A New Conceptual Model for Slope-Infiltration
Abstract
:1. Introduction
2. Basic Equations
3. The Conceptual Model
4. Model Parameters
5. Experimental System
6. Analysis of Results
7. Conclusions
- The proposed conceptual model can represent most laboratory experimental results obtained for bare soils in the absence of secondary disturbance effects due to erosion and formation of a sealing layer.
- According to this model, the “particles” of water moving above a sloping surface are characterized by velocities considered as realizations of a stochastic variable with a cumulative probability function expressed through an exponential term.
- Only water “particles” with velocity below a threshold value may contribute to the infiltration process.
- In practical terms, from the knowledge of surface slope, as well as of soil texture and particles layout (both linked to Ks), a cumulative probability function P(v < vl) may be derived. The behavior of different soil types is represented through the associated Ks values.
- Under steady state conditions, the infiltrating water is given by an effective saturated hydraulic conductivity expressed by Ks × P(v < vl).
- Processes related to the fluid viscosity are not explicitly considered.
- The surface roughness plays an important role on the surface flow velocity. When particular vegetation is present (e.g., grassy soil) a specific calibration of λ, which is the unique parameter of the proposed model, is necessary. On this basis to generalize the model, new laboratory experiments with different surface types should be performed.
- This work supports the idea that the infiltration process on a sloping surface is highly conditioned by the surface flow velocity. When the surface slope increases the water speed increases, while infiltration decreases. An extension of this simple concept could be useful to further our knowledge of the infiltration process over sloping surfaces even under unsteady conditions when Kse could be used to substitute Ks.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Green, W.A.; Ampt, G.A. Studies on soil physics: 1. The flow of air and water through soils. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar] [CrossRef]
- Horton, R.E. An approach toward a physical interpretation of infiltration-capacity. Soil Sci. Soc. Am. J. 1940, 5, 399–417. [Google Scholar] [CrossRef]
- Philip, J.R. The theory of infiltration: 1. The infiltration equation and its solution. Soil Sci. 1957, 83, 345–357. [Google Scholar] [CrossRef]
- Philip, J.R. The theory of infiltration: 2. The profile at infinity. Soil Sci. 1957, 83, 435–448. [Google Scholar] [CrossRef]
- Philip, J.R. The theory of infiltration: 4. Sorptivity algebraic infiltration equation. Soil Sci. 1957, 84, 257–264. [Google Scholar] [CrossRef]
- Smith, R.E.; Parlange, J.-Y. A parameter-efficient hydrologic infiltration model. Water Resour. Res. 1978, 14, 533–538. [Google Scholar] [CrossRef]
- Corradini, C.; Morbidelli, R.; Flammini, A.; Govindaraju, R.S. A parameterized model for local infiltration in two-layered soils with a more permeable upper layer. J. Hydrol. 2011, 396, 221–232. [Google Scholar] [CrossRef]
- Corradini, C.; Melone, F.; Smith, R.E. A unified model for infiltration and redistribution during complex rainfall patterns. J. Hydrol. 1997, 192, 104–124. [Google Scholar] [CrossRef]
- Smith, R.E.; Goodrich, D.C. Model for rainfall excess patterns on randomly heterogeneous area. J. Hydrol. Eng. 2000, 5, 355–362. [Google Scholar] [CrossRef]
