A Multi-Index Analysis Approach to Heavy Metal Pollution Assessment in River Sediments in the Ponce Enríquez Area, Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Preparation and Analysis
3. Results
3.1. Sediment Evaluation
3.2. Enrichment Factor (EF)
3.3. Geo-Accumulation Index (Igeo)
3.4. Contamination Factor (Cf)
3.5. Pollution Load Index (PLI)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Appleton, J.; Williams, T.; Orbea, H.; Carrasco, M. Fluvial contamination associated with artisanal gold mining in the Ponce Enriquez, Portovelo-Zaruma and Nambija areas. Ecuador. Water Air Soil Pollut. 2001, 131, 19–39. [Google Scholar] [CrossRef]
- Valentukevičienė, M.; Bagdžiūnaitė-Litvinaitienė, L.; Chadyšas, V.; Litvinaitis, A. Evaluating the Impacts of Integrated Pollution on Water Quality of the Trans-Boundary Neris (Viliya) River. Sustainability 2018, 10, 4239. [Google Scholar] [CrossRef]
- Ecuadorian Institute of Standardization NTE INEN 1 108:2011. Agua Potable. Requisitos. 2011. Available online: https://law.resource.org/pub/ec/ibr/ec.nte.1108.2011.pdf (accessed on 9 March 2019).
- Ramírez Requelme, M.E.; Ramos, J.F.F.; Angélica, R.S.; Brabo, E.S. Assessment of Hg-contamination in soils and stream sediments in the mineral district of Nambija, Ecuadorian Amazon (example of an impacted area affected by artisanal gold mining). Appl. Geochem. 2003, 18, 371–381. [Google Scholar] [CrossRef]
- Velásquez-López, P.C.; Veiga, M.M.; Hall, K. Mercury balance in amalgamation in artisanal and small-scale gold mining: Identifying strategies for reducing environmental pollution in Portovelo-Zaruma, Ecuador. J. Clean. Prod. 2010, 18, 226–232. [Google Scholar] [CrossRef]
- Gonçalves, A.O.; Marshall, B.G.; Kaplan, R.J.; Moreno-Chavez, J.; Veiga, M.M. Evidence of reduced mercury loss and increased use of cyanidation at gold processing centers in southern Ecuador. J. Clean. Prod. 2017, 165, 836–845. [Google Scholar] [CrossRef]
- Sandoval, F. Small-Scale Mining in the Ecuador, Mining, Minerals and Sustainable Development. 2001. Available online: http://pubs.iied.org/pdfs/G00720.pdf (accessed on 20 February 2019).
- Mendieta, G.; Wilfrido, R. Plan de Desarrollo y Ordenamiento Territorial del cantón Camilo Ponce Enríquez Fase de Actualización 2014–2015. 2016. Available online: http://dspace.ucuenca.edu.ec/handle/123456789/23513 (accessed on 20 February 2019).
- Palapa, T.; Maramis, A. Heavy Metals in Water of Stream Near an Amalgamation Tailing Ponds in Talawaan—Tatelu Gold Mining, North Sulawesi, Indonesia. Procedia Chem. 2015, 14, 428–436. [Google Scholar] [CrossRef]
- Carrillo, G.R.; Astudillo, A.A. Evaluación de las emisiones de vapor mercurial en procesos de amalgamado artesanal: Caso Cantón Ponce Enríquez, Provincia del Azuay. Maskana 2011, 2, 2. Available online: http://dspace.ucuenca.edu.ec/bitstream/123456789/5422/1/MASKANA%20si7285%20(6).pdf (accessed on 20 February 2019). [CrossRef]
- Prodeminca. Monitoreo Ambiental de las áreas mineras en el sur del Ecuador; Prodeminca: Quito, Ecuador, 1998; ISBN 997840872X. [Google Scholar]
- Ministerio del Ambiente y Ministerio de Energía y Minas. Examen Especial al Control de Explotación Minera en las Cuencas de los ríos Santa Rosa, Caluguro, Tenguel y Siete; A cargo de la Dirección Regional de Minería de El Oro; Ministerio del Ambiente y Ministerio de Energía y Minas: Quito, Ecuador, 2003. [Google Scholar]
- Ackerman, F. A procedure for correcting the grain size effect in heavy metal analyses of estuarine and coastal sediments. Environ. Technol. Lett. 1980, 1, 518–527. [Google Scholar] [CrossRef]
- Moore, F.; Forghani, G.; Qishlaqi, A. Assessment of heavy metal contamination in water and surface sediments of the Maharlu saline lake, SW Iran. Iran. J. Sci. Technol. Trans. 2009, 33, 43–55. [Google Scholar]
- Khalil, A.; Hanich, L.; Bannari, A.; Zouhri, L.; Pourret, O.; Hakkou, R. Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: Pre-work of geochemical process modeling with numerical models. J. Geochem. Explor. 2013, 125, 117–129. [Google Scholar] [CrossRef]
- Banco Central del Ecuador, Reporte de Minería. 2018. Available online: https://contenido.bce.fin.ec/documentos/Estadisticas/Hidrocarburos/ReporteMinero012018.pdf (accessed on 20 February 2019).
