Response of Vertical Migration and Leaching of Nitrogen in Percolation Water of Paddy Fields under Water-Saving Irrigation and Straw Return Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area and Climatic Conditions
2.2. Experimental Design
2.3. Field Measurement and Sampling
2.4. Chemical and Statistical Analysis
3. Results and Discussion
3.1. Water Condition and Rice Yield
3.2. Vertical Migration of NH4+-N, NO3−-N and TN
3.2.1. Vertical Migration of NH4+-N
3.2.2. Vertical Migration of NO3−-N
3.2.3. Vertical Migration of TN
3.3. The Variation of NH4+-N, NO3−-N and TN Concentration in Percolation Water
3.3.1. The Variation of NH4+-N Concentration in Percolation Water
3.3.2. The Variation of NO3−-N Concentration in Percolation Water
3.3.3. The Variation of TN Concentration in Percolation Water
3.4. The Amount of Nitrogen Leaching Losses
4. Conclusions
- RC-CI and DP-SM both showed significant water-saving effect, as they significantly decreased the irrigation input and percolation water volume compared with FI. RC-CI increased the rice yield by 8.23%~12.26% while DP-SM decreased the rice yield by 8.98%~15.24% compared with FI, indicating the better production-increasing benefits of RC-CI.
- The average NH4+-N and TN concentration showed a law of decreasing from top to bottom in soil water of 0~54 cm depth while the concentration of NO3−-N presented the opposite rule. RC-CI significantly presented the highest average NH4+-N and TN concentration of the whole rice growth season in the depth of 0~18, 28~36 and 36~54 cm compared with FI treatment while DP-SM presented the highest average NO3−-N concentration of different depth.
- Peak values of NH4+-N and TN concentration in percolation water were observed 1~5 days after each fertilizer application, indicating that nitrogen fertilizer application was the predominant factor of NH4+-N and TN concentration. However, the NO3−-N concentrations in the percolation water didn’t respond strongly to the application of fertilizer.
- The TN and NH4+-N concentrations in percolation water of RC-CI during most of the rice growth stage were the highest among treatments in both years and DP-SM showed a trend of decreasing TN and NH4+-N concentrations. The NO3−-N concentrations in percolation water showed a regular pattern of DP-SM > RC-CI > FI during most of the rice growth stage.
- RC-CI and DP-SM remarkably reduced the amount of N leaching losses compared to FI as a result of the significant decrease of percolation water volumes. NH4+-N was the main form of the nitrogen leaching losses in percolation water, occupying 49.06%~50.97% of TN leaching losses. The NO3−-N leaching losses and accounted for 30.35% for FI, 33.20% for RC-CI and 44.07% for DP-SM of TN leaching losses, respectively, and the driest condition of DP-SM and the straw-covering condition accelerated the nitrification process most. The N leaching losses in tillering stage and jointing-booting stage accounted for 74.85%~86.26% of the total amount during the whole rice growth season, implying that effective measures are necessary to be taken to reduce N leaching losses the two critical periods.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, Y.; Yan, F.; Sun, Y.; Xu, H.; Guo, X.; Yang, Z.; Yin, Y.; Guo, C.; Ma, J. Effects of different water regimes and nitrogen application strategies on grain filling characteristics and grain yield in hybrid rice. Arch. Agron. Soil Sci. 2017, 64, 1152–1171. [Google Scholar] [CrossRef]
- Li, Y.; Šimünek, J.; Wang, S.; Yuan, J.; Zhang, W. Modeling of Soil Water Regime and Water Balance in a Transplanted Rice Field Experiment with Reduced Irrigation. Water 2017, 9, 248. [Google Scholar] [CrossRef]
- Wu, X.H.; Wang, W.; Xie, X.L.; Yin, C.M.; Xie, K.J. Photosynthetic and yield responses of rice (Oryza sativa L.) to different water management strategies in subtropical China. Photosynthetica 2018, 56, 1031–1038. [Google Scholar] [CrossRef]
- Roost, N.; Cai, X.; Molden, D.; Cui, Y. Adapting to intersectoral transfers in the Zhanghe Irrigation System, China: Part I. In-system storage characteristics. Agric. Water Manag. 2008, 95, 698–706. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D.; Gu, W.; Liu, H. Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D. Agric. Water Manag. 2015, 150, 67–80. [Google Scholar] [CrossRef]
- Bouman, B.; Humphreys, E.; Tuong, T.; Barker, R. Rice and water. Adv. Agron. 2007, 92, 187–237. [Google Scholar]
- Tan, X.; Shao, D.; Liu, H. Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D. Agric. Water Manag. 2014, 132, 69–78. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, Z.-B.; Janssen, M.; Lennartz, B. Infiltration properties of paddy fields under intermittent irrigation. Paddy Water Environ. 2014, 12, 17–24. [Google Scholar] [CrossRef]
- Ullah, H.; Mohammadi, A.; Datta, A. Growth, yield and water productivity of selected lowland Thai rice varieties under different cultivation methods and alternate wetting and drying irrigation. Ann. Appl. Biol. 2018, 173, 302–312. [Google Scholar] [CrossRef]
- Shao, G.; Cui, J.; Yu, S.E.; Lu, B.; Brian, B.J.; Ding, J.; She, D. Impacts of controlled irrigation and drainage on the yield and physiological attributes of rice. Agric. Water Manag. 2015, 149, 156–165. [Google Scholar] [CrossRef]
- Yang, S.; Sun, X.; Ding, J.; Jiang, Z.; Xu, J. Effects of biochar addition on the NEE and soil organic carbon content of paddy fields under water-saving irrigation. Environ. Sci. Pollut. Res. 2019, 26, 8303–8311. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Shao, D.; Liu, H.; Yang, F.; Xiao, C.; Yang, H. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy Water Environ. 2012, 11, 381–395. [Google Scholar] [CrossRef]
- Bouman, B.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Garg, K.K.; Das, B.S.; Safeeq, M.; Bhadoria, P.B. Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport. Agric. Water Manag. 2009, 96, 1705–1714. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Miralles, D.J. Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat. Eur. J. Agron. 2008, 28, 282–290. [Google Scholar] [CrossRef]
- Wang, J.; Fu, P.; Wang, F.; Fahad, S.; Mohapatra, P.K.; Chen, Y.; Zhang, C.; Peng, S.; Cui, K.; Nie, L.; et al. Optimizing nitrogen management to balance rice yield and environmental risk in the Yangtze River’s middle reaches. Environ. Sci. Pollut. Res. 2019, 26, 4901–4912. [Google Scholar] [CrossRef]
- Li, Y.; Šimünek, J.; Zhang, Z.; Jing, L.; Ni, L. Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D. Agric. Water Manag. 2015, 148, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
- Ju, X.-T.; Xing, G.-X.; Chen, X.-P.; Zhang, S.-L.; Zhang, L.-J.; Liu, X.-J.; Cui, Z.-L.; Yin, B.; Christie, P.; Zhu, Z.-L. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Mo’allim, A.; Kamal, M.; Muhammed, H.; Mohd Soom, M.; Mohamed Zawawi, M.; Wayayok, A.; Che Man, H. Assessment of Nutrient Leaching in Flooded Paddy Rice Field Experiment Using Hydrus-1D. Water 2018, 10, 785. [Google Scholar] [CrossRef]
- Dou, Z.; Tang, S.; Chen, W.; Zhang, H.; Li, G.; Liu, Z.; Ding, C.; Chen, L.; Wang, S.; Zhang, H.; et al. Effects of open-field warming during grain-filling stage on grain quality of two japonica rice cultivars in lower reaches of Yangtze River delta. J. Cereal Sci. 2018, 81, 118–126. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Z.; Zhang, H.; Yi, J. Recovery efficiency and loss of 15N-labelled urea in a rice–soil system in the upper reaches of the Yellow River basin. Agric. Ecosyst. Environ. 2012, 158, 118–126. [Google Scholar] [CrossRef]
- Pan, S.-G.; Huang, S.-Q.; Jing, Z.; Wang, J.-P.; Cao, C.-G.; Cai, M.-L.; Ming, Z.; Tang, X.-R. Effects of N management on yield and N uptake of rice in central China. J. Integr. Agric. 2012, 11, 1993–2000. [Google Scholar] [CrossRef]
- Yan, J.; Yin, B.; Zhang, S.; Shen, Q.; Zhu, Z. Effect of nitrogen application rate on the nitrogen uptake and distribution in rice. Plant Nutr. Ferti. Sci. 2008, 14, 835–839. [Google Scholar]
- Belder, P.; Spiertz, J.; Bouman, B.; Lu, G.; Tuong, T. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crop. Res. 2005, 93, 169–185. [Google Scholar] [CrossRef]
- Xu, J.; Liu, B.; Wang, H.; Liu, W.; Li, Y.; Dai, Y.; Lu, T. Ammonia volatilization and nitrogen leaching following top-dressing of urea from water-saving irrigated rice field: Impact of two-split surge irrigation. Paddy Water Environ. 2018, 17, 45–51. [Google Scholar] [CrossRef]
- Gordon, H.; Haygarth, P.M.; Bardgett, R.D. Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biol. Biochem. 2008, 40, 302–311. [Google Scholar] [CrossRef]
- Dong, N.M.; Brandt, K.K.; Sørensen, J.; Hung, N.N.; Van Hach, C.; Tan, P.S.; Dalsgaard, T. Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta, Vietnam. Soil Biol. Biochem. 2012, 47, 166–174. [Google Scholar] [CrossRef]
- Peng, S.-Z.; Yang, S.-H.; Xu, J.-Z.; Luo, Y.-F.; Hou, H.-J. Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements. Paddy Water Environ. 2011, 9, 333–342. [Google Scholar] [CrossRef]
- Gao, S.-K.; Yu, S.-E.; Shao, G.-C.; She, D.-L.; Wang, M.; Guo, R.; Cao, R.-Z.; Yan, S.-F.; Ding, J.-H. Effects of Controlled Irrigation and Drainage on Nitrogen and Phosphorus Concentrations in Paddy Water. J. Chem. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Ji, X.; Zheng, S.; Shi, L.; Liao, Y. Effect of Fertilization on Nutrient Leaching Loss From Different Paddy Soils in Dongting Lake Area. Acta Pedol. Sin. 2008, 45, 663–671. [Google Scholar]
- Zhao, X.; Xie, Y.X.; Xiong, Z.Q.; Yan, X.Y.; Xing, G.X.; Zhu, Z.L. Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the Taihu lake region, China. Plant Soil 2009, 319, 225–234. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, H.; Liu, X.; Zhao, X.; Lu, D.; Zhou, J.; Li, C. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice–wheat cropping system. Soil Tillage Res. 2017, 165, 121–127. [Google Scholar] [CrossRef]
- Hu, N.; Wang, B.; Gu, Z.; Tao, B.; Zhang, Z.; Hu, S.; Zhu, L.; Meng, Y. Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice–wheat rotation system. Agric. Ecosyst. Environ. 2016, 223, 115–122. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Liu, R.; Xing, L.; Yang, Z. Improved crop yield and reduced nitrate nitrogen leaching with straw return in a rice-wheat rotation of Ningxia irrigation district. Sci. Rep. 2018, 8, 9458. [Google Scholar] [CrossRef]
- Yang, S.; Xiao, Y.; Xu, J.; Liu, X. Effect of straw return on soil respiration and NEE of paddy fields under water-saving irrigation. PLoS ONE 2018, 13, e0204597. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Qi, X.; Guo, X.; Towa, J.; Zhen, B.; Qiao, D.; Wang, Z.; Yang, B.; Han, Y. Canopy Light Utilization and Yield of Rice under Rain-Catching and Controlled Irrigation. Water 2018, 10, 1340. [Google Scholar] [CrossRef]
- Xiao, M.-H.; Yu, S.-E.; She, D.; Hu, X.-J.; Chu, L.-L. Nitrogen and phosphorus loss and optimal drainage time of paddy field under controlled drainage condition. Arab. J. Geosci. 2014, 8, 4411–4420. [Google Scholar] [CrossRef]
