Analysis of the Water-Energy Coupling Efficiency in China: Based on the Three-Stage SBM-DEA Model with Undesirable Outputs
Abstract
:1. Introduction
2. Methodology and Data
2.1. Three-Stage DEA Model
2.1.1. Stage One
2.1.2. Stage Two
2.1.3. Stage Three
2.2. Index System of Environmental Factors
2.2.1. Construction of Index System
2.2.2. Processing of Indexes
2.3. Data Sources and Processing
3. Results and Discussion
3.1. Stage One
3.2. Stage Two
3.3. Stage Three
4. Conclusions and Suggestions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Regions | Before Adjustment | After Adjustment |
---|---|---|
Beijing | 1 | 1 |
Tianjin | 1 | 1 |
Hebei | 0.430407 | 0.181516 |
Shanxi | 0.591323 | 0.308401 |
Inner Mongolia | 0.417249 | 0.222783 |
Liaoning | 0.98813 | 0.628468 |
Jilin | 0.479822 | 0.358329 |
Heilongjiang | 0.807001 | 0.410953 |
Shanghai | 0.390732 | 0.305996 |
Jiangsu | 0.34406 | 0.171057 |
Zhejiang | 0.544582 | 0.25264 |
Anhui | 0.627385 | 0.332571 |
Fujian | 0.582367 | 0.385727 |
Jiangxi | 0.438989 | 0.308107 |
Shandong | 0.363234 | 0.176895 |
Henan | 0.459025 | 0.208293 |
Hubei | 0.455642 | 0.2333 |
Hunan | 1 | 1 |
Guangdong | 1 | 0.712351 |
Guangxi | 1 | 1 |
Hainan | 1 | 1 |
Chongqing | 0.624126 | 0.485913 |
Sichuang | 0.410645 | 0.22646 |
Guizhou | 0.462443 | 0.419114 |
Yunnan | 0.452524 | 0.35049 |
Shaanxi | 0.540191 | 0.381908 |
Gansu | 0.495641 | 0.455734 |
Qinghai | 1 | 1 |
Ningxia | 1 | 1 |
Xinjiang | 0.537942 | 0.433065 |
References
- International Energy Agency (IEA). World Energy Outlook 2016; International Energy Agency: Paris, France, 2016. [Google Scholar]
- UNESCO. The United Nations World Water Development Report 2: Water, a Shared Responsibility; UNESCO: Paris, France, 2006. [Google Scholar]
- Schnoor, J.L. Water-Energy nexus. Environ. Sci. Technol. 2011, 45, 5065. [Google Scholar] [CrossRef]
- Cai, J.L. Impacts of urbanization on water use and energy-related CO2 emissions of residential consumption in China: A spatio-temporal analysis during 2003–2012. J. Clean. Prod. 2018, 194, 23–33. [Google Scholar] [CrossRef]
- Li, K.; Fang, L.; He, L. How urbanization affects China’s energy efficiency: A spatial econometric analysis. J. Clean. Prod. 2018, 200, 1130–1141. [Google Scholar] [CrossRef]
- Hong, S.Y.; Wang, H.R.; Lai, E.L.; Zhu, Z.F. Spatial analysis and coordinated development decoupling analysis of energy-consumption water in China. J. Nat. Resour. 2017, 32, 800–813. [Google Scholar] [CrossRef]
- Pei, Y.J.; Song, W.W.; Shi, J.W.; Pang, H. Flow field and strength analysis of composite space guide blade structure of inclined flow pump. Water Resour. Power 2017, 6, 40. [Google Scholar]
- Jiang, S. Scientific Concept of Water-Energy Nexus and Coupling Simulation; China Institute of Water Conservancy and Hydropower Science: Beijing, China, 2017.