- Peña Carpio, E.; Menéndez-Aguado, J.M. Environmental study of gold mining tailings in the Ponce Enriquez mining area (Ecuador). Dyna 2016, 83, 237–245. [Google Scholar] [CrossRef]
- Sierra, C.; Ruiz-Barzola, O.; Menéndez, M.; Demey, J.; Vicente-Villardón, J. Geomechanical interactions study in surface river sediments at an artisanal mining area by means of Conical (Manova)-Biplot. J. Geochem. Explor. 2017, 175, 72–81. [Google Scholar] [CrossRef]
- Canadian Council of Ministers. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. 1999. Available online: https: http://ceqg-rcqe.ccme.ca/en/index.html (accessed on 20 February 2019).
- Burton, G.A.; Kumagai, M.; Hashitani, H.; Tanimoto, R. Sediment quality criteria in use around the world. Jpn. J. Limnol. 2004, 65, 117–134. [Google Scholar] [Green Version]
- Barbieri, M. The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. Geol. Geophys. 2016, 5, 237. [Google Scholar] [CrossRef]
- Gupta, S.; Vinod, J.; Matic, N.; Kapralova, V.; Solanki, J. Assessment of Geo-Accumulation Index of Heavy Metal and Source of Contamination by Multivariate Factor Analysis. Int. J. Hazard. Mater. 2014, 18, 18–22. [Google Scholar]
- Ji, H.; Li, H.; Zhang, Y.; Ding, H.; Gao, Y.; Xing, Y. Distribution and risk assessment of heavy metals in overlying water, porewater, and sediments of Yongding River in a coal mine brownfield. J. Soils Sediments 2018, 18, 624–639. [Google Scholar] [CrossRef]
- Tomlinson, D.C.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Mar. Res. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Adebowale, K.O.; Agunbide, F.O.; Olu-Owolabi, B. Trace metal concentration, site variations and partitioning pattern in water and bottom sediments from coastal area: A case study of Ondo Coast, Nigeria. Environ. Res. J. 2009, 3, 46–59. [Google Scholar]
- Jordá, B.R.; Romero, P.; Peña Carpio, E.; Jiménez, S.; Garcés, D.; Chang, R. Análisis preliminar de la estabilidad de escombreras y balsa de relaves en el Distrito Minero Ponce Enríquez, Ecuador. In Proceedings of the 15th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Global Partnerships for Development and Engineering Education”, Boca Raton, FL, USA, 19–21 July 2017. [Google Scholar]
- Chiaradia, M.; Ulianov, A.; Kouzmanov, K.; Beate, B. Why large porphyry Cu deposits like high Sr/Y mASGMas? Sci. Rep. 2012, 2, 685. [Google Scholar] [CrossRef]
- Chiaradia, M.; Fontboté, L. Gold Rich VHMS deposits of the western cordillera of Ecuador: Mineralogy, lead isotope and metal geochemistry. In VMS Deposits of Latin America; Geological Association of Canada: St. John’s, NL, Canada, 2000; pp. 333–339. [Google Scholar]
- Wang, S.; Mulligan, C.N. Occurrence of Arsenic Contamination in Canada: Sources, Behavior and Distribution. Sci. Total Environ. 2006, 366, 701–721. [Google Scholar] [CrossRef]
- Hinton, J.J.; Veiga, M.M.; Veiga, A.; Tadeu, C. Clean artisanal gold mining: A utopian approach? J. Clean. Prod. 2003, 11, 99–115. [Google Scholar] [CrossRef]
- Hinton, J.J.; Veiga, M.M.; Beinhoff, C. Women, mercury and artisanal gold mining: Risk communication, and mitigation. J. Phys. 2003, 107, 617–620. [Google Scholar] [CrossRef]
