Multi-Objective Calibration of a Distributed Hydrological Model in a Highly Glacierized Watershed in Central Asia
Abstract
:1. Introduction
2. Study Area and Hydrological Model
2.1. Study Area
2.2. SWAT Model and Glacier Module
2.3. Data Collection
3. Methodology
3.1. Sensitivity Analysis Techniques
3.1.1. Morris Method
3.1.2. State-Dependent Parameter Method (SDP)
3.2. Multi-Objective Calibration
4. Results
4.1. Sensitivity Analysis
4.2. Multi-Objective Optimization
4.3. Model Performance
5. Discussion
5.1. Glacier Melt Contribution
5.2. On Objective Functions
5.3. About SWAT_Glacier and Input Data
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lutz, A.F.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, W.; Deng, H.; Fang, G.; Li, Z. Changes in Central Asia’s water tower: Past, present and future. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wen, J.; Tan, G.; Liu, G.; Wu, B. Experimental studies and pilot plant tests for acid leaching of low-grade copper oxide ores at the Tuwu Copper Mine. Hydrometallurgy 2016, 165, 227–232. [Google Scholar] [CrossRef]
- Bolch, T. Hydrology: Asian glaciers are a reliable water source. Nature 2017, 545, 161. [Google Scholar] [CrossRef]
- Duethmann, D.; Bolch, T.; Farinotti, D.; Kriegel, D.; Vorogushyn, S.; Merz, B.; Pieczonka, T.; Jiang, T.; Su, B.; Güntner, A. Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia. Water Resour. Res. 2015, 51, 4727–4750. [Google Scholar] [CrossRef] [Green Version]
- Gan, R.; Luo, Y.; Zuo, Q.T.; Sun, L. Effects of projected climate change on the glacier and runoff generation in the Naryn River Basin, Central Asia. J. Hydrol. 2015, 523, 240–251. [Google Scholar] [CrossRef] [Green Version]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, S.Y. Response of glacier mass balance to climate change in the Tianshan Mountains during the second half of the twentieth century. Clim. Dyn. 2016, 46, 303–316. [Google Scholar] [CrossRef]
- Meng, F.; Liu, T.; Huang, Y.; Luo, M.; Bao, A.; Hou, D. Quantitative detection and attribution of runoff variations in the Aksu River Basin. Water 2016, 8, 338. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.Y.; Tao, H.; Jiang, T.; Chen, Y.D. Climate changes and their impacts on water resources in the arid regions: A case study of the Tarim River basin, China. Stoch. Environ. Res. Risk Assess. 2010, 24, 349–358. [Google Scholar] [CrossRef]
- Shen, Y.-J.; Shen, Y.; Fink, M.; Kralisch, S.; Chen, Y.; Brenning, A. Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains. J. Hydrol. 2018, 557, 173–181. [Google Scholar] [CrossRef]
- Sun, M.; Li, Z.; Yao, X.; Zhang, M.; Jin, S. Modeling the hydrological response to climate change in a glacierized high mountain region, northwest China. J. Glaciol. 2015, 61, 127–136. [Google Scholar] [CrossRef]
- Fang, G.H.; Yang, J.; Chen, Y.N.; Zammit, C. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol. Earth Syst. Sci. 2015, 19, 2547–2559. [Google Scholar] [CrossRef] [Green Version]
- Immerzeel, W.W.; Lutz, A.; Droogers, P. Climate Change Impacts on the Upstream Water Resources of the Amu and Syr Darya River Basins; FutureWater: Wageningen, The Netherlands, 2012. [Google Scholar]
- Fan, Y.; Chen, Y.; Li, W. Increasing precipitation and baseflow in Aksu River since the 1950s. Quat. Int. 2014, 336, 26–34. [Google Scholar] [CrossRef]