- Hamiche, A.M.; Stambouli, A.B.; Flazi, S. A review of the Water-Energy nexus. Renew. Sustain. Energy Rev. 2016, 65, 319–331. [Google Scholar] [CrossRef]
- Bertrand, A.; Mastrucci, A.; Schüler, N.; Aggoune, R.; Maréchal, F. Characterisation of domestic hot water end-uses for integrated urban thermal energy assessment and optimisation. Appl. Energy 2017, 186, 152–166. [Google Scholar] [CrossRef] [Green Version]
- DeNooyer, T.A.; Peschel, J.M.; Zhang, Z.; Stillwell, A.S. Integrating water resources and power generation: The energy–water nexus in Illinois. Appl. Energy 2016, 162, 363–371. [Google Scholar] [CrossRef]
- Topi, C.; Esposto, E.; Govigli, V.M. The economics of green transition strategies for cities: Can low carbon, energy efficient development approaches be adapted to demand side urban water efficiency? Environ. Sci. Policy 2016, 58, 74–82. [Google Scholar] [CrossRef]
- Scott, C.A.; Pierce, S.A.; Pasqualetti, M.J.; Jones, A.L.; Montz, B.E.; Hoover, J.H. Policy and institutional dimensions of the Water-Energy nexus. Energy Policy 2011, 39, 6622–6630. [Google Scholar] [CrossRef]
- Pacetti, T.; Lombardi, L.; Federici, G. Water-Energy nexus: A case of biogas production from energy crops evaluated by Water Footprint and Life Cycle Assessment (LCA) methods. J. Clean. Prod. 2015, 101, 278–291. [Google Scholar] [CrossRef]
- Ewing, B.R.; Hawkins, T.R.; Wiedmann, T.O.; Galli, A.; Ercin, A.E.; Weinzettel, J.; Steen-Olsen, K. Integrating ecological and water footprint accounting in a multi-regional input–output framework. Ecol. Indic. 2012, 23, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dale, L.L.; Dale, L.L.; Karali, N.; Millstein, D.; Carnall, M.; Vicuña, S.; Borchers, N.; Bustos, E.; O’Hagan, J.; Purkey, D.; Heaps, C.; et al. An integrated assessment of water-energy and climate change in Sacramento, California: How strong is the nexus? Clim. Chang. 2015, 132, 223–235. [Google Scholar] [CrossRef]
- Wang, W.H.; Tang, X.; Yang, X.G. Energy savings in China’s energy sectors and contributions to air pollution reduction in the 12th Five Year Plan. J. Clean. Prod. 2018, 200, 305–317. [Google Scholar] [CrossRef]
- Wang, W.R.; Zhang, L.L. Water resources allocation analysis in the context of the strictest water resources management system. Hydroelectr. Energy Sci. 2014, 32, 38–41. [Google Scholar]
- Fan, J.L.; Hu, J.W.; Kong, L.S.; Zhang, X.H. Relationship between energy production and water resource utilization: A panel data analysis of 31 provinces in China. J. Clean. Prod. 2017, 167, 88–96. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, R.P.; Chen, B.; Zhang, J.; Tasawar, H.; Ahmed, A. Embodiment of virtual water of power generation in the electric power system in China. Appl. Energy 2015, 151, 110–121. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, B.; Wang, H.K.; Bi, J. Drops of energy: Conserving urban water to reduce greenhouse gas emissions. Environ. Sci. Technol. 2013, 47, 10753–10761. [Google Scholar] [CrossRef]
- Duan, C.; Chen, B. Energy–water nexus of international energy trade of China. Appl. Energy 2016, 194, 725–734. [Google Scholar] [CrossRef]
