Assessing Spatial Flood Risk from Multiple Flood Sources in a Small River Basin: A Method Based on Multivariate Design Rainfall
Abstract
:1. Introduction
2. Methodology
2.1. Design Rainfall and Flood Risk from Multiple Sources
2.2. Copula Method for Rainfall Design
2.3. Spatial Flood Risk Assessment
3. Case Study
3.1. Study Area
3.2. Rainfall Analysis and Rainfall Design
3.2.1. Identification of Critical Rainfall Durations and Rainfall Data Pre-Processing
3.2.2. Estimating the Correlation of Rainfall Amounts with Different Critical Rainfall Durations
3.2.3. Fitting of Marginal Distributions
3.2.4. Construction of Joint Distributions and Generation of Correlated Critical Rainfall
3.2.5. Design and Generation of Rainfall Based on Joint Distribution
3.3. Spatial Flood Risk Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haimes, Y.Y. Systems-Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication: Systems-Based Guiding Principles. Risk Anal. 2012, 32, 1451–1467. [Google Scholar] [CrossRef]
- Pietrucha-Urbanik, K.; Tchórzewska-Cieślak, B. Approaches to Failure Risk Analysis of the Water Distribution Network with Regard to the Safety of Consumers. Water 2018, 10, 1679. [Google Scholar] [CrossRef]
- Tatano, H.; Takagi, A. Economic Analysis of Disaster Prevention: Policy and Evaluation of Risk Management; Keisoshobo Press: Tokyo, Japan, 2005. (In Japanese) [Google Scholar]
- Greiving, S. Integrated Risk Assessment of Multi-Hazards: A New Methodology. Special Paper-Geological Survey of Finland. 2006. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.668.5877&rep=rep1&type=pdf (accessed on 10 May 2019).
- Kappes, M.S.; Keiler, M.; Elverfeldt, K.; Glade, T.; Von Elverfeldt, K. Challenges of analyzing multi-hazard risk: A review. Nat. Hazards 2012, 64, 1925–1958. [Google Scholar] [CrossRef]
- Schmidt, J.; Matcham, I.; Reese, S.; King, A.; Bell, R.; Henderson, R.; Smart, G.; Cousins, J.; Smith, W.; Heron, D. Quantitative multi-risk analysis for natural hazards: a framework for multi-risk modelling. Nat. Hazards 2011, 58, 1169–1192. [Google Scholar] [CrossRef]
- Sun, P.; Wen, Q.; Zhang, Q.; Singh, V.P.; Sun, Y.; Li, J. Nonstationarity-based evaluation of flood frequency and flood risk in the Huai River basin, China. J. Hydrol. 2018, 567, 393–404. [Google Scholar] [CrossRef]
- Tanaka, T.; Tachikawa, Y.; Ichikawa, Y.; Yorozu, K. Impact assessment of upstream flooding on extreme flood frequency analysis by incorporating a flood-inundation model for flood risk assessment. J. Hydrol. 2017, 554, 370–382. [Google Scholar] [CrossRef]
- Chen, W.; Huang, G.; Zhang, H.; Wang, W. Urban inundation response to rainstorm patterns with a coupled hydrodynamic model: A case study in Haidian Island, China. J. Hydrol. 2018, 564, 1022–1035. [Google Scholar] [CrossRef]
- Yang, T.-H.; Hwang, G.-D.; Tsai, C.-C.; Ho, J.-Y. Using rainfall thresholds and ensemble precipitation forecasts to issue and improve urban inundation alerts. Hydrol. Earth Sci. Discuss. 2016, 20, 1–24. [Google Scholar]
- Plate, E.J. Flood risk and flood management. J. Hydrol. 2002, 267, 2–11. [Google Scholar] [CrossRef]
- Van Dyck, J.; Willems, P. Probabilistic flood risk assessment over large geographical regions: Probabilistic flood risk. Water Resour. Res. 2013, 49, 3330–3344. [Google Scholar] [CrossRef]
- Taki, K.; Matsuda, T.; Ukai, E. Method for evaluating flood disaster reduction measures in alluvial plains. J. Flood Risk Manag. 2013, 6, 210–218. [Google Scholar] [CrossRef]