- Djaman, K.; Mel, V.; Diop, L.; Sow, A.; El-Namaky, R.; Manneh, B.; Saito, K.; Futakuchi, K.; Irmak, S. Effects of Alternate Wetting and Drying Irrigation Regime and Nitrogen Fertilizer on Yield and Nitrogen Use Efficiency of Irrigated Rice in the Sahel. Water 2018, 10, 711. [Google Scholar] [CrossRef]
- He, H.; Yang, R.; Jia, B.; Chen, L.; Fan, H.; Cui, J.; Yang, D.; Li, M.; Ma, F.-Y. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation. Sci. World J. 2014, 2014, 1–14. [Google Scholar] [CrossRef]
- Nyamai, M.; Mati, B.; Home, P.; Odongo, B.; Wanjogu, R.; Thuranira, E. Improving land and water productivity in basin rice cultivation in Kenya through System of Rice Intensification (SRI). Agric. Eng. Int. CIGR J. 2012, 14, 1–9. [Google Scholar]
- Xiao, M.; Li, Y.; Wang, J.; Hu, X.; Wang, L.; Miao, Z. Study on the Law of Nitrogen Transfer and Conversion and Use of Fertilizer Nitrogen in Paddy Fields under Water-Saving Irrigation Mode. Water 2019, 11, 218. [Google Scholar] [CrossRef]
- Xu, B.; Shao, D.; Tan, X.; Yang, X.; Gu, W.; Li, H. Evaluation of soil water percolation under different irrigation practices, antecedent moisture and groundwater depths in paddy fields. Agric. Water Manag. 2017, 192, 149–158. [Google Scholar] [CrossRef]
- Tian, Y.H.; Yin, B.; Yang, L.Z.; Yin, S.X.; Zhu, Z.L. Nitrogen Runoff and Leaching Losses During Rice-Wheat Rotations in Taihu Lake Region, China. Pedosphere 2007, 17, 445–456. [Google Scholar] [CrossRef]
- Xie, M.X.; Zhang, Z.Y.; Zhang, P.C.; Chen, T.J. Nitrate Nitrogen Transport and Leaching From Sloping Farmland of Purple Soil: Experimental and Modelling Approaches. Fresenius Environ. Bull. 2018, 27, 1508–1521. [Google Scholar]
- Shao, G.-C.; Wang, M.-H.; Yu, S.-E.; Liu, N.; Xiao, M.-H.; Yuan, M. Potential of controlled irrigation and drainage for reducing nitrogen emission from rice paddies in Southern China. J. Chem. 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Peng, S.; He, Y.; Yang, S.; Xu, J. Effect of controlled irrigation and drainage on nitrogen leaching losses from paddy fields. Paddy Water Environ. 2014, 13, 303–312. [Google Scholar] [CrossRef]
- Eagle, A.J.; Bird, J.A.; Horwath, W.R.; Linquist, B.A.; Brouder, S.M.; Hill, J.E.; van Kessel, C. Rice yield and nitrogen utilization efficiency under alternative straw management practices. Agron. J. 2000, 92, 1096–1103. [Google Scholar] [CrossRef]
- Wang, J.; Wang, D.; Zhang, G.; Wang, Y.; Wang, C.; Teng, Y.; Christie, P. Nitrogen and phosphorus leaching losses from intensively managed paddy fields with straw retention. Agric. Water Manag. 2014, 141, 66–73. [Google Scholar] [CrossRef]
- Katsura, K.; Okami, M.; Mizunuma, H.; Kato, Y. Radiation use efficiency, N accumulation and biomass production of high-yielding rice in aerobic culture. Field Crops Res. 2010, 117, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Peng, S.; Xu, J.; He, Y.; Wang, Y. Effects of water saving irrigation and controlled release nitrogen fertilizer managements on nitrogen losses from paddy fields. Paddy Water Environ. 2015, 13, 71–80. [Google Scholar] [CrossRef]
- Yang, S.; Peng, S.; Xu, J.; Hou, H.; Gao, X. Nitrogen Loss from Paddy Field with Different Water and Nitrogen Managements in Taihu Lake Region of China. Commun. Soil Sci. Plant Anal. 2013, 44, 2393–2407. [Google Scholar] [CrossRef]
- Wang, M.; Yu, S.; Shao, G.; Gao, S.; Wang, J.; Zhang, Y. Impact of Alternate Drought and Flooding Stress on Water Use, and Nitrogen and Phosphorus Losses in a Paddy Field. Pol. J. Environ. Stud. 2018, 27, 345–355. [Google Scholar] [CrossRef] [Green Version]