- Wang, S.; Chen, B. Energy-water nexus of urban agglomeration based on multiregional input-output tables and ecological network analysis: A case study of the Beijing–Tianjin–Hebei region. Appl. Energy 2016, 178, 773–783. [Google Scholar] [CrossRef]
- Zhang, J.; Bu, S. Measuring allocation efficiency of regional green S&T resources based on three-stage SBM-DEA—Taking Guilin City as an example. Resour. Dev. Mark. 2017, 33, 1–7. [Google Scholar] [CrossRef]
- Fried, H.O.; Lovell, C.A.K.; Schmidt, S.S.; Yaisawarng, S. Accounting for environmental effects and statistical noise in data envelopment analysis. J. Product. Anal. 2002, 17, 157–174. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.A.K.; Schmidt, S.S. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Xia, B.; Skitmore, M. Impact of environment regulation on the efficiency of regional construction industry: A 3-stage Data Envelopment Analysis (DEA). J. Clean. Prod. 2018, 200, 770–780. [Google Scholar] [CrossRef]
- Deng, B.; Zhang, X.J.; Guo, J.H. Research on ecological efficiency based on three-stage DEA model. China Soft Sci. 2011, 1, 92–99. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Liu, J.; Tone, K. A multistage method to measure efficiency and its application to Japanese banking industry. Socio–Econ. Plan. Sci. 2008, 42, 75–91. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhang, L.; Ma, T.H.; Liu, W.L. Research on three-stage DEA model. Syst. Eng. 2014, 9, 144–149. [Google Scholar]
- Kumbhakar, S.C.; Lovell, K.C.A. Stochastic Frontier Analysis; Cambridge University Press: Cambridgem, UK, 2000; pp. 136–142. [Google Scholar]
- Risto, H.; Rajeev, K.G. Global CO2 efficiency: Country wise estimates using a stochastic cost frontier. Energy Policy 2012, 45, 762–770. [Google Scholar] [CrossRef]
- Sun, C.Z.; Zhao, L.S. Water resource utilization efficiency and spatial spillover effects in China. J. Geogr. Sci. 2014, 24, 771–788. [Google Scholar] [CrossRef]
- Thiede, S.; Malte, S.; Kurle, D.; Herrmann, C. Multi-level simulation in manufacturing companies: The water-energy nexus case. J. Clean. Prod. 2016, 139, 1118–1127. [Google Scholar] [CrossRef]
- Carrasquer, B.; Uche, J.; Amaya, M.G. A new indicator to estimate the efficiency of water and energy use in agro-industries. J. Clean. Prod. 2017, 143, 462–473. [Google Scholar] [CrossRef]
- Li, G. A study on the combination of subjective and objective weights and its rationality. Manag. Rev. 2017, 29, 17–26. [Google Scholar] [CrossRef]
- Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976; pp. 1–150. [Google Scholar]
- Wang, S.; Sun, C.Z.; Li, X.; Zou, W. Sustainable development in China’s coastal area: Based on the Driver–Pressure–State–Welfare–Response Framework and the Data Envelopment Analysis Model. Sustainability 2016, 8, 958. [Google Scholar] [CrossRef]
- Dempster, A.P. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 1967, 38, 325–339. [Google Scholar] [CrossRef]
- Dempster, A.P. Generalization of Bayesian inference. J. R. Stat. Soc. 1968, 30, 205–247. [Google Scholar] [CrossRef]
- Sun, C.Z.; Wang, X.L.; Wang, S. Measurement and spatial effect analysis of China’s biased technology progress under environmental constraints. Econ. Geogr. 2018, 38. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagian, A.K.; Hoekstra, A.Y.; Mekonnen, M.M. The Water Footprint Assessment Manual; Routledge: London, UK, 2012. [Google Scholar]
- Morera, S.; Corominas, L.; Poch, M.; Aldaya, M.M.; Comas, J. Water footprint assessment in wastewater treatment plants. J. Clean. Prod. 2016, 112, 4741–4748. [Google Scholar] [CrossRef] [Green Version]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC: National Greenhouse Gas Inventory Guide; Institute of Global Environmental Strategy (IGES): Kanagawa, Japan, 2006. [Google Scholar]
Environment Variables | Secondary Indicators | Third Level Indicators | Weight |
---|---|---|---|
Resource Environment | Water Resources Development and Utilization | Water resources per capita | 0.0912359 |
Water consumption per unit of GDP * | 0.0052151 | ||
Water resources development and utilization degree | 0.3052488 | ||
Energy consumption | Per capita electricity consumption | 0.0076327 | |
Electricity consumption per unit of GDP * | 0.0105545 | ||
Proportion of coal consumption * | 0.030139 | ||
Energy Investment | Energy industry investment | 0.0754953 | |
Waste gas management investment | 0.1317343 | ||
Sewage Treatment | Total amount of sewage treatment | 0.2060739 | |
Rate of urban sewage treatment | 0.0406663 | ||
Utilization Efficiency | Energy intensity * | 0.0164427 | |
Industrial effluent discharge rate | 0.022869 | ||
Comprehensive utilization ratio of industrial solid waste | 0.0566923 | ||
Social Environment | Population Growth | Natural growth rate of population * | 0.0089249 |
Population density * | 0.0118809 | ||
Urban-rural Structure | Urban-rural population ratio | 0.095739 | |
Urbanization level | 0.0290601 | ||
Social Security | Urban registration unemployment rate * | 0.0160734 | |
Comparative labor productivity | 0.1098623 | ||
Public Service | Local general public budget expenditure | 0.1073178 | |
Industrial adjustment coefficient | 0.0835815 | ||
Science & Technology Education | Per capita education outlay | 0.0626544 | |
R&D expenditure ratio | 0.4749056 | ||
Economic Environment | Economic Growth | Annual GDP growth rate | 0.0301135 |
Economic Development | Per capita disposable income of urban residents | 0.1391604 | |
Per capita disposable income of rural residents | 0.1422021 | ||
Economic Scale | Per capita GDP | 0.0683624 | |
Stock of per capita fixed assets | 0.0593269 | ||
Economic Structure | Proportion of the secondary industry | 0.0551652 | |
Proportion of the tertiary industry | 0.0988244 | ||
Economic Benefit | Secondary industry contribution rate | 0.0610254 | |
Tertiary industry contribution rate | 0.1267039 | ||
Economic Extraversion | Per capita FDI | 0.0755002 | |
Dependence on foreign trade | 0.1436155 | ||
Ecological Environment | Basic Facilities | Per capita public green space area | 0.0495535 |
Proportion of nature reserve | 0.0670543 | ||
Manpower Input | Proportion of environmental workers | 0.1347224 | |
Ecological Scale | Greenbelt coverage of built-up area | 0.0458514 | |
Per capita green space coverage | 0.1379591 | ||
Forest coverage rate | 0.1999812 | ||
Pollutant Emission | Carbon emission intensity per unit of GDP * | 0.0103709 | |
Sulfur dioxide emission intensity per unit of GDP * | 0.0139201 | ||
Industrial waste gas emission per unit of GDP * | 0.0105777 | ||
Per capita carbon emission * | 0.0178669 | ||
Total industrial effluent discharge * | 0.0189 | ||
Policy Planning | Environmental investment in GDP | 0.120236 | |
Sewage charges accounted for revenue | 0.1400109 | ||
Per capita sewage charges | 0.0329955 |
Region | 2003 | 2007 | 2011 | 2015 | Average |
---|---|---|---|---|---|
East | |||||
Beijing | 1 | 1 | 1 | 1 | 1 |
Tianjin | 1 | 1 | 1 | 1 | 1 |
Hebei | 0.446141 | 0.446442 | 0.434448 | 0.383724 | 0.430407 |
Shanghai | 0.306585 | 0.37508 | 0.443222 | 0.412682 | 0.390732 |
Jiangsu | 0.309984 | 0.316796 | 0.37809 | 0.360684 | 0.34406 |
Zhejiang | 0.586479 | 0.5199 | 0.552559 | 0.535031 | 0.544582 |
Fujian | 0.548022 | 0.569936 | 0.60875 | 0.592826 | 0.582367 |
Shandong | 0.469097 | 0.37655 | 0.337597 | 0.319929 | 0.363234 |
Guangdong | 1 | 1 | 1 | 1 | 1 |
Hainan | 1 | 1 | 1 | 1 | 1 |
Average | 0.666631 | 0.66047 | 0.675467 | 0.660488 | 0.665538 |
Northeast | |||||
Liaoning | 1 | 1 | 1 | 1 | 0.98813 |
Jilin | 0.469135 | 0.471483 | 0.479159 | 0.487041 | 0.479822 |
Heilongjiang | 1 | 0.815573 | 0.758264 | 0.800654 | 0.807001 |
Average | 0.823045 | 0.762352 | 0.745808 | 0.762565 | 0.758318 |
Central Areas | |||||
Shanxi | 0.547697 | 0.576414 | 0.616397 | 0.591138 | 0.591323 |
Anhui | 0.60685 | 0.663972 | 0.588314 | 0.611378 | 0.627385 |
Jiangxi | 0.420899 | 0.438451 | 0.422452 | 0.47054 | 0.438989 |
Henan | 0.504259 | 0.434349 | 0.41688 | 0.505749 | 0.459025 |
Hubei | 0.426506 | 0.440985 | 0.461889 | 0.503999 | 0.455642 |
Hunan | 1 | 1 | 1 | 1 | 1 |
Average | 0.584369 | 0.592362 | 0.584322 | 0.613801 | 0.595394 |
West | |||||
Chongqing | 0.590795 | 0.573126 | 0.641648 | 0.755155 | 0.624126 |
Sichuan | 0.36526 | 0.397335 | 0.411907 | 0.476396 | 0.410645 |
Guizhou | 0.373881 | 0.410142 | 0.495629 | 0.61219 | 0.462443 |
Yunnan | 0.447861 | 0.449602 | 0.433184 | 0.467562 | 0.452524 |
Shaanxi | 0.477918 | 0.527668 | 0.5667 | 0.534536 | 0.540191 |
Gansu | 0.479837 | 0.49853 | 0.491934 | 0.512617 | 0.495641 |
Qinghai | 1 | 1 | 1 | 1 | 1 |
Ningxia | 1 | 1 | 1 | 1 | 1 |
Xinjiang | 0.591016 | 0.548447 | 0.544524 | 0.470137 | 0.537942 |
Guangxi | 1 | 1 | 1 | 1 | 1 |
Inner Mongolia | 0.463954 | 0.446641 | 0.396282 | 0.37126 | 0.417249 |
Average | 0.61732 | 0.622863 | 0.63471 | 0.654532 | 0.630978 |
Variable | Capital Stock | Employment Personnel | Water Footprint | Energy Consumption |
---|---|---|---|---|
Constant | −3152.161 *** | −3546.4536 *** | −478.55315 *** | −6606.4096 *** |
(−3149.5018) | (−156.87411) | (−13.050275) | (−3731.2915) | |
Resources Environment | −46470.535 *** | −251.18285 *** | −561.73942 *** | −20275.529 *** |
(-46469.252) | (−37.149723) | (−5.1765442) | (−18478.819) | |
Social Environment | −9283.5029 *** | −230.71714 *** | −412.68387 *** | −4020.0156 *** |
(−9283.4855) | −45.301469) | (−2.9321697) | (−3391.4211) | |
Economic Environment | 13604.762 *** | 2740.9118 *** | 94.849516 ** | −1224.8368 *** |
(−13604.579) | (−345.04024) | (−0.76725493) | (−955.45612) | |
Ecological Environment | 13847.54 *** | 2881.5491 *** | −229.24258 ** | 19595.257 *** |
(−13847.468) | (−314.55491) | (−2.2052833) | (−13741.142) | |
Sigma-squared | 51907495 *** | 2058250.9 *** | 132495.73 *** | 31297354 *** |