- Dottori, F.; Salamon, P.; Bianchi, A.; Alfieri, L.; Hirpa, F.A.; Feyen, L. Development and evaluation of a framework for global flood hazard mapping. Adv. Water Resour. 2016, 94, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Alfieri, L.; Feyen, L.; Dottori, F.; Bianchi, A. Ensemble flood risk assessment in Europe under high end climate scenarios. Environ. Chang. 2015, 35, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Liang, Q.; Xia, X.; Hou, J. Efficient urban flood simulation using a GPU-accelerated SPH model. Environ. Earth Sci. 2015, 74, 7285–7294. [Google Scholar] [CrossRef]
- Apel, H.; Thieken, A.H.; Merz, B.; Bloschl, G. Flood risk assessment and associated uncertainty. Hazards Earth Sci. 2004, 4, 295–308. [Google Scholar] [CrossRef] [Green Version]
- Grahn, T.; Nyberg, L. Assessment of pluvial flood exposure and vulnerability of residential areas. Int. J. Disaster Risk Reduct. 2017, 21, 367–375. [Google Scholar] [CrossRef]
- Papaïoannou, G.; Efstratiadis, A.; Vasiliades, L.; Loukas, A.; Papalexiou, S.M.; Koukouvinos, A.; Tsoukalas, I.; Kossieris, P. An Operational Method for Flood Directive Implementation in Ungauged Urban Areas. Hydrology 2018, 5. [Google Scholar] [CrossRef]
- Huff, F.A. Time distribution of rainfall in heavy storms. Water Resour. Res. 1967, 3, 1007–1019. [Google Scholar] [CrossRef]
- Japan Society of Civil Engineers. The Collection of Hydraulic Formulae; Maruzen Publishing Co. Ltd.: Tokyo, Japan, 1999. (in Japanese) [Google Scholar]
- Keifer, C.J.; Chu, H.H. Synthetic storm pattern for drainage design. J. Hydraul. Division 1957, 83, 1–25. [Google Scholar]
- US Army Corps of Engineers. Hydrologic Modeling System HEC-HMS (Technical Reference Manual); United States Army Corps of Engineers: Davis, California, 2000.
- US Department of Agriculture. Urban Hydrology for Small Watersheds (Technical Release 55); US Department of Agriculture: Washington, DC, USA, 1986.
- Villani, P.; Veneziano, D. Best linear unbiased design hyetograph. Water Resour. Res. 1999, 35, 2725–2738. [Google Scholar] [Green Version]
- Watt, W.E.; Chow, K.C.A.; Hogg, W.D.; Lathem, K.W. A 1-h urban design storm for Canada. Can. J. Civ. Eng. 1986, 13, 293–300. [Google Scholar] [CrossRef]
- Yen, B.C.; Chow, V.T. Design hyetographs for small drainage structures. J. Hydraul. Division 1980, 106, 1055–1076. [Google Scholar]
- Efstratiadis, A.; Koussis, A.D.; Koutsoyiannis, D.; Mamassis, N. Flood design recipes vs. reality: Can predictions for ungauged basins be trusted? Hazards Earth Sci. 2014, 14, 1417–1428. [Google Scholar] [CrossRef]
- Kadoya, M.; Fukushima, A. Concentration Time of Flood in Small or Medium River Basin; Annual Report Number 19; Disaster Prevention Research Institute: Kyoto, Japan, 1976; pp. 143–152. (in Japanese) [Google Scholar]
- Michailidi, E.M.; Antoniadi, S.; Koukouvinos, A.; Bacchi, B.; Efstratiadis, A. Timing the time of concentration: shedding light on a paradox. Hydrol. Sci. J. 2018, 1–20. [Google Scholar] [CrossRef]
- Nelsen, R. An Introduction to Copulas, 2nd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Sklar, A. Fonctions de repartition an dimensions et leurs marges. Publications de l’Institut Statistique de l’Université de Paris 1959, 8, 229–231. (in French). [Google Scholar]
- Genest, C.; Favre, A.-C. Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask. J. Hydrol. Eng. 2007, 12, 347–368. [Google Scholar] [CrossRef] [Green Version]
- Joe, H. Multivariate Models and Dependence Concepts; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Choroś, B.; Ibragimov, R.; Permiakova, E. Copula Estimation. In Copula Theory and Its Applications. Lecture Notes in Statistics (77–91); