Adsorption of Phosphates from Aqueous Solutions on Alginate/Goethite Hydrogel Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Goethite and Alginate/Goethite Hydrogel Capsules
2.2. Mechanical Stability of Capsules
2.3. Analytical Methods
2.4. Adsorption Kinetic Measurements
2.5. Phosphate Adsorption Experiments
2.6. Effect of pH
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lewandowski, J.; Schauser, I.; Hupfer, M. Long-term effects of phosphorus precipitations with alum in hypereutrophic Lake Süsser See (Germany). Water Res. 2003, 37, 3194–3204. [Google Scholar] [CrossRef]
- Egemose, S.; Reitzel, K.; Andersen, F.Ø.; Jensen, H.S. Resuspension-mediated aluminium and phosphorus distribution in lake sediments after aluminium treatment. Hydrobiologia 2013, 701, 79–88. [Google Scholar] [CrossRef]
- Jensen, H.S.; Reitzel, K.; Egemose, S. Evaluation of aluminum treatment efficiency on water quality and internal phosphorus cycling in six Danish lakes. Hydrobiologia 2015, 751, 189–199. [Google Scholar] [CrossRef]
- Prepas, E.E.; Murphy, T.P.; Crosby, J.M.; Walty, D.T.; Lim, J.T.; Babin, J.; Chambers, P.A. Reduction of phosphorus and chlorophyll a concentration following CaCO3 and Ca(OH)2 additions to hypereutrophic Figure Eight Lake, Alberta. Environ. Sci. Technol. 1990, 24, 1252–1258. [Google Scholar] [CrossRef]
- Dittrich, M.; Koschel, R. Interactions between calcite precipitation (natural and artificial) and phosphorus cycle in the hardwater lake. Hydrobiologia 2002, 469, 49–57. [Google Scholar] [CrossRef]
- Jančula, D.; Maršálek, B. Critical review of available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere 2011, 85, 1415–1422. [Google Scholar] [CrossRef]
- Wiśniewski, R. Phosphate inactivation with iron chloride during sediment resuspension. Lakes Reserv. Res. Manag. 1999, 4, 65–73. [Google Scholar] [CrossRef]
- Deppe, T.; Benndorf, J. Phosphorus reduction in shallow hypereutrophic reservoir by in-lake dosage of ferrous iron. Water Res. 2002, 36, 4525–4534. [Google Scholar] [CrossRef]
- Perkins, R.G.; Underwood, G.J.C. The potential for phosphorus release across the sediment-water interface in an eutrophic reservoir dosed with ferric sulphate. Water Res. 2001, 35, 1399–1406. [Google Scholar] [CrossRef]
- Wauer, G.; Gonsiorczyk, T.; Casper, P.; Koschel, R. P-immobilisation and phosphtase activites in lake sediment following treatment with nitrate and iron. Limnologica 2005, 35, 102–108. [Google Scholar] [CrossRef]
- Zeng, L.; Li, X.; Liu, J. Adsoptive removl of phosphate from aqueous solutions using iron oxide tilings. Water Res. 2004, 38, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Geelhoed, J.S.; Hiemstra, T.; Van Riemsdijk, W.H. Phosphate and sulfate adsorption on goethite: Single anion and competitive adsorption. Geochim. Cosmochim. Acta 1997, 61, 2389–2396. [Google Scholar] [CrossRef] [Green Version]
- Chitrakar, R.; Satoko, T.; Sonoda, A.; Sakane, K.; Ooi, K.; Hirotsu, T. Phosphate adsorption on synthetic goethite and akaganeite. J. Colloid Interface Sci. 2005, 298, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Kentzer, A.; Buczkowski, R. Application of goethite for immobilisation of phosphorus in lake sediments. AUNC UMK Limnol. Papers 2005, 24, 85–101. [Google Scholar]
- Nowack, B.; Stone, A.T. Competitive adsorption of phosphate and phosphonates onto goethite. Water Res. 2006, 40, 2201–2209. [Google Scholar] [CrossRef]
- Lijklema, L. Interaction of ortho-phosphate with iron(III) and aluminum hydroxides. Environ. Sci. Technol. 1980, 14, 537–541. [Google Scholar] [CrossRef]
- Mortimer, C.H. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 1942, 30, 147–201. [Google Scholar] [CrossRef]
- Nürnberg, G.K. Prediction of phosphorus release rates from total and reductant soluble phosphorus in anoxic lake sediments. Can. J. Fish. Aquat. Sci. 1988, 45, 453–462. [Google Scholar] [CrossRef]
- Dillon, P.J.; Evans, R.D.; Molot, L.A. Retention and resuspension of phosphorus, nitrogen and iron in the central Onatario lake. Can. J. Fish. Aquat. Sci. 1990, 47, 1269–1274. [Google Scholar] [CrossRef]
- Søndergaard, M.; Kristensen, P.; Jeppesen, E. Phosphorus releas from resuspended sediment in shallow and wind-exposed Lake Arresø. Denmark. Hydrobiologia 1992, 228, 91–99. [Google Scholar] [CrossRef]
- Boström, B.; Persson, G.; Broberg, B. Bioavailability of different phosphorus forms in freshwater system. In Phosphorus in Freshwater Ecosystems; Developments in Hydrobiology, 48; Persson, G., Jansson, M., Eds.; Springer: Dordrecht, the Netherlands, 1988; pp. 133–155. [Google Scholar]
- Walker, W.; Westerberg, C.; Schuler, D.; Bode, J. Design and evaluation of eutrophication control measures for the St. Paul Water supply. Lake Reserv. Manag. 1989, 5, 71–83. [Google Scholar] [CrossRef]
- Genz, A.; Kornmuller, A.; Jakel, M. Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide. Water Res. 2004, 38, 3523–3530. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Peng, J. Laboratory-scale investigation of ferrihydrite-modified diatomite as a phosphorus Co-precipitant. Water Air Soil Pollut. 2011, 215, 645–654. [Google Scholar] [CrossRef]
- Tian, S.L.; Jiang, P.X.; Ning, P.; Su, Y. Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite. Chem. Eng. J. 2009, 151, 141–148. [Google Scholar] [CrossRef]
- Bashan, L.E.; Bashan, Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res. 2004, 38, 4222–4246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartkowiak, A.; Hunkeler, D. Alginate-oligochitosan microcapsules: A mechanistic study relating membrane and capsule properties to reaction conditions. Chem. Mater. 1999, 11, 2486–2492. [Google Scholar] [CrossRef]
- Zhao, Y.; Carvajal, M.T.; Won, Y.Y.; Harris, M.T. Preparation of calcium alginate microgel beads in an electrodispersion reactor using an internal source of calcium carbonate nanoparticles. Langmuir 2007, 23, 12489–12496. [Google Scholar] [CrossRef]
- Wang, B.; Wan, Y.; Zheng, Y.; Lee, X.; Liu, T.; Yu, Z.; Huang, J.; Ok, Y.S.; Chen, J.; Gao, B. Alginate-based composites for environmental applications: A critical review. Crit. Rev. Environ. Sci. Technol. 2018, 48. [Google Scholar] [CrossRef]
- Min, H.J.; Hering, J.G. Arsenate sorption by Fe(III)-doped alginate gels. Water Res. 1998, 32, 1544–1552. [Google Scholar] [CrossRef]
- Min, H.J.; Hering, J.G. Removal of selenite and chromate using Fe(III)-doped alginate gels. Water Environ. Res. 1999, 71, 169–175. [Google Scholar] [CrossRef]
- Yeon, K.H.; Park, H.; Lee, S.H.; Park, Y.M.; Lee, S.H.; Iwamoto, M. Zirconium mesostructures immobilized in calcium alginate for phosphate removal. Korean J. Chem. Eng. 2008, 25, 1040–1046. [Google Scholar] [CrossRef]
- Siwek, H.; Bartkowiak, A.; Włodarczyk, M.; Sobecka, K. Removal of phosphate from aqueous solution using alginate/Iron (III) Chloride Capsules: A laboratory study. Water Air Soil Pollut. 2016, 227, 427–437. [Google Scholar] [CrossRef] [PubMed]
- EN1189. Water Quality-Determination of Phosphorus-Ammonium Molybdate Specrtometric Method; European Committee for Standardization: Bruxelles, Belgium, 1996. [Google Scholar]
- Nair, P.S.; Logan, T.J.; Sharpley, A.N.; Sommers, L.E.; Tabatabai, M.A.; Yuan, T.L. Interlaboratory comparison of a standardized phosphorus adsorption procedure. J. Environ. Qual. 1984, 13, 591–595. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKa, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- LeRoux, M.A.; Guilak, F.; Setton, L.A. Compressive and shear properties of alginate gel: Effects of sodium ions and alginate concentration. J. Biomed. Mater. Res. 1999, 47, 46–53. [Google Scholar] [CrossRef]
- Davis, T.A.; Volesky, B.; Mucci, A. A Review of the Biochemistry of Heavy Metal Biosorption by Brown Algae. Water Res. 2003, 37, 4311–4330. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed]
- Bouhadir, K.H.; Lee, K.Y.; Alsberg, E.; Damm, K.L.; Anderson, K.W.; Mooney, D.J. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog. 2001, 17, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Giles, C.H.; Smith, D.; Huitson, A. A general treatment and classification of the solute adsorption isotherm: 1. Theoretical. J. Colloid Interface Sci. 1974, 47, 755–765. [Google Scholar] [CrossRef]
- Han, J.S.; Hur, N.; Choi, B.; Min, S.H. Removal of phosphorus using chemically modified lignocellulosic materials. In Proceedings of the 6th Inter Regional Conference on Environment-Water, “Land and Water Use Planning and Management”, Albacete, Spain, 3–5 September 2003; pp. 1–11. [Google Scholar]
- Eberhardt, L.T.; Min, S.H. Biosorbents prepared from wood particles treated with anionic polymer and iron salt: Effect of particle size on phosphate adsorption. Bioresour. Technol. 2008, 99, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, L.T.; Min, S.H.; Han, J.S. Phosphate removal by refined aspen wood fiber treated with carboxymethyl cellulose and ferrus chloride. Bioresour. Technol. 2006, 97, 2371–2376. [Google Scholar] [CrossRef]
- Dionisiou, N.S.; Matsi, T.; Misopolinos, Ν.D. Phosphorus Adsorption–Desorption on a Surfactant-Modified Natural Zeolite: A Laboratory Study. Water Air Soil Pollut. 2013, 224, 1362–1363. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, H.; Liu, R.; Qu, J. Removal of phosphate from water by Fe_Mn binary oxide adsorbent. J. Colloid Interface Sci. 2009, 335, 168–174. [Google Scholar] [CrossRef]
- Rocher, V.; Siaugue, J.M.; Cabuil, V.; Bee, A. Removal of organic dyes by magnetic alginate beads. Water Res. 2008, 42, 1290–1298. [Google Scholar] [CrossRef]
- Vu, H.C.; Dwivedi, A.D.; Le, T.T.; Seo, S.H.; Kim, E.J.; Chang, Y.S. Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr(VI) and As(V) from aqueous solutions: Role of crosslinking metal cations in pH control. Chem. Eng. J. 2017, 307, 220–229. [Google Scholar] [CrossRef]
- Escudero, C.; Fiol, N.; Villaescusa, I.; Bollinger, J.C. Arsenic removal by a waste metal (hydr)oxide entrapped into calcium alginate beads. J. Hazard. Mater. 2009, 164, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Sreeram, K.J.; Shrivastava, H.Y.; Nair, B.U. Studies on the nature of interaction of iron(III) with alginates. Biochim. Biophys. Acta-Gen. Subj. 2004, 1670, 121–125. [Google Scholar] [CrossRef]
- Tanada, S.; Kabayama, M.; Kawasaki, N.; Sakiyama, T.; Nakamura, T.; Araki, M.; Tamura, T. Removal of phosphate by aluminum oxide hydroxide. J. Colloid. Interface Sci. 2003, 257, 135–140. [Google Scholar] [CrossRef]
- Boukemara, L.; Boukhalfa, C.; Reinert, L.; Duclaux, L. Characterization of Phosphate Adsorption on Goethite Macr oscopic and Spectroscopic Analyses. J. Mater. Environ. Sci. 2016, 7, 2541–2550. [Google Scholar]
- Luengo, C.; Brigante, M.; Avena, M. Adsorption kinetics of phosphate and arsenate on goethite. A comparative study. J. Colloid Interface Sci. 2007, 311, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Tang, H.; Wang, D. Phosphorus adsorption on natural sediments: Modeling and effects of pH and sediment composition. Water Res. 2005, 39, 1245–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amsden, B.; Turner, N. Diffusion characteristics of calcium alginate gels. Biotechnol. Bioeng. 1999, 65, 605–610. [Google Scholar] [CrossRef]
Water | pH | Hardness (mg CaCO3 dm−³) | Conductance (μS m−1) | P_PO4 | N_NO3 | N_NH4 | Contents of Metals (mg dm−3) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg dm−³) | Ca | K | Fe | Mg | Mn | Na | Zn | ||||||
W1 | 7.53 | 126.7 | 369 | 0.371 | 2.469 | 0.457 | 15.8 | 3.9 | 0.03 | 11.0 | 0.009 | 17.7 | 0.026 |
W2 | 7.13 | 76.0 | 125 | 0.076 | 1.052 | 0.422 | 14.6 | 0.0 | 0.09 | 2.5 | 0.014 | 2.4 | 0.010 |
Water | Temperature (°C) | Goethite | Alginate/Goethite | ||||
---|---|---|---|---|---|---|---|
Adsorption at Equilibrium State qe (mg/g) | Rate Constant of Adsorption k2 (g/mg h) | R2 | Adsorption at Equilibrium State qe (mg/g) | Rate Constant of Adsorption k2 (g/mg h) | R2 | ||
WD_P | 4 | 6.10 | 0.034 | 0.998 | 6.49 | 0.005 | 0.943 |
10 | 6.62 | 0.031 | 0.999 | 5.92 | 0.006 | 0.957 | |
20 | 6.49 | 0.052 | 0.999 | 8.33 | 0.003 | 0.918 | |
W1_P | 4 | 7.52 | 0.037 | 0.998 | 8.26 | 0.004 | 0.967 |
10 | 7.75 | 0.047 | 0.999 | 7.58 | 0.005 | 0.978 | |
20 | 8.00 | 0.049 | 0.999 | 8.48 | 0.007 | 0.995 | |
W2_P | 4 | 7.35 | 0.040 | 0.999 | 8.55 | 0.005 | 0.988 |
10 | 8.00 | 0.046 | 0.999 | 9.01 | 0.004 | 0.984 | |
20 | 7.94 | 0.062 | 0.999 | 8.85 | 0.006 | 0.996 |
Adsorbent | Solution | Freundlich Model* | Langmuir Model* | ||||
---|---|---|---|---|---|---|---|
k | 1/n | R2 | Qmax (mg P g−1 goethite) | b | R2 | ||
goethite | WD_P | 6.08 | 0.37 | 0.98 | 18.2 | 0.75 | 0.99 |
W1_P | 10.2 | 0.25 | 0.95 | 27.0 | 0.41 | 0.99 | |
W2_P | 11.2 | 0.28 | 0.99 | 27.0 | 0.82 | 1.00 | |
alginate/goethite | WD_P | 17.4 | 0.34 | 0.97 | 34.4 | 1.04 | 0.99 |
W1_P | 15.6 | 0.32 | 0.96 | 37.3 | 2.00 | 0.99 | |
W2_P | 13.9 | 0.34 | 0.99 | 36.4 | 1.71 | 0.99 |
Adsorbent | Adsorbate | Freundlich Model* | Langmuir Model* | Source | ||||
---|---|---|---|---|---|---|---|---|
k | 1/n | R2 | Qmax | b | R2 | |||
Modified lingocellulosic | P | 1.76 | 0.211 | 0.99 | 2.31 | 6.41 | 0.98 | [43] |
Iron oxide tailing | P | 3.59 | 0.19 | 0.99 | 8.21 | 0.44 | 0.98 | [11] |
Wood fiber treated with ferrous chloride | PO4 | 0.15 | 0.54 | 0.97 | 3.00 | 0.02 | 0.96 | [44] |
Wood fiber treated with CMC**/Fe | PO4 | 1.3 | 0.27 | 0.99 | 4.30 | 0.19 | 0.99 | [45] |
Fe–Mn binary oxide | PO4 | 27 | 0.07 | 0.96 | 33.20 | 13.60 | 0.89 | [47] |
Synthetic goethite | P | 17.3 | 0.11 | 0.99 | [13] | |||
Synthetic akaganeite | P | 10 | 0.42 | 0.99 | [13] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siwek, H.; Bartkowiak, A.; Włodarczyk, M. Adsorption of Phosphates from Aqueous Solutions on Alginate/Goethite Hydrogel Composite. Water 2019, 11, 633. https://doi.org/10.3390/w11040633
Siwek H, Bartkowiak A, Włodarczyk M. Adsorption of Phosphates from Aqueous Solutions on Alginate/Goethite Hydrogel Composite. Water. 2019; 11(4):633. https://doi.org/10.3390/w11040633
Chicago/Turabian StyleSiwek, Hanna, Artur Bartkowiak, and Małgorzata Włodarczyk. 2019. "Adsorption of Phosphates from Aqueous Solutions on Alginate/Goethite Hydrogel Composite" Water 11, no. 4: 633. https://doi.org/10.3390/w11040633
APA StyleSiwek, H., Bartkowiak, A., & Włodarczyk, M. (2019). Adsorption of Phosphates from Aqueous Solutions on Alginate/Goethite Hydrogel Composite. Water, 11(4), 633. https://doi.org/10.3390/w11040633