The Potential of Wetlands in Achieving the Sustainable Development Goals of the 2030 Agenda
Abstract
:1. Introduction
2. Study Region
3. Materials and Methods
4. Results and Discussion
4.1. Water Regulation
4.2. Climate Regulation
4.3. Water Purification
4.4. Challenges of Achieving Multiple SDGs Regarding Wetland Management
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gibbs, J.P. Wetland loss and biodiversity conservation. Conserv. Biol. 2000, 14, 314–317. [Google Scholar] [CrossRef]
- Thorslund, J.; Jarsjö, J.; Jaramillo, F.; Jawitz, J.W.; Manzoni, S.; Basu, N.B.; Chalov, S.R.; Cohen, M.J.; Creed, I.F.; Goldenberg, R.; et al. Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecol. Eng. 2017, 108, 489–497. [Google Scholar] [CrossRef]
- Watson, R.T.; Noble, I.R.; Bolin, B.; Ravindranath, N.H.; Verardo, D.J.; Dokken, D.J. (Eds.) Special Report of the IPCC on Land Use, Land-Use Change, and Forestry; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Kalantari, Z.; Ferreira, C.S.S.; Deal, B.; Destouni, G. Nature-based solutions for meeting environmental and socio-economic challenges in land management and development. Land Degrad. Dev. 2019, 1–4. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Bernal, B.; Nahlik, A.M.; Mander, Ü.; Zhang, L.; Anderson, C.J.; Jørgensen, S.E.; Brix, H. Wetlands carbon, and climate change. Landsc. Ecol. 2013, 28, 583–597. [Google Scholar] [CrossRef]
- The Ramsar Convention. The 4th Strategic Plan 2016–2024, The Convention on Wetlands of International Importance especially as waterfowl habitat—The Ramsar Convention. In Proceedings of the 12th Meeting of the Conference of the Parties at Punta Del Este, Uruguay, South America, 1–9 June 2015. [Google Scholar]
- Kalantari, Z.; Ferreira, C.S.S.; Keesstra, S.; Destouni, G. Nature-based solutions for flood-drought risk mitigation in vulnerable urbanizing parts of East-Africa. Curr. Opin. Environ. Sci. Health 2018, 5, 73–78. [Google Scholar] [CrossRef]
- Jiménez Cisneros, B.E.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Döll, P.; Jiang, T.; Mwakalila, S.S. Freshwater resources. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects, 1st ed.; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 229–269. [Google Scholar]
- Goldenberg, R.; Kalantari, Z.; Cvetkovic, V.; Mörtberg, U.; Deal, B.; Destouni, G. Distinction, quantification and mapping of potential and realized supply-demand of flow-dependent ecosystem services. Sci. Total Environ. 2017, 593–594, 599–609. [Google Scholar] [CrossRef] [PubMed]
- The Ramsar Convention on Wetlands. Scaling up Wetland Conservation, Wise Use and Restoration to Achieve the Sustainable Development Goals. 2018, pp. 1–13. Available online: https://www.ramsar.org/sites/default/files/documents/library/wetlands_sdgs_e.pdf (accessed on 23 March 2019).
- Keesstra, S.D.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef]
- The Ramsar Convention. The List of Wetlands of International Importance. 2019, pp. 1–54. Available online: http://archive.ramsar.org/cda/en/ramsar-documents-list/main/ramsar/1-31-218_4000_0__ (accessed on 23 March 2019).
- Sarabhai, K.V. ESD and Sustainable Development Goals. J. Educ. Sustain. Dev. 2014, 8, 1–2. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Resolution Adopted by the General Assembly on 25 September 2015. Available online: http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 12 March 2019).
- Sweden Environmental Protection Agency. Sweden’s Environmental Objectives—An Introduction. 2012, pp. 9–24. Available online: http://www.swedishepa.se/Documents/publikationer6400/978-91-620-8620-6.pdf?pid=6759 (accessed on 23 March 2019).
- Swedish Environmental Protection Agency (Naturvårdsverket). Available online: http://www.swedishepa.se/Environmental-objectives-and-cooperation/Swedens-environmental-objectives/The-national-environmental-objectives/Thriving-Wetlands/ (accessed on 12 March 2019).
- Persson, Å. Different perspectives on EPI. In Environmental Policy Integration in Practice: Shaping Institutions for Learning, 1st ed.; Nilsson, M., Ed.; Taylor and Francis Group: London, UK, 2007; pp. 25–48. [Google Scholar]
- van Asselt, H. Legal and political approaches in interplay management: Dealing with the fragmentation of global climate governance. In Managing Institutional Complexity: Regime Interplay and Global Environmental Change; Oberthür, S., Stokke, O.S., Eds.; The MIP Press Scholarship Online: Cambridge, MA, USA, 2011; pp. 59–85. [Google Scholar]
- Weitz, N.; Strambo, C.; Kemp-Benedict, E.; Nilsson, M. Closing the governance gaps in the water-energy-food nexus: Insights from integrative governance. Glob. Environ. Chang. 2017, 45, 165–173. [Google Scholar] [CrossRef]
- Gunnarsson, U.; Löfroth, M. The Swedish Wetland Survey; Swedish Environmental Protection Agency (Naturvårdsverket): Frösön, Sweden, 2014; p. 22. [Google Scholar]
- The Ramsar Sites Information Service. Available online: https://www.ramsar.org/wetland/sweden (accessed on 15 February 2019).