- Krysanova, V.; Wortmann, M.; Bolch, T.; Merz, B.; Duethmann, D.; Walter, J.; Huang, S.; Tong, J.; Buda, S.; Kundzewicz, Z.W. Analysis of current trends in climate parameters, river discharge and glaciers in the Aksu River basin (Central Asia). Hydrol. Sci. J. 2015, 60, 566–590. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y.; Sun, L.; Zhang, Y. Assessing the effects of precipitation and temperature changes on hydrological processes in a glacier-dominated catchment. Hydrol. Process. 2015, 29, 4830–4845. [Google Scholar] [CrossRef]
- Zhao, Q.D.; Zhang, S.Q.; Ding, Y.J.; Wang, J.; Han, H.D.; Xu, J.L.; Zhao, C.C.; Guo, W.Q.; Shangguan, D.H. Modeling hydrologic response to climate change and shrinking glaciers in the highly glacierized Kunma Like River Catchment, Central Tian Shan. J. Hydrometeorol. 2015, 16, 2383–2402. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Tarantola, S.; Campolongo, F. Update 1 of: Sensitivity analysis for chemical models. Chem. Rev. 2012, 112, 1–21. [Google Scholar] [CrossRef]
- Annoni, P.; Bruggemann, R.; Saltelli, A. Random and quasi-random designs in variance-based sensitivity analysis for partially ordered sets. Reliab. Eng. Syst. Saf. 2012, 107, 184–189. [Google Scholar] [CrossRef]
- Ferretti, F.; Saltelli, A.; Tarantola, S. Trends in sensitivity analysis practice in the last decade. Sci. Total Environ. 2016, 568, 666–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havel, A.; Tasdighi, A.; Arabi, M. Assessing the hydrologic response to wildfires in mountainous regions. Hydrol. Earth Syst. Sci. 2018, 22, 2527–2550. [Google Scholar] [CrossRef] [Green Version]
- Pathiraja, S.; Anghileri, D.; Burlando, P.; Sharma, A.; Marshall, L.; Moradkhani, H. Time-varying parameter models for catchments with land use change: The importance of model structure. Hydrol. Earth Syst. Sci. 2018, 22, 2903–2919. [Google Scholar] [CrossRef]
- Singh, V.; Kumar Goyal, M.; Surampalli, R.Y.; Munoz-Arriola, F. Sub catchment assessment of snowpack and snowmelt change by analyzing elevation bands and parameter sensitivity in the high Himalayas. Hydrol. Earth Syst. Sci. Discuss. 2017, 1–31. [Google Scholar] [CrossRef]
- Zhao, Q.D.; Ye, B.S.; Ding, Y.J.; Zhang, S.Q.; Yi, S.H.; Wang, J.; Shangguan, D.H.; Zhao, C.C.; Han, H.D. Coupling a glacier melt model to the Variable Infiltration Capacity (VIC) model for hydrological modeling in north-western China. Environ. Earth Sci. 2013, 68, 87–101. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Arnold, J.; Srinivasan, R.; Muttiah, R.; Williams, J. Large area hydrologic modeling and assessment—Part 1: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Sahoo, S.; Dhar, A.; Debsarkar, A.; Kar, A. Impact of water demand on hydrological regime under climate and LULC change scenarios. Environ. Earth Sci. 2018, 77. [Google Scholar] [CrossRef]
- Xu, H.; Brown, D.G.; Steiner, A.L. Sensitivity to climate change of land use and management patterns optimized for efficient mitigation of nutrient pollution. Clim. Chang. 2018. [Google Scholar] [CrossRef]
- Bajracharya, A.R.; Bajracharya, S.R.; Shrestha, A.B.; Maharjan, S.B. Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal. Sci. Total Environ. 2018, 625, 837–848. [Google Scholar] [CrossRef]
- Pesce, M.; Critto, A.; Torresan, S.; Giubilato, E.; Santini, M.; Zirino, A.; Ouyang, W.; Marcomini, A. Modelling climate change impacts on nutrients and primary production in coastal waters. Sci. Total Environ. 2018, 628–629, 919–937. [Google Scholar] [CrossRef]