- Govindaraju, R.S.; Morbidelli, R.; Corradini, C. Areal infiltration modeling over soils with spatially-correlated hydraulic conductivities. J. Hydrol. Eng. 2001, 6, 150–158. [Google Scholar] [CrossRef]
- Corradini, C.; Govindaraju, R.S.; Morbidelli, R. Simplified modelling of areal average infiltration at the hillslope scale. Hydrol. Proc. 2002, 16, 1757–1770. [Google Scholar] [CrossRef]
- Corradini, C.; Flammini, A.; Morbidelli, R.; Govindaraju, R.S. A conceptual model for infiltration in two-layered soils with a more permeable upper layer: From local to field scale. J. Hydrol. 2011, 410, 62–72. [Google Scholar] [CrossRef]
- Beven, K.J. Rainfall-Runoff Modelling; John Wiley & Sons: Chichester, UK, 2002; ISBN 978-0-470-71459-1. [Google Scholar]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Govindaraju, R.S. Role of slope on infiltration: A review. J. Hydrol. 2018, 557, 878–886. [Google Scholar] [CrossRef]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Cifrodelli, M.; Corradini, C.; Govindaraju, R.S. Infiltration on sloping surfaces: Laboratory experimental evidence and implications for infiltration modelling. J. Hydrol. 2015, 523, 79–85. [Google Scholar] [CrossRef]
- Poesen, J. The influence of slope angle on infiltration rate and hortonian overland flow volume. Z. Geomorphol. 1984, 49, 117–131. [Google Scholar]
- Janeau, J.L.; Bricquet, J.P.; Planchon, O.; Valentin, C. Soil crusting and infiltration on steep slopes in northern Thailand. Europ. J. Soil Sci. 2003, 54, 543–553. [Google Scholar] [CrossRef]
- Assouline, S.; Ben-Hur, M. Effects of rainfall intensity and slope gradient on the dymanics of interrill erosion during soil surface sealing. Catena 2006, 66, 211–220. [Google Scholar] [CrossRef]
- Chen, L.; Young, M.H. Green-Ampt infiltration model for sloping surfaces. Water Resour. Res. 2006, 42, W07420. [Google Scholar] [CrossRef]
- Ribolzi, O.; Patin, J.; Bresson, L.; Latsachack, K.; Mouche, E.; Sengtaheuanghoung, O.; Silvera, N.; Thiébaux, J.P.; Valentin, C. Impact of slope gradient on soil surface features and infiltration on steep slopes in northern Laos. Geomorphology 2011, 127, 53–63. [Google Scholar] [CrossRef]
- Nassif, S.H.; Wilson, E.M. The influence of slope and rain intensity on runoff and infiltration. Hydrol. Sci. Bull. 1975, 20, 539–553. [Google Scholar] [CrossRef]
- Sharma, K.; Singh, H.; Pareek, O. Rainwater infiltration into a bar loamy sand. Hydrol. Sci. J. 1983, 28, 417–424. [Google Scholar] [CrossRef]
- Philip, J.R. Hillslope infiltration: Planar slopes. Water Resour. Res. 1991, 27, 109–117. [Google Scholar] [CrossRef]
- Fox, D.M.; Bryan, R.B.; Price, A.G. The influence of slope angle on final infiltration rate for interrill conditions. Geoderma 1997, 80, 181–194. [Google Scholar] [CrossRef]
- Chaplot, V.; Le Bissonais, Y. Field measurements of interrill erosion under different slopes and plot sizes. Earth Surf. Process. Landf. 2000, 25, 145–153. [Google Scholar] [CrossRef]
- Essig, E.T.; Corradini, C.; Morbidelli, R.; Govindaraju, R.S. Infiltration and deep flow over sloping surfaces: Comparison of numerical and experimental results. J. Hydrol. 2009, 374, 30–42. [Google Scholar] [CrossRef]
- Patin, J.; Mouche, E.; Ribolzi, O.; Chaplot, V.; Sengtaheuanghoung, O.; Latsachak, K.O.; Soulileuth, B.; Valentin, C. Analysis of runoff production at the plot scale during a long-term survey of a small agricultural catchment in Lao PDR. J. Hydrol. 2012, 426–427, 79–92. [Google Scholar] [CrossRef]
- Mu, W.; Yu, F.; Li, C.; Xie, Y.; Tian, J.; Liu, J.; Zhao, N. Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize. Water 2015, 7, 2990–3008. [Google Scholar] [CrossRef]
- Khan, M.N.; Gong, Y.; Hu, T.; Lal, R.; Zheng, J.; Justine, M.F.; Azhar, M.; Che, M.; Zhang, H. Effect of slope, rainfall intensity and mulch on erosion and infiltration under simulated rain on purple soil of south-western Sichuan province, China. Water 2016, 8, 528. [Google Scholar] [CrossRef]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Cifrodelli, M.; Picciafuoco, T.; Corradini, C.; Govindaraju, R.S. Laboratory investigation on the role of slope on infiltration over grassy soils. J. Hydrol. 2016, 543, 542–547. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.; Yu, Z. Modeling rainfall infiltration on hillslopes using flux-concentration relation and time compression approximation. J. Hydrol. 2018, 557, 243–253. [Google Scholar] [CrossRef]
- Melone, F.; Corradini, C.; Morbidelli, R.; Saltalippi, C. Laboratory experimental check of a conceptual model for infiltration under complex rainfall patterns. Hydrol. Proc. 2006, 20, 439–452. [Google Scholar] [CrossRef]
- Melone, F.; Corradini, C.; Morbidelli, R.; Saltalippi, C.; Flammini, A. Comparison of theoretical and experimental soil moisture profiles under complex rainfall patterns. J. Hydrol. Eng. 2008, 13, 1170–1176. [Google Scholar] [CrossRef]
- Morbidelli, R.; Corradini, C.; Saltalippi, C.; Govindaraju, R.S. Laboratory experimental investigation of infiltration by the run-on process. J. Hydrol. Eng. 2008, 13, 1187–1192. [Google Scholar] [CrossRef]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Cifrodelli, M.; Corradini, C. A laboratory experimental system for infiltration studies. Hydrol. Res. 2017, 48, 741–748. [Google Scholar] [CrossRef]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Rossi, E.; Corradini, C. Soil water content vertical profiles under natural conditions: Matching of experiments and simulations by a conceptual model. Hydrol. Proc. 2014, 28, 4732–4742. [Google Scholar] [CrossRef]
Authors | Paper | Analysis Type |
---|---|---|
Infiltration increase with increasing slope | ||
Poesen | [16] | Experim. |
Janeau, Bricquet, Planchon, Valentin | [17] | Experim. |
Assouline, Ben-Hur | [18] | Experim. |
Chen, Young | [19] | Theor. |
Ribolzi, Patin, Bresson, Latsachack, Mouche, Sengtaheuanghoung, Silvera, … | [20] | Experim |
Infiltration decrease with increasing slope | ||
Nassif, Wilson | [21] | Experim. |
Sharma, Barron, Fernie | [22] | Experim. |
Philip | [23] | Theor. |
Fox, Bryan, Price | [24] | Experim. |
Chaplot, Le Bissonnais | [25] | Experim. |
Essig, Corradini, Morbidelli, Govindaraju | [26] | Experim. |
Patin, Mouche, Ribolzi, Chaplot, Sengtaheuanghoung, Latsachack, … | [27] | Experim. |
Morbidelli, Saltalippi, Flammini, Cifrodelli, Corradini, Govindaraju | [15] | Experim. |
Mu, Yu, Li, Xie, Tian, Liu, Zhao | [28] | Experim. |
Khan, Gong, Hu, Lai, Zheng, Justine, Azhar, Che, Zhang | [29] | Experim. |
Morbidelli, Saltalippi, Flammini, Cifrodelli, Picciafuoco, Corradini, … | [30] | Experim. |
Wang, Chen, Yu | [31] | Theor. |
Experiment Number | Slope (°) | Average Rainfall Rate (mm h−1) | Steady Surface Flow | Steady Deep Flow | ||
---|---|---|---|---|---|---|
(mm h−1) | (%) | (mm h−1) | (%) | |||
1 | 10 | 59.10 | 46.30 | 78.34 | 12.80 | 21.66 |
2 | 17 | 59.36 | 48.36 | 81.46 | 11.00 | 18.54 |
3 | 21 | 61.10 | 52.60 | 86.09 | 8.50 | 13.91 |
4 | 26 | 62.60 | 55.40 | 88.50 | 7.20 | 11.50 |
Order Number | Experiment Identification | Slope (°) | Average Rainfall (mm h−1) |
---|---|---|---|
Calibration experiments | |||
1 | soil 1, exp 3 [26] | 5 | 9.74 |
2 | soil 1, exp 4 [26] | 5 | 15.16 |
3 | soil 1, exp 19 [26] | 5 | 20.49 |
4 | soil 1, exp 5 [26] | 10 | 10.07 |
5 | soil 1, exp 6 [26] | 10 | 14.62 |
6 | soil 1, exp 21 [26] | 10 | 20.04 |
7 | soil 1, exp 11 [26] | 15 | 8.85 |
8 | soil 1, exp 12 [26] | 15 | 13.18 |
9 | soil 1, exp 23 [26] | 15 | 20.49 |
10 | soil 2, exp 3 [26] | 5 | 9.77 |
11 | soil 2, exp 5 [26] | 10 | 9.91 |
12 | soil 2, exp 7 [26] | 15 | 9.96 |
13 | soil 3, exp 15 [26] | 5 | 18.82 |
14 | soil 3, exp 5 [26] | 5 | 25.86 |
15 | soil 3, exp 7 [26] | 5 | 32.12 |
16 | soil 3, exp 17 [26] | 10 | 18.61 |
17 | soil 3, exp 9 [26] | 10 | 25.82 |
18 | soil 3, exp 11 [26] | 10 | 30.37 |
19 | soil 4, exp 3 (Table 2) | 21 | 61.10 |
20 | soil 4, exp 4 (Table 2) | 26 | 62.60 |
Validation experiments | |||
21 | soil 1, exp 13 [26] | 5 | 9.55 |
22 | soil 1, exp 14 [26] | 5 | 13.81 |
23 | soil 1, exp 20 [26] | 5 | 20.28 |
24 | soil 1, exp 9 [26] | 10 | 9.11 |
25 | soil 1, exp 10 [26] | 10 | 14.56 |
26 | soil 1, exp 22 [26] | 10 | 20.02 |
27 | soil 1, exp 7 [26] | 15 | 9.85 |
28 | soil 1, exp 8 [26] | 15 | 14.30 |
29 | soil 1, exp 24 [26] | 15 | 19.84 |
30 | soil 2, exp 4 [26] | 5 | 15.92 |
31 | soil 2, exp 6 [26] | 10 | 15.02 |
32 | soil 2, exp 8 [26] | 15 | 13.90 |
33 | soil 3, exp 16 [26] | 5 | 18.29 |
34 | soil 3, exp 6 [26] | 5 | 25.83 |
35 | soil 3, exp 8 [26] | 5 | 32.31 |
36 | soil 3, exp 18 [26] | 10 | 18.36 |
37 | soil 3, exp 10 [26] | 10 | 25.87 |
38 | soil 3, exp 12 [26] | 10 | 31.34 |
39 | soil 4, exp 1 (Table 2) | 10 | 59.10 |
40 | soil 4, exp 2 (Table 2) | 17 | 59.36 |
Order Number | Experiment Identification | Slope (°) | Steady Deep Flow (mm h−1) | Ks × P(v < vl) (mm h−1) | εdf (%) |
---|---|---|---|---|---|
21 | soil 1, exp 13 [26] | 5 | 2.46 | 2.24 | −9.1 |
22 | soil 1, exp 14 [26] | 5 | 2.32 | 2.24 | −3.6 |
23 | soil 1, exp 20 [26] | 5 | 2.11 | 2.24 | 6.0 |
24 | soil 1, exp 9 [26] | 10 | 1.38 | 1.50 | 8.9 |
25 | soil 1, exp 10 [26] | 10 | 1.24 | 1.50 | 21.2 |
26 | soil 1, exp 22 [26] | 10 | 1.79 | 1.50 | −16.0 |
27 | soil 1, exp 7 [26] | 15 | 0.91 | 0.88 | −2.9 |
28 | soil 1, exp 8 [26] | 15 | 0.77 | 0.88 | 14.8 |
29 | soil 1, exp 24 [26] | 15 | 0.77 | 0.88 | 14.8 |
30 | soil 2, exp 4 [26] | 5 | 2.54 | 2.54 | −0.1 |
31 | soil 2, exp 6 [26] | 10 | 2.27 | 1.74 | −23.3 |
32 | soil 2, exp 8 [26] | 15 | 1.46 | 1.04 | −28.9 |
33 | soil 3, exp 16 [26] | 5 | 9.63 | 10.31 | 7.0 |
34 | soil 3, exp 6 [26] | 5 | 10.33 | 10.31 | −0.2 |
35 | soil 3, exp 8 [26] | 5 | 10.25 | 10.31 | 0.6 |
36 | soil 3, exp 18 [26] | 10 | 9.46 | 9.56 | 1.0 |
37 | soil 3, exp 10 [26] | 10 | 9.54 | 9.56 | 0.2 |
38 | soil 3, exp 12 [26] | 10 | 10.05 | 9.56 | −4.9 |
39 | soil 4, exp 1 (Table 2) | 10 | 12.80 | 15.68 | 22.6 |
40 | soil 4, exp 2 (Table 2) | 17 | 11.00 | 12.38 | 12.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morbidelli, R.; Corradini, C.; Saltalippi, C.; Flammini, A.; Dari, J.; Govindaraju, R.S. A New Conceptual Model for Slope-Infiltration. Water 2019, 11, 678. https://doi.org/10.3390/w11040678
Morbidelli R, Corradini C, Saltalippi C, Flammini A, Dari J, Govindaraju RS. A New Conceptual Model for Slope-Infiltration. Water. 2019; 11(4):678. https://doi.org/10.3390/w11040678
Chicago/Turabian StyleMorbidelli, Renato, Corrado Corradini, Carla Saltalippi, Alessia Flammini, Jacopo Dari, and Rao S. Govindaraju. 2019. "A New Conceptual Model for Slope-Infiltration" Water 11, no. 4: 678. https://doi.org/10.3390/w11040678
APA StyleMorbidelli, R., Corradini, C., Saltalippi, C., Flammini, A., Dari, J., & Govindaraju, R. S. (2019). A New Conceptual Model for Slope-Infiltration. Water, 11(4), 678. https://doi.org/10.3390/w11040678