Items | Re-Greening Stage | Tillering Stage | Jointing-Booting Stage | Heading-Flowering Stage | Milky Stage | Ripening Stage | |
---|---|---|---|---|---|---|---|
Growth Stage Division | 2017 | 1~9 | 10~39 | 40~64 | 65~83 | 84~103 | 104~122 |
2018 | 1~7 | 8~41 | 42~63 | 64~87 | 88~107 | 108~127 | |
FI | Irrigation lower limited | 10 | 10 | 10 | 10 | 10 | Naturally dried |
Irrigation upper limited | 30 | 30 | 40 | 40 | 40 | ||
Rainfall storage upper limited | 40 | 100 | 150 | 200 | 200 | ||
RC-CI | Irrigation lower limited | 10 | 70% θs | 70% θs | 80%θs | 70% θs | Naturally dried |
Irrigation upper limited | 30 | 100% θs | 100% θs | 100% θs | 100% θs | ||
Rainfall storage upper limited | 80 | 150 | 200 | 200 | 200 | ||
DP-SM | Irrigation lower limited | 80% θs | 60% θs | 60% θs | 60% θs | 50% θs | Naturally dried |
Irrigation upper limited | 100% θs | 100% θs | 100% θs | 100% θs | 100% θs | ||
Rainfall storage upper limited | 40 | 60 | 80 | 80 | 80 |
Fertilizer Application | Type | Amount (kg/ha) | Date | |
---|---|---|---|---|
2017 | 2018 | |||
Base fertilizer | CO(NH2)2 | 209 | 17 Jun. | 21 Jun. |
P2O5 | 110 | |||
K2O | 117 | |||
Tillering fertilizer | CO(NH2)2 | 105 | 27 Jun. | 28 Jun. |
K2O | 78 | |||
Panicle fertilizer | CO(NH2)2 | 209 | 16 Aug. | 10 Aug. |
Year | Treatments | Total Irrigation (mm) | Precipitation (mm) | Percolation (mm) | Grain Yield (kg/ha) | Irrigation Water Productivity (kg/m3) |
---|---|---|---|---|---|---|
2017 | FI | 782.88 a | 534.25 | 364.34 a | 9017.68 b | 1.15 b |
RC-CI | 554.71 b | 211.70 b | 9760.29 a | 1.76 a | ||
DP-SM | 408.59 c | 109.76 c | 7643.84 c | 1.87 a | ||
2018 | FI | 826.6 a | 470.70 | 279.92 a | 10195.74 b | 1.23 c |
RC-CI | 686.05 b | 195.01 b | 11446.11 a | 1.67 b | ||
DP-SM | 505.54 c | 125.35 c | 9280.30 c | 1.84 a |
N Form | Treatments | Tillering Stage | Jointing-Booting Stage | Heading-Flowering Stage | Milky Stage | Ripening Stage | Total Season |
---|---|---|---|---|---|---|---|
NH4+-N | FI | 5.05 a | 4.12 a | 1.60 a | 0.61 a | 0.43 a | 11.82 a |
RC-CI | 3.06 b | 3.00 b | 1.00 b | 0.55 a | 0.26 b | 7.86 b | |
DP-SM | 1.67 c | 1.47 c | 0.32 c | 0.11 b | 0.07 c | 3.64 c | |
NO3−-N | FI | 2.65 a | 2.87 a | 1.11 a | 0.39 a | 0.28 a | 7.29 a |
RC-CI | 1.92 b | 1.99 b | 0.78 b | 0.28 b | 0.16 b | 5.12 b | |
DP-SM | 1.50 c | 1.27 c | 0.35 c | 0.09 c | 0.06 c | 3.27 c | |
TN | FI | 9.86 a | 8.12 a | 3.82 a | 1.37 a | 0.85 a | 24.02 a |
RC-CI | 6.05 b | 5.53 b | 2.21 b | 1.12 b | 0.50 b | 15.42 b | |
DP-SM | 3.47 c | 2.86 c | 0.72 c | 0.24 c | 0.13 c | 7.42 c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, C.; Zhang, Z.; Wu, Y.; Mwiya, R. Response of Vertical Migration and Leaching of Nitrogen in Percolation Water of Paddy Fields under Water-Saving Irrigation and Straw Return Conditions. Water 2019, 11, 868. https://doi.org/10.3390/w11040868
Zheng C, Zhang Z, Wu Y, Mwiya R. Response of Vertical Migration and Leaching of Nitrogen in Percolation Water of Paddy Fields under Water-Saving Irrigation and Straw Return Conditions. Water. 2019; 11(4):868. https://doi.org/10.3390/w11040868
Chicago/Turabian StyleZheng, Chengxin, Zhanyu Zhang, Yunyu Wu, and Richwell Mwiya. 2019. "Response of Vertical Migration and Leaching of Nitrogen in Percolation Water of Paddy Fields under Water-Saving Irrigation and Straw Return Conditions" Water 11, no. 4: 868. https://doi.org/10.3390/w11040868
APA StyleZheng, C., Zhang, Z., Wu, Y., & Mwiya, R. (2019). Response of Vertical Migration and Leaching of Nitrogen in Percolation Water of Paddy Fields under Water-Saving Irrigation and Straw Return Conditions. Water, 11(4), 868. https://doi.org/10.3390/w11040868