- Me, W.; Abell, J.M.; Hamilton, D.P. Effects of hydrologic conditions on SWAT model performance and parameter sensitivity for a small, mixed land use catchment in New Zealand. Hydrol. Earth Syst. Sci. 2015, 19, 4127–4147. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Allen, P.M.; Morgan, D.S. Hydrologic model for design and constructed wetlands. Wetlands 2001, 21, 167–178. [Google Scholar] [CrossRef]
- Guo, T.; Gitau, M.; Merwade, V.; Arnold, J.; Srinivasan, R.; Hirschi, M.; Engel, B. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in the Midwest. Hydrol. Earth Syst. Sci. 2018, 22, 89–110. [Google Scholar] [CrossRef] [Green Version]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Radić, V.; Hock, R. Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat. Geosci. 2011, 4, 91–94. [Google Scholar] [CrossRef]
- Griessinger, N.; Seibert, J.; Magnusson, J.; Jonas, T. Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments. Hydrol. Earth Syst. Sci. 2016, 20, 3895–3905. [Google Scholar] [CrossRef] [Green Version]
- Ayala, A.; Pellicciotti, F.; MacDonell, S.; McPhee, J.; Burlando, P. Patterns of glacier ablation across North-Central Chile: Identifying the limits of empirical melt models under sublimation-favorable conditions. Water Resour. Res. 2017, 53, 5601–5625. [Google Scholar] [CrossRef]
- Kang, S.; Wang, F.; Morgenstern, U.; Zhang, Y.; Grigholm, B.; Kaspari, S.; Schwikowski, M.; Ren, J.; Yao, T.; Qin, D.; et al. Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records. Cryosphere 2015, 9, 1213–1222. [Google Scholar] [CrossRef] [Green Version]
- Kehrwald, N.M.; Thompson, L.G.; Tandong, Y.; Mosley-Thompson, E.; Schotterer, U.; Alfimov, V.; Beer, J.; Eikenberg, J.; Davis, M.E. Mass loss on Himalayan glacier endangers water resources. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, W.; Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.; Gardner, A.; Sharp, M. The Randolph Glacier Inventory a globally complete inventory of glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef]
- Su, Z.; Ding, L.; Liu, C. Tianshan glacier thickness and its reserve calculation. Xinjiang Geogr. 1984, 7, 37–44. (In Chinese) [Google Scholar] [CrossRef]
- Morris, M.D. Factorial sampling plans for preliminary computational experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis: The Primer; John Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Yang, J.; Castelli, F.; Chen, Y. Multiobjective sensitivity analysis and optimization of distributed hydrologic model MOBIDIC. Hydrol. Earth Syst. Sci. 2014, 18, 4101–4112. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, Y.; Yang, W.; Chen, Y. Multi-objective sensitivity analysis of a fully distributed hydrologic model WetSpa. Water Resour. Manag. 2011, 26, 109–128. [Google Scholar] [CrossRef]
- Hamdia, K.M.; Ghasemi, H.; Zhuang, X.; Alajlan, N.; Rabczuk, T. Sensitivity and uncertainty analysis for flexoelectric nanostructures. Comput. Methods Appl. Mech. Eng. 2018, 337, 95–109. [Google Scholar] [CrossRef]
- Kalcic, M.M.; Chaubey, I.; Frankenberger, J. Defining Soil and Water Assessment Tool (SWAT) hydrologic response units (HRUs) by field boundaries. Int. J. Agric. Biol. Eng. 2015, 8, 69–80. [Google Scholar] [CrossRef]
- Sebek, J.; Albin, N.; Bortel, R.; Natarajan, B.; Prakash, P. Sensitivity of microwave ablation models to tissue biophysical properties: A first step toward probabilistic modeling and treatment planning. Med Phys. 2016, 43. [Google Scholar] [CrossRef]
- Yang, H.; Wen, J.; Wang, S.; Li, Y. Thermal design and optimization of plate-fin heat exchangers based global sensitivity analysis and NSGA-II. Appl. Therm. Eng. 2018, 136, 444–453. [Google Scholar] [CrossRef]
- Ratto, M.; Pagano, A.; Young, P. State Dependent Parameter metamodelling and sensitivity analysis. Comput. Phys. Commun. 2007, 177, 863–876. [Google Scholar] [CrossRef]
- Sobol, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 2001, 55, 271–280. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II; Springer: Berlin/Heidelberg, Germany, 2000; pp. 849–858. [Google Scholar]
- Tang, Y.; Reed, P.M.; Kollat, J.B. Parallelization strategies for rapid and robust evolutionary multiobjective optimization in water resources applications. Adv. Water Resour. 2007, 30, 335–353. [Google Scholar] [CrossRef]
- Shah, R.; Reed, P. Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems. Eur. J. Oper. Res. 2011, 211, 466–479. [Google Scholar] [CrossRef]
- Yin, Z.; Feng, Q.; Liu, S.; Zou, S.; Li, J.; Yang, L.; Deo, R. The spatial and temporal contribution of glacier runoff to watershed discharge in the Yarkant River Basin, Northwest China. Water 2017, 9, 159. [Google Scholar] [CrossRef]
- Yang, J.; Reichert, P.; Abbaspour, K.C.; Yang, H. Hydrological modelling of the chaohe basin in china: Statistical model formulation and Bayesian inference. J. Hydrol. 2007, 340, 167–182. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2009. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Ai, Z.; Yang, Y.; Wang, Q.; Manevski, K.; Wang, Q.; Hu, Q.; Eer, D.; Wang, J. Characteristics and influencing factors of crop coefficient for drip-irrigated cotton under plastic-mulched condition in arid environment. J. Agric. Meteorol. 2018, 74, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chen, Y.; Li, W.; Li, Z. Quantifying the contributions of snow/glacier meltwater to river runoff in the Tianshan Mountains, Central Asia. Glob. Planet. Chang. 2019, 174, 47–57. [Google Scholar] [CrossRef]
- Yang, Z. Glacier water resources in China. Nat. Resour. 1987, 46–55, 68. (In Chinese) [Google Scholar]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resour. Res. 1998, 34, 751–763. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Wang, G.; Ding, Y.; Mao, W.; Liu, S.; Wang, S.; Mamatkanov, D.M. Changes in glacier mass balance in watershed of Sary Jaz-Kumarik Rivers of Tianshan Mountains in 1957–2006 and their impact on water resources and trend to end of the 21th century. J. Glaciol. Geocryol. 2009, 31, 790r800. [Google Scholar]
No. | Factor | Underlying SWAT Parameters | SWAT Parameter Range | Estimated Parameter Values for SWAT Application | Estimated Factor Values for SWAT_Glacier Application |
---|---|---|---|---|---|
General SWAT parameter | |||||
1 | v__Alpha_bf | Alpha_bf: Baseflow alpha factor | [0, 1] | 0.44 | 0.64 |
2 | v__Tlaps | Tlaps: Temperature lapse rate (°C km−1) | [−10, −2] | −4.04 | −6.65 |
3 | v__Plaps | Plaps: Precipitation lapse rate (mm km−1) | [0, 200] | 49.98 | 10.61 |
4 | v__Ch_k2 | Ch_k2: Effective hydraulic conductivity in main channel alluvium (mm h−1) | [0, 500] | 493.90 | 248.78 |
5 | v__Gw_delay | Gw_delay: Groundwater delay time (day) | [0, 500] | 497.95 | 334.42 |
6 | r__Slsubbsn | Slsubbsn: Average slope length (m) | [−0.5, 0.5] | −0.46 | −0.49 |
7 | v__Ch_k1 | Ch_k1: Effective hydraulic conductivity in tributary channel alluvium (mm h−1). | [0, 300] | 246.43 | 179.86 |
8 | r__Sol_k | Sol_kl: Saturated hydraulic conductivity (mm h−1) | [−0.5, 0.5] | 0.49 | 0.49 |
9 | r__CN2 | CN2: SCS runoff curve number for moisture condition | [−0.5, 0.5] | −0.06 | −0.36 |