- Swedish Environmental Protection Agency (Naturvårdsverket). Available online: https://www.naturvardsverket.se/Sa-mar-miljon/Vatten/Vatmark/ (accessed on 15 February 2019).
- Johansson, T.B.; Nakicenovic, N.; Patwardhan, A.; Gomez-Echeverri, L. Global Energy Assessment—Toward a Sustainable Future; Cambridge University Press and the International Institute for Applied Systems Analysis: Laxenburg, Austria, 2012. [Google Scholar]
- van Vuuren, D.; Kok, M.; van der Esch, S.; Jeuken, M.; Lucas, P.; Prins, A.G.; Alkemade, R.; van den Berg, M.; Biermann, F.; van der Grijp, N.; et al. Roads from Rio+20 Pathways to Achieve Global Sustainability Goals by 2050; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2012. [Google Scholar]
- Stafford Smith, M.; Gaffney, O.; Brito, L.; Ostrom, E.; Seitzinger, S. Interconnected risks and solutions for a planet under pressure—Overview and introduction. Curr. Opin. Envn. Sustain. 2012, 4, 3–6. [Google Scholar] [CrossRef]
- Nilsson, M.; Griggs, D.J.; McCollum, D.; Stevance, A. (Eds.) A Guide to SDG Interactions: From Science to Implementation; International Council for Science (ICSU): Paris, France, 2017. [Google Scholar]
- Nilsson, M.; Dzebo, A.; Savvidou, G.; Axelsson, K. A bridging framework for studying transition pathways—From systems models to local action in the Swedish heating domain. Technol. Forecast. Soc. Chang. 2018, in press. [Google Scholar] [CrossRef]
- United Nations (UN). Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals (accessed on 15 February 2019).
- Intergovernmental Panel on Climate Change (IPCC). Fifth Synthesis Report: Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2014; pp. 1–151. [Google Scholar]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-being: Wetlands and Water Synthesis. 2005, pp. 30–38. Available online: http://hdl.handle.net/20.500.11822/8735 (accessed on 12 March 2019).
- Kovats, R.S.; Valentini, R.; Bouwer, L.M.; Georgopoulou, E.; Jacob, D.; Martin, E.; Rounsevell, M.; Soussana, J.-F. Europe. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects, 1st ed.; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1267–1326. [Google Scholar]
- Hefting, M.; Clément, J.C.; Dowrick, D.; Cosandey, A.C.; Bernal, S.; Cimpian, C.; Tatur, A.; Burt, T.P.; Pinay, G. Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient. Biogeochemistry 2004, 67, 113–134. [Google Scholar] [CrossRef]
- Xiong, S.; Johansson, M.E.; Hughes, F.M.R.; Hayes, A.; Richards, K.S.; Nilsson, C. Interactive effects of soil moisture, vegetation canopy, plant litter and seed addition on plant diversity in a wetland community. J. Ecol. 2003, 91, 976–986. [Google Scholar] [CrossRef] [Green Version]
- Verhoeven, J.T.A.; Arheimer, B.; Yin, C.; Hefting, M.M. Regional and global concerns over wetlands and water quality. Trends Ecol. Evolut. 2006, 21, 96–103. [Google Scholar] [CrossRef] [PubMed]
- The Ramsar Convention. Coastal Management: Wetland Issues in Integrated Coastal Zone Management, 3rd ed. 2010, pp. 1–52. Available online: https://www.ramsar.org/sites/default/files/documents/pdf/lib/hbk4-12.pdf (accessed on 23 March 2019).
