
- Swedish Meteorological and Hydrological Institute (SMHI), Oceanografiska Observationer. Available online: https://opendata-download-ocobs.smhi.se/explore/ (accessed on 29 June 2016).
- Swedish Meteorological and Hydrological Institute (SMHI), Marina miljöövervakningsdata. Available online: http://www.smhi.se/klimatdata/oceanografi/havsmiljodata/2.2596 (accessed on 23 November 2016).
- Kronsell, J.; Andersson, P. Total and Regional Runoff to the Baltic Sea, HELCOM Baltic Sea Environment Fact Sheets. 2013. Available online: http://www.helcom.fi/ baltic-sea-trends/environment-fact-sheets/ (accessed on 23 March 2016).
- Bergström, S.; Alexandersson, H.; Carlsson, B.; Josefsson, W.; Karlsson, K.G.; Westring, G. Climate and hydrology of the Baltic Basin. In A systems Analysis of the Baltic Sea; Wulff, F.V., Rahm, L.A., Larsson, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 75–112. ISBN 978-3-642-08727-1. [Google Scholar]
- Dargahi, B.; Cvektovic, V. Hydrodynamics and Transport Characterization of the Baltic Sea 2000–2009 Report. The Royal Institute of Technology, 2014. Available online: https://balsysproject.files.wordpress.com/2015/08/hydrodynamic-and-transport-characterization-of-the-baltic-sea-2000-2009.pdf (accessed on 20 November 2018).
- Swedish Meteorological and Hydrological Institute (SMHI), Vattenwebb. Available online: https://vattenwebb.smhi.se/station/# (accessed on 25 February 2012).
- The Global Runoff Data Centre, 56068 Koblenz, Germany (GRDC). Available online: http://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/211_ctlgs/catalogues_node.html (accessed on 15 March 2015).
- Stålnacke, P.; Grimvall, A.; Sundblad, K.; Tonderski, A. Estimation of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970–1993. Environ. Monit. Assess. 1999, 58, 173–200. [Google Scholar] [CrossRef]
- European Centre for Medium-Range Weather Forecasts (ECMWF). Available online: https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-20c (accessed on 6 September 2016).
- Objectively Analyzed Air-Sea Fluxes for the Global Oceans Project, Woods Hole Oceanographic Institution (WHOI). Available online: https://oaflux.whoi.edu/index.html (accessed on 29 January 2016).
- International Satellite Cloud Climatology Project (ISCCP). Available online: https://isccp.giss.nasa.gov/projects/flux.html (accessed on 29 January 2016).
- Swedish Meteorological and Hydrological Institute (SMHI), Meteorologiska observationer. Available online: http://opendata-download-metobs.smhi.se/explore/?parameter=2 (accessed on 27 November 2018).
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef]
- Chen, C.; Gao, G.; Qi, J.; Proshutinsky, A.; Beardsley, R.C.; Kowalik, Z.; Lin, H.; Cowles, G. A new high-resolution unstructured grid finite volume Arctic Ocean model (AO-FVCOM): An application for tidal studies. J. Geophys. Res. Ocean 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Huang, H.; Beardsley, R.C.; Xu, Q.; Limeburner, R.; Cowles, G.W.; Sun, Y.; Qi, J.; Lin, H. Tidal dynamics in the Gulf of Maine and New England Shelf: An application of FVCOM. J. Geophys. Res. Oceans 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Beardsley, R.C.; Chen, C.; Xu, Q. Coastal flooding in Scituate (MA): A FVCOM study of the 27 December 2010 nor’easter. J. Geophys. Res. Oceans 2013, 118, 6030–6045. [Google Scholar] [CrossRef]