10 | v__Gwqmn | Gwqmn: Threshold water level in shallow aquifer for baseflow (mm) | [0, 1000] | 180.78 | 240.48 |
11 | v__Gw_revap | Gw_revap: Groundwater ‘revap’ coefficient | [−0.02, 0.2] | - | - |
12 | v__Ch_n2 | Ch_n2: Manning’s ‘n’ for main channel (-) | [0, 0.3] | - | - |
13 | r__Sol_z | Sol_z: Depth from soil surface to bottom of layer (mm) | [−0.5, 0.5] | - | - |
14 | v__Revapmn | Revapmn: Threshold depth of water in shallow aquifer for revap (mm) | [0, 500] | - | - |
15 | r__Sol_awc | Sol_awc: Available water capacity of the soil layer (-) | [−0.5, 0.5] | - | - |
16 | v__Esco | Esco: Soil evaporation compensation factor (-) | [0, 1] | - | - |
17 | v__OV_N | OV_N: Manning’s ‘n’ for overland flow (-) | [0, 30] | - | - |
18 | v__Surlag | Surlag: Surface runoff lag time (day) | [0, 24] | - | - |
19 | v__Smtmp | Smtmp: Snow melt base temperature(°C) | [−10, 10] | 3.26 | 3.41 |
20 | v__Sftmp | Sftmp: Snowfall temperature (°C) | [−10, 10] | 3.33 | 2.59 |
21 | v__Smfmx | Smfmx: Snowmelt factor on 21 June (mm °C−1·d−1) | [5, 10] | 8.92 | - |
22 | v__Smfmn | Smfmn: Snowmelt factor on 21 December (mm °C−1·d−1) | [0, 5] | - | - |
23 | v__Snocovmx | Snocovmx: Water content of snow cover (mm H2O) | [1, 500] | 479.94 | 462.72 |
Glacier Module Parameters | |||||
24 | v__Gmtmp | Gmtmp: Glacier melt base temperature (°C) | [0, 10] | - | 0.61 |
25 | v__Gmfmx | Gmfmx: Glacier melt factor on 7 August (mm °C−1·d−1) | [5, 10] | - | - |
26 | v__Gmfmn | Gmfmn: Glacier melt factor on 7 February (mm °C−1·d−1) | [0, 5] | - | - |
Model | Period | Functions | Daily | Monthly | ||||
---|---|---|---|---|---|---|---|---|
NS | PBIAS | R2 | NS | PBIAS | R2 | |||
SWAT | Calibration | Multi-objective | 0.74 | −10.64% | 0.75 | 0.88 | −10.54% | 0.90 |
SWAT_Glacier | Calibration | Multi-objective | 0.82 | 0.94% | 0.83 | 0.93 | 1.07% | 0.93 |
SWAT_Glacier | Calibration | LogNS | 0.82 | −15.24% | 0.74 | 0.80 | −15.11% | 0.89 |
SWAT_Glacier | Calibration | WBI | 0.69 | −1.48% | 0.71 | 0.80 | −1.25% | 0.84 |
SWAT_Glacier | Calibration | MARD | 0.48 | −19.62% | 0.51 | 0.58 | −19.39% | 0.63 |
SWAT | Validation | Multi-objective | 0.67 | −21.49% | 0.73 | 0.78 | −21.43% | 0.86 |
SWAT_Glacier | Validation | Multi-objective | 0.79 | −5.40% | 0.80 | 0.91 | −5.36% | 0.91 |
SWAT_Glacier | Validation | LogNS | 0.71 | −17.24% | 0.68 | 0.73 | −16.72% | 0.82 |
SWAT_Glacier | Validation | WBI | 0.57 | −8.40% | 0.59 | 0.69 | −7.79% | 0.73 |
SWAT_Glacier | Validation | MARD | 0.39 | −29.17% | 0.49 | 0.49 | −28.87% | 0.61 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H.; Fang, G.; Yang, J.; Chen, Y. Multi-Objective Calibration of a Distributed Hydrological Model in a Highly Glacierized Watershed in Central Asia. Water 2019, 11, 554. https://doi.org/10.3390/w11030554
Ji H, Fang G, Yang J, Chen Y. Multi-Objective Calibration of a Distributed Hydrological Model in a Highly Glacierized Watershed in Central Asia. Water. 2019; 11(3):554. https://doi.org/10.3390/w11030554
Chicago/Turabian StyleJi, Huiping, Gonghuan Fang, Jing Yang, and Yaning Chen. 2019. "Multi-Objective Calibration of a Distributed Hydrological Model in a Highly Glacierized Watershed in Central Asia" Water 11, no. 3: 554. https://doi.org/10.3390/w11030554
APA StyleJi, H., Fang, G., Yang, J., & Chen, Y. (2019). Multi-Objective Calibration of a Distributed Hydrological Model in a Highly Glacierized Watershed in Central Asia. Water, 11(3), 554. https://doi.org/10.3390/w11030554