- Gren, I.M. Resilience value of constructed coastal wetlands for combating eutrophication. Ocean Coast. Manag. 2010, 53, 358–365. [Google Scholar] [CrossRef]
- Russi, D.; ten Brink, P.; Farmer, A.; Badura, T.; Coates, D.; Förster, J.; Kumar, R.; Davidson, N. The Economics of Ecosystems and Biodiversity (TEEB) for Water and Wetlands; IEEP: London, UK; Brussels, Belgium; Ramsar Secretariat: Gland, Switzerland, 2013. [Google Scholar]
- de Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and valuation of ecosystem functions goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef]
- Acreman, M.; Holden, J. How wetlands affect floods. Wetlands 2013, 33, 773–786. [Google Scholar] [CrossRef]
- Renöfält, B.M.; Jansson, R.; Nilsson, C. Effects of hydropower generation and opportunities for environmental flow management in Swedish Riverine ecosystems. Freshw. Biol. 2010, 55, 49–67. [Google Scholar] [CrossRef]
- Merriman, L.S.; Moore, T.L.C.; Wang, J.W.; Osmond, D.L.; Al-Rubaei, A.M.; Smolek, A.P.; Blecken, G.T.; Viklander, M.; Hunt, W.F. Evaluation of factors affecting soil carbon sequestration services of stormwater wet retention ponds in varying climate zones. Sci. Total Environ. 2017, 583, 133–141. [Google Scholar] [CrossRef]
- Hiraishi, T.; Krug, T.; Tanabe, K.; Srivastava, N.; Jamsranjav, B.; Fukuda, M.; Troxler, T. (Eds.) Methodological guidance on lands with wet and drained soils, and constructed wetlands for wastewater treatment. In 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Barthelmes, A.; Couwenberg, J.; Risager, M.; Tegetmeyer, C.; Joosten, H. Peatlands and Climate in a Ramsar Context; Nordic Council of Ministers: Copenhagen, Denmark, 2015. [Google Scholar]
- Bindler, R. Estimating the natural background atmospheric deposition rate of Mercury utilizing Ombrotrophic bogs in southern Sweden. Environ. Sci. Technol. 2003, 37, 40–46. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). What Is Ocean Acidification? Available online: https://www.pmel.noaa.gov/co2/story/What+is+Ocean+Acidification%3F (accessed on 15 February 2019).
- Lafferty, W.M.; Hovden, E. Environmental policy integration: Towards an analytical framework. Environ. Politics 2003, 12, 1–22. [Google Scholar] [CrossRef]
- Rydberg, J.; Klaminder, J.; Rosén, P.; Bindler, R. Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-Arctic lakes. Sci. Total Environ. 2010, 408, 4778–4783. [Google Scholar] [CrossRef]
- Borgå, K.; Fisk, A.T.; Hoekstra, P.E.; Muir, D.C.G. Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in Arctic marine food webs. Environ. Toxicol. Chem. 2004, 23, 2367–2385. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Zheng, Z.; Li, J.; Sun, X.; Han, X.; Wang, W.; Xu, M. Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China. Ecol. Eng. 2006, 26, 272–282. [Google Scholar] [CrossRef]
- Leadley, P.W.; Krug, C.B.; Alkemade, R.; Pereira, H.M.; Sumaila, U.R.; Walpole, M.; Marques, A.; Newbold, T.; Teh, L.S.L.; van Kolck, J.; et al. Progress towards the Aichi Biodiversity Targets: An Assessment of Biodiversity Trends, Policy Scenarios and Key Actions; Technical Series; Secretariat of the Convention on Biological Diversity (CBD): Montreal, QC, Canada, 2014; Volume 78, 500p. [Google Scholar]
- Arkema, K.K.; Guannel, G.; Verutes, G.; Wood, S.A.; Guerry, A.; Ruckelshaus, M.; Kareiva, P.; Lacayo, M.; Silver, J.M. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 2013, 3, 913–918. [Google Scholar] [CrossRef]
- Swedish Environmental Protection Agency. National Strategy for Thriving Wetlands; Swedish Environmental Protection Agency: Frösön, Sweden, 2005; 32p. [Google Scholar]
- Jordan, A.; Lenschow, A. Innovation in Environmental Policy? Integrating the Environment for Sustainability, 1st ed.; Edward Elgar: Cheltenham, UK, 2008. [Google Scholar]
- Kooiman, J.; Jentoft, S. Meta-Governance: Values, norms and principles, and the making of hard choices. Public Adm. 2009, 87, 818–836. [Google Scholar] [CrossRef]
Score | Category | Relevant SDGs and Targets | |||
---|---|---|---|---|---|
+1 Enabling | SDG | ||||
Target | 7.1 | 11.B | 14.1; 14.3 | ||
+2 Reinforcing | SDG | ||||
Target | 2.4 | 3.9 | 12.2 | ||
+3 Indivisible | SDG | ||||
Target | 1.5 | 6.1; 6.3; 6.4; 6.6 | 13.1; 13.2 | 15.1; 15.5; 15.A | |
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seifollahi-Aghmiuni, S.; Nockrach, M.; Kalantari, Z. The Potential of Wetlands in Achieving the Sustainable Development Goals of the 2030 Agenda. Water 2019, 11, 609. https://doi.org/10.3390/w11030609
Seifollahi-Aghmiuni S, Nockrach M, Kalantari Z. The Potential of Wetlands in Achieving the Sustainable Development Goals of the 2030 Agenda. Water. 2019; 11(3):609. https://doi.org/10.3390/w11030609
Chicago/Turabian StyleSeifollahi-Aghmiuni, Samaneh, Minnoka Nockrach, and Zahra Kalantari. 2019. "The Potential of Wetlands in Achieving the Sustainable Development Goals of the 2030 Agenda" Water 11, no. 3: 609. https://doi.org/10.3390/w11030609
APA StyleSeifollahi-Aghmiuni, S., Nockrach, M., & Kalantari, Z. (2019). The Potential of Wetlands in Achieving the Sustainable Development Goals of the 2030 Agenda. Water, 11(3), 609. https://doi.org/10.3390/w11030609