Soil Water Movement Changes Associated with Revegetation on the Loess Plateau of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Sampling Methods
2.2.2. Gravimetric Soil Water Content
2.2.3. Measurements of Hydrogen and Oxygen Isotopes
2.2.4. Source Partitioning Using Stable Isotopes
2.2.5. Calculation of Biomass
2.2.6. Statistical Analysis
3. Results
3.1. Isotopic Composition of the Precipitation
3.2. Profile Variations of Soil Water in the Unsaturated Zone in the Four Land Uses
3.3. Biomass of Four Land Use Types
3.4. Profile Variations of δ18O in the Four Land Use Types
3.5. Composition of δ18O and δ2H in the Four Land Use Types
4. Discussion
4.1. Features of the Precipitation Isotopes
4.2. Effect of Evaporation on Soil Water
4.3. Infiltration Mechanisms based on δ18O Isotopic Characteristics
4.4. Tracing the Mixing of Soil Water Based on δ18O Isotopic Characteristics
4.5. Tracing Soil Water Movement by Cross Plotting δ2H and δ18O
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fu, B.J. Soil erosion and its control in the Loess Plateau of China. Soil Use Manag. 1989, 5, 76–82. [Google Scholar] [CrossRef]
- Fu, B.; Gulinck, H. Land evaluation in area of severe erosion: The Loess Plateau of China. Land Degrad. Rehabil. 1994, 5, 33–40. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; Leeuw, J.D.; Okx, J.; Cleen, M.D.; Visser, S. Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work. Land 2018, 7, 133. [Google Scholar] [CrossRef]
- Hălbac-Cotoară-Zamfir, R.; Keesstra, S.; Kalantari, Z. The impact of political, socio-economic and cultural factors on implementing environment friendly techniques for sustainable land management and climate change mitigation in Romania. Sci. Total Environ. 2019, 654, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Burt, T.P.; Butcher, D.P. Topographic controls of soil moisture distributions. Eur. J. Soil Sci. 2010, 36, 469–486. [Google Scholar] [CrossRef]
- Hawley, M.E.; Jackson, T.J.; Mccuen, R.H. Surface soil moisture variation on small agricultural watersheds. J. Hydrol. 1983, 62, 179–200. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Ma, K.; Zhou, H.; Wang, J. The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China. Catena 2000, 39, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Samaniego, L.; Bárdossy, A. Simulation of the impacts of land use/cover and climatic changes on the runoff characteristics at the mesoscale. Ecol. Modell. 2006, 196, 45–61. [Google Scholar] [CrossRef]
- Grayson, R.B.; Moore, I.D.; Mcmahon, T.A. Physically based hydrologic modeling: 1. A terrain-based model for investigative purposes. Water Resour. Res. 1992, 28, 2639–2658. [Google Scholar] [CrossRef]
- Stolte, J.; Liu, B.; Ritsema, C.J.; Elsen, H.G.M.V.D.; Hessel, R. Modelling water flow and sediment processes in a small gully system on the Loess Plateau in China. Catena 2003, 54, 117–130. [Google Scholar] [CrossRef]
- Newberry, S.L.; Prechsl, U.E.; Pace, M.; Kahmen, A. Tightly bound soil water introduces isotopic memory effects on mobile and extractable soil water pools. Isot. Environ. Health Stud. 2017, 53, 368–381. [Google Scholar] [CrossRef]
- Orlowski, N.; Breuer, L.; Mcdonnell, J.J. Critical issues with cryogenic extraction of soil water for stable isotope analysis. Ecohydrology 2016, 9, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Melayah, A.; Bruckler, L.; Bariac, T. Modeling the Transport of Water Stable Isotopes in Unsaturated Soils Under Natural Conditions: 1. Theory. Water Resour. Res. 1996, 32, 2047–2054. [Google Scholar] [CrossRef]
- Zimmermann, U.; Münnich, K.O.; Roether, W.; Kreutz, W.; Schubach, K.; Siegel, O. Tracers determine movement of soil moisture and evapotranspiration. Science 1966, 152, 346–347. [Google Scholar] [CrossRef]
- Barnes, C.J.; Allison, G.B. Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. J. Hydrol. 1988, 100, 143–176. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, F.; Xu, Z.; Zhang, J.; Wang, L.; An, S. Variations of soil water isotopes and effective contribution times of precipitation and throughfall to alpine soil water, in Wolong Nature Reserve, China. Catena 2015, 126, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Dan, Y.; Wang, X.F. Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. Nature 1996, 380, 515–517. [Google Scholar]
- Welp, L.R.; Lee, X.; Kim, K.; Griffis, T.J.; Billmark, K.A.; Baker, J.M. deltaO of water vapour, evapotranspiration and the sites of leaf water evaporation in a soybean canopy. Plant Cell Environ. 2008, 31, 1214–1228. [Google Scholar] [CrossRef]
- Brunel, J.P.; Walker, G.R.; Kennett-Smith, A.K. Field validation of isotopic procedures for determining sources of water used by plants in a semi-arid environment. J. Hydrol. 1995, 167, 351–368. [Google Scholar] [CrossRef]
- Dawson, T.E.; Ehleringer, J.R. Streamside trees that do not use stream water. Nature 1991, 350, 335–337. [Google Scholar] [CrossRef]
- Hsieh, J.C.C.; Savin, S.M.; Kelly, E.F.; Chadwick, O.A. Measurement of soil-water δ18O values by direct equilibration with CO2. Geoderma 1998, 82, 255–268. [Google Scholar] [CrossRef]
- Gazis, C.; Feng, X. A stable isotope study of soil water: evidence for mixing and preferential flow paths. Geoderma 2004, 119, 97–111. [Google Scholar] [CrossRef]
- Landwehr, J.M.; Coplen, T.B. Stable Isotopes of Water in the Yukon River System, 2001 through 2005: Characterization and Implications. In AGU Fall Meeting; American Geophysical Union: Washington, DC, USA, 2006; pp. 132–135. [Google Scholar]
- Koeniger, P.; Gaj, M.; Beyer, M. Himmelsbach T. Review on soil water isotope-based groundwater recharge estimations. Hydrol. Processes 2016, 30, 2817–2834. [Google Scholar] [CrossRef]
- Li, F.D.; Song, X.F.; Tang, C.Y.; Kondoh, A.; Zhang, W.J.; Chen, X.; Chen, Y.D.; Xia, J.; Zhang, H. Stable isotopic characterization of precipitation, soil water and groundwater in Taihang Mountain, north China. In Proceedings of the International Association of Hydrological Sciences and the International Water Resources Association Conference, Guangzhou, China, 8–10 June 2006. [Google Scholar]
- Garvelmann, J.; Warscher, M.; Leonhardt, G.; Franz, H.; Lotz, A.; Kunstmann, H. Quantification and characterization of the dynamics of spring and stream water systems in the Berchtesgaden Alps with a long-term stable isotope dataset. Environ. Earth Sci. 2017, 76, 766. [Google Scholar] [CrossRef]
- Deiana, M.; Mussi, M.; Ronchetti, F. Discharge and environmental isotope behaviours of adjacent fractured and porous aquifers. Environ. Earth Sci. 2017, 76, 595. [Google Scholar] [CrossRef]
- Cervi, F.; Ronchetti, F.; Doveri, M.; Mussi, M.; Marcaccio, M.; Tazioli, A. The use of stable water isotopes from rain gauges network to define the recharge areas of springs: Problems and possible solutions from case studies from the northern Apennines. Geam. Geoingegneria Ambientale e Mineraria 2016, 149, 19–26. [Google Scholar]
- Lauber, U.; Goldscheider, N. Use of artificial and natural tracers to assess groundwater transit-time distribution and flow systems in a high-alpine karst system (Wetterstein Mountains, Germany). Hydrogeol. 2014, 22, 1807–1824. [Google Scholar] [CrossRef]
- Barbieri, M.; Nigro, A.; Petitta, M. Groundwater mixing in the discharge area of San Vittorino Plain (Central Italy): geochemical characterization and implication for drinking uses. Environ. Earth Sci. 2017, 76, 393. [Google Scholar] [CrossRef]
- Barbieri, M. Isotopes in Hydrology and Hydrogeology. Water 2019, 11, 291. [Google Scholar] [CrossRef]
- Soderberg, K.; Good, S.P.; Wang, L.; Caylor, K. Stable Isotopes of Water Vapor in the Vadose Zone: A Review of Measurement and Modeling Techniques. Vadose Zone Journal 2012, 12, 215–228. [Google Scholar] [CrossRef]
- Sprenger, M.; Leistert, H.; Gimbel, K.; Weiler, M. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes. Rev. Geophys. 2016, 54, 674–704. [Google Scholar] [Green Version]
- Sprenger, M.; Tetzlaff, D.; Soulsby, C. Soil water stable isotopes reveal evaporation dynamics at the soilplant-atmosphere interface of the critical zone. Hydrol. Earth Syst. Sci. Discuss. 2017, 21, 3839–3858. [Google Scholar] [CrossRef]
- Asano, Y.; Uchida, T.; Ohte, N. Residence times and flow paths of water in steep unchannelled catchments, Tanakami, Japan. J. Hydrol. 2002, 261, 173–192. [Google Scholar] [CrossRef]
- Marc, V.; Didon-Lescot, J.F.; Michael, C. Investigation of the hydrological processes using chemical and isotopic tracers in a small Mediterranean forested catchment during autumn recharge. J. Hydrol. 2001, 247, 215–229. [Google Scholar] [CrossRef]
- Dusek, J.; Vogel, T.; Sanda, M. Hillslope hydrograph analysis using synthetic and natural oxygen-18 signatures. J. Hydrol. 2012, 475, 415–427. [Google Scholar] [CrossRef]
- Messing, I.; Chen, L.; Hessel, R. Soil conditions in a small catchment on the Loess Plateau in China. Catena 2003, 54, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Phillips, D.L. Mixing models in analyses of diet using multiple stable isotopes: a critique. Oecologia 2001, 127, 166–170. [Google Scholar] [CrossRef]
- Liu, Y.H.; Wang, Y.H.; Yu, P.T.; Xiong, W.; Mo, F.; Wang, Z.Y. Biomass and its allocation of the main vegetation types in Liupan Mountains. For. Res. 2011, 24, 443–452. [Google Scholar]
- Liu, Y.; Xu, Z.; Duffy, R.; Chen, W.; An, S.; Liu, S.; Liu, F. Analyzing relationships among water uptake patterns, rootlet biomass distribution and soil water content profile in a subalpine shrubland using water isotopes. Eur. J. Soil Biol. 2011, 47, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Liu, W.; Li, Z.; Chen, J. Study of soil water movement and groundwater recharge for the loess tableland using environmental tracers. Trans. ASABE 2014, 57, 23–30. [Google Scholar]
- Xi, C.; Zhi, L.I.; Cheng, L.; Liu, W.; Rui, W. Analysis of stable isotopic composition and vapor source of precipitation at the Changwu Loess Tableland. Acta Ecologica Sinica 2016, 36, 98–106. [Google Scholar]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Sprenger, M.; Volkmann, T.H.M.; Blume, T.; Weiler, M. Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 2617–2635. [Google Scholar] [CrossRef]