- Wei, J.; Malanotte-Rizzoli, P.; Eltahir, E.A.; Xue, P.; Xu, D. Coupling of a regional atmospheric model (RegCM3) and a regional oceanic model (FVCOM) over the maritime continent. Clim. Dynam. 2014, 43, 1575–1594. [Google Scholar] [CrossRef]
- Mohrholz, V.; Naumann, M.; Nausch, G.; Krüger, S.; Gräwe, U. Fresh oxygen for the Baltic Sea—An exceptional saline inflow after a decade of stagnation. J. Mar. Syst. 2015, 148, 152–166. [Google Scholar] [CrossRef]
- Lass, H.U.; Matthäus, W. On temporal wind variations forcing salt water inflows into the Baltic Sea. Tellus A 1996, 48, 663–671. [Google Scholar] [CrossRef]
- Schinke, H.; Matthäus, W. On the causes of major Baltic inflows—An analysis of long time series. Cont. Shelf Res. 1998, 18, 67–97. [Google Scholar] [CrossRef]
- Lehmann, A.; Krauß, W.; Hinrichsen, H.H. Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus A 2002, 54, 299–316. [Google Scholar] [CrossRef] [Green Version]
- Meier, H.M. Modeling the pathways and ages of inflowing salt-and freshwater in the Baltic Sea. Estuar. Coast. Shelf. S 2007, 74, 610–627. [Google Scholar] [CrossRef]
- Helsinki Commission (HELCOM). Manual for Marine Monitoring in the COMBINE Programme of HELCOM; Helsinki Commission: Helsinki, Finland, 2013. [Google Scholar]
R+,T-- | R+,T++ | R--,T+ | Period Average | Standard Deviation | |
---|---|---|---|---|---|
River discharge (m3/s) (iv) | 9842 | 10,162 | 6159 | 8617 | 1188 |
Net heat flux (W/m2) (i) | −4.84 | 16.66 | 7.37 | 2.58 | 6.47 |
Year/Period | 2005 | 2000 | 2003 | 2000–2009 | 2000–2009 |
Landscape Variable | Atmospheric Variable | Sea Variable | ||||||
---|---|---|---|---|---|---|---|---|
Total River Discharge (runoff, R) to the Sea (iv) | Precipitation | Net Heat Flux (i) | Air Temperature | Eastward Wind (ii) | Northward Wind (ii) | Salinity at Boundary Station By1 (iii) | Salinity Inflow Index (iii) | |
Pearson Correlation | 0.637 ** | 0.77 | 0.024 | 0.241 | −0.136 | −0.525 ** | −0.328 * | |
Significance level | 0.003 | 0.71 | 0.873 | 0.088 | 0.342 | 0.000 | 0.02 | |
55 | N (no. of years with data) | 17 | 25 | 46 | 51 | 51 | 37 | 55 |
1950–2012 | Period with data | 1996–2012 | 1985–2009 | 1950–1995 | 1960–2010 | 1960–2010 | 1974–2010 | 1958–2012 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Vigouroux, G.; Bring, A.; Cvetkovic, V.; Destouni, G. Dominant Hydro-Climatic Drivers of Water Temperature, Salinity, and Flow Variability for the Large-Scale System of the Baltic Coastal Wetlands. Water 2019, 11, 552. https://doi.org/10.3390/w11030552
Chen Y, Vigouroux G, Bring A, Cvetkovic V, Destouni G. Dominant Hydro-Climatic Drivers of Water Temperature, Salinity, and Flow Variability for the Large-Scale System of the Baltic Coastal Wetlands. Water. 2019; 11(3):552. https://doi.org/10.3390/w11030552
Chicago/Turabian StyleChen, Yuanying, Guillaume Vigouroux, Arvid Bring, Vladimir Cvetkovic, and Georgia Destouni. 2019. "Dominant Hydro-Climatic Drivers of Water Temperature, Salinity, and Flow Variability for the Large-Scale System of the Baltic Coastal Wetlands" Water 11, no. 3: 552. https://doi.org/10.3390/w11030552
APA StyleChen, Y., Vigouroux, G., Bring, A., Cvetkovic, V., & Destouni, G. (2019). Dominant Hydro-Climatic Drivers of Water Temperature, Salinity, and Flow Variability for the Large-Scale System of the Baltic Coastal Wetlands. Water, 11(3), 552. https://doi.org/10.3390/w11030552