- Veiga, M.M.; Marshall, B.G. Teaching artisanal miners about mercury pollution using songs. Extr. Ind. Soc. 2017, 4, 842–845. [Google Scholar] [CrossRef]
River | Length (km) | Length Considered during Water Sampling Campaign (km) | Altitude Variation (m) | Number of Sampling Sites |
---|---|---|---|---|
Siete | 49.5 | 10 | 141 | 48 |
Guanache | 5.6 | 5.6 | 548 | 56 |
Fermín | 9.7 | 9.7 | 158 | 43 |
Fermín Norte | - | - | - | 34 |
Villa | 3.6 | 3.6 | 211 | 33 |
Values | Quality |
---|---|
EF < 2 | Deficiency to minimal enrichment |
2 < EF < 5 | Moderate enrichment |
5 < EF < 20 | Significant enrichment |
20 < EF < 40 | Very high enrichment |
Values | Quality |
---|---|
0 | No pollution |
1 | Background pollution |
>1 | Elevated pollution level |
Element | Cu | Pb | Zn | Ni | As | Cd | Sb | Sr | Hg |
---|---|---|---|---|---|---|---|---|---|
ISQG (ppm) | 18.7 | 35 | 123 | 21 | 5.9 | 0.7 | 2 | 2 | 0.17 |
River Siete | 100% | 4% | 63% | 100% | 100% | 8% | 81% | 100% | 2% |
River Guanache | 100% | 9% | 25% | 100% | 100% | 13% | 86% | 100% | 0% |
River Fermín | 100% | 0% | 88% | 97% | 100% | 0% | 35% | 100% | 6% |
River Villa | 100% | 6% | 3% | 100% | 100% | 3% | 100% | 100% | 36% |
River | Elements | Cu | Pb | Zn | Ni | As | Cd | Sb | Sr | Hg |
---|---|---|---|---|---|---|---|---|---|---|
MDL (ppm) | 1 | 3 | 1 | 1 | 2 | 0.5 | 3 | 1 | 1 | |
ISQG (ppm) | 18.7 | 35 | 123 | 21 | 5.9 | 0.7 | 2 | 2 | 0.17 | |
Siete | mean | 483.7 | 20.3 | 132.5 | 5960.9 | 842.8 | 0.73 | 6.4 | 20.61 | 1.00 |
SD | 258.9 | 11.0 | 37.4 | 14.4 | 506.9 | 0.3 | 3.1 | 4,74 | 0.14 | |
Guanache | mean | 592.5 | 21.6 | 110.2 | 62.6 | 383.6 | 0.9 | 5.2 | 10.79 | under MDL |
SD | 256.0 | 10.1 | 32.0 | 11.8 | 273.2 | 0.3 | 2.4 | 5.37 | - | |
Fermín | mean | 160.0 | 12.9 | 164.2 | 47.4 | 205.4 | under MDL | 4.0 | 26.35 | under MDL |
SD | 17.3 | 4.6 | 31.6 | 2.9 | 68.80 | - | 2.1 | 3.88 | - | |
Villa | mean | 687.8 | 31.0 | 98.7 | 42.6 | 589.03 | 9.3 | 23.0 | 19.73 | 1.5 |
SD | 899.0 | 50.6 | 112.6 | 9.7 | 1671.9 | 1.6 | 21.3 | 3.03 | 0.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar Pesantes, A.; Peña Carpio, E.; Vitvar, T.; María Mahamud López, M.; Menéndez-Aguado, J.M. A Multi-Index Analysis Approach to Heavy Metal Pollution Assessment in River Sediments in the Ponce Enríquez Area, Ecuador. Water 2019, 11, 590. https://doi.org/10.3390/w11030590
Aguilar Pesantes A, Peña Carpio E, Vitvar T, María Mahamud López M, Menéndez-Aguado JM. A Multi-Index Analysis Approach to Heavy Metal Pollution Assessment in River Sediments in the Ponce Enríquez Area, Ecuador. Water. 2019; 11(3):590. https://doi.org/10.3390/w11030590
Chicago/Turabian StyleAguilar Pesantes, Alby, Elizabeth Peña Carpio, Tomas Vitvar, Manuel María Mahamud López, and Juan M. Menéndez-Aguado. 2019. "A Multi-Index Analysis Approach to Heavy Metal Pollution Assessment in River Sediments in the Ponce Enríquez Area, Ecuador" Water 11, no. 3: 590. https://doi.org/10.3390/w11030590
APA StyleAguilar Pesantes, A., Peña Carpio, E., Vitvar, T., María Mahamud López, M., & Menéndez-Aguado, J. M. (2019). A Multi-Index Analysis Approach to Heavy Metal Pollution Assessment in River Sediments in the Ponce Enríquez Area, Ecuador. Water, 11(3), 590. https://doi.org/10.3390/w11030590