- Nielsen, D.R.; Bouma, J. Soil spatial variability. In Proceedings of the a workshop of the ISSS (Int. Society of Soil Science) and the SSSA (Soil Science Society of America), Las Vegas, LA, USA, 30 November–1 December 1984. [Google Scholar]
- Stephens, D.B. A Perspective on Diffuse Natural Recharge Mechanisms in Areas of Low Precipitation. Soil Sci. Soc. Am. J. 1994, 58, 40–48. [Google Scholar] [CrossRef]
- Tang, K.; Feng, X. The effect of soil hydrology on the oxygen and hydrogen isotopic compositions of plants’ source water. Earth Planet. Sci. Lett. 2001, 185, 355–367. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.P.; Saco, P.; Parsons, T.; Poeppl, R.; Masselink, R.; Cerdà, A. The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Sci. Total Environ. 2018, 644, 1557–1572. [Google Scholar] [CrossRef]
Land Use Types | Sand (2–0.05 mm) (%) | Silt (0.05–0.002 mm) (%) | Clay (<0.002 mm) (%) | Sand: Clay Ratio | Bulk Density (g cm−3) |
---|---|---|---|---|---|
Grassland | 16.19 | 64.78 | 19.03 | 0.85 | 1.36 |
Shrubland | 13.54 | 69.13 | 17.33 | 0.78 | 1.38 |
Forestland | 10.63 | 70.79 | 18.58 | 0.57 | 1.4 |
Sloping cropland | 14.65 | 65.62 | 19.73 | 0.74 | 1.21 |
Land Use Types | Altitude (m) | Location | Soil Texture | Main Vegetation | Vegetation Coverage (%) |
---|---|---|---|---|---|
Grassland | 988.56 | 110°21′40.263″ E 37°35′21.352″ N | Loessial soil | Bothriochloa ischaemum | 85–90 |
Shrubland | 1006.36 | 110°21′55.923″ E 37°35′17.696″ N | Loessial soil | Caragana korshinskii | 80–90 |
Forestland | 1009.45 | 110°21′53.172″ E 37°34′50.624″ N | Loessial soil | Pinus tabuliformis | 75–80 |
Sloping cropland | 968.39 | 110°21′11.708″ E 37°34′51.673″ N | Loessial soil | Solanum tuberosum | 80–85 |
Depth (cm) | Grassland (kg m−2) | Shrubland (kg m−2) | Forestland (kg tree−1) | Sloping Cropland (kg m−2) |
---|---|---|---|---|
Aboveground biomass | 0.82 | 1.95 | 185.5 | 1.85 |
0–10 | 0.16 | 0.12 | 4.31 | 0.1 |
10–20 | 0.25 | 0.24 | 6.65 | 0.27 |
20–30 | 0.15 | 0.29 | 10.65 | 0.29 |
30–40 | 0.11 | 0.43 | 14.23 | 0.08 |
40–50 | 0.1 | 0.25 | 42.08 | 0.01 |
50–60 | 0.08 | 0.23 | 20.87 | 0.01 |
60–70 | 0.04 | 0.18 | 19.01 | 0.01 |
70–80 | 0.03 | 0.16 | 16.97 | 0 |
80–90 | 0.01 | 0.08 | 18.93 | 0 |
90–100 | 0 | 0.04 | 10.93 | 0 |
Belowground Biomass | 0.93 | 2.02 | 164.63 | 0.77 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, H.; Li, P.; Li, Z.; Shi, P.; Hou, J. Soil Water Movement Changes Associated with Revegetation on the Loess Plateau of China. Water 2019, 11, 731. https://doi.org/10.3390/w11040731
Ke H, Li P, Li Z, Shi P, Hou J. Soil Water Movement Changes Associated with Revegetation on the Loess Plateau of China. Water. 2019; 11(4):731. https://doi.org/10.3390/w11040731
Chicago/Turabian StyleKe, Haocheng, Peng Li, Zhanbin Li, Peng Shi, and Jingming Hou. 2019. "Soil Water Movement Changes Associated with Revegetation on the Loess Plateau of China" Water 11, no. 4: 731. https://doi.org/10.3390/w11040731
APA StyleKe, H., Li, P., Li, Z., Shi, P., & Hou, J. (2019). Soil Water Movement Changes Associated with Revegetation on the Loess Plateau of China. Water, 11(4), 731. https://doi.org/10.3390/w11040731