Gamma | 0.85977245 | 0.94168732 | 0.9725617 | 0.92094702 |
Log Likelihood | −3716.7 | −2896.6202 | −2239.7968 | −3518.2246 |
LR Test of the One-sided Error | 297.90895 | 621.05406 | 864.886 | 457.70496 |
Region | 2003 | 2007 | 2011 | 2015 | Average |
---|---|---|---|---|---|
East | |||||
Beijing | 1 | 1 | 1 | 1 | 1 |
Tianjin | 1 | 1 | 1 | 1 | 1 |
Hebei | 0.226933 | 0.186492 | 0.168631 | 0.154293 | 0.181516 |
Shanghai | 0.304882 | 0.306125 | 0.318688 | 0.291432 | 0.305996 |
Jiangsu | 0.232677 | 0.174279 | 0.152818 | 0.139388 | 0.171057 |
Zhejiang | 0.306924 | 0.242941 | 0.234446 | 0.234086 | 0.25264 |
Fujian | 0.421175 | 0.39593 | 0.378679 | 0.353577 | 0.385727 |
Shandong | 0.231138 | 0.186631 | 0.155889 | 0.139896 | 0.176895 |
Guangdong | 1 | 1 | 0.392163 | 0.352248 | 0.712351 |
Hainan | 1 | 1 | 1 | 1 | 1 |
Average | 0.572373 | 0.54924 | 0.480131 | 0.466492 | 0.518618 |
Northeast | |||||
Liaoning | 1 | 1 | 0.394179 | 0.400998 | 0.628468 |
Jilin | 0.405377 | 0.36132 | 0.330218 | 0.344393 | 0.358329 |
Heilongjiang | 1 | 0.412573 | 0.296262 | 0.305602 | 0.410953 |
Average | 0.801792 | 0.591298 | 0.34022 | 0.350331 | 0.465916 |
Central Areas | |||||
Shanxi | 0.345204 | 0.304061 | 0.296496 | 0.299518 | 0.308401 |
Anhui | 0.363937 | 0.349059 | 0.291439 | 0.289854 | 0.332571 |
Jiangxi | 0.362591 | 0.309679 | 0.282745 | 0.284424 | 0.308107 |
Henan | 0.27449 | 0.210265 | 0.186054 | 0.179333 | 0.208293 |
Hubei | 0.286587 | 0.234835 | 0.199355 | 0.218635 | 0.2333 |
Hunan | 1 | 1 | 1 | 1 | 1 |
Average | 0.438802 | 0.401317 | 0.376015 | 0.378627 | 0.398445 |
West | |||||
Chongqing | 0.504823 | 0.491885 | 0.460293 | 0.524644 | 0.485913 |
Sichuan | 0.262284 | 0.224419 | 0.210418 | 0.24184 | 0.22646 |
Guizhou | 0.414967 | 0.403945 | 0.432617 | 0.433432 | 0.419114 |
Yunnan | 0.405532 | 0.357551 | 0.327963 | 0.316444 | 0.35049 |
Shaanxi | 0.41747 | 0.395588 | 0.373137 | 0.33569 | 0.381908 |
Gansu | 0.505652 | 0.462924 | 0.434843 | 0.434061 | 0.455734 |
Qinghai | 1 | 1 | 1 | 1 | 1 |
Ningxia | 1 | 1 | 1 | 1 | 1 |
Xinjiang | 0.504206 | 0.456466 | 0.427971 | 0.346225 | 0.433065 |
Guangxi | 1 | 1 | 1 | 1 | 1 |
Inner Mongolia | 0.330707 | 0.239329 | 0.180736 | 0.18056 | 0.222783 |
Average | 0.576876 | 0.548373 | 0.531634 | 0.528445 | 0.543224 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Sun, C.; Wang, X. Analysis of the Water-Energy Coupling Efficiency in China: Based on the Three-Stage SBM-DEA Model with Undesirable Outputs. Water 2019, 11, 632. https://doi.org/10.3390/w11040632
Wang M, Sun C, Wang X. Analysis of the Water-Energy Coupling Efficiency in China: Based on the Three-Stage SBM-DEA Model with Undesirable Outputs. Water. 2019; 11(4):632. https://doi.org/10.3390/w11040632
Chicago/Turabian StyleWang, Meng, Caizhi Sun, and Xueli Wang. 2019. "Analysis of the Water-Energy Coupling Efficiency in China: Based on the Three-Stage SBM-DEA Model with Undesirable Outputs" Water 11, no. 4: 632. https://doi.org/10.3390/w11040632
APA StyleWang, M., Sun, C., & Wang, X. (2019). Analysis of the Water-Energy Coupling Efficiency in China: Based on the Three-Stage SBM-DEA Model with Undesirable Outputs. Water, 11(4), 632. https://doi.org/10.3390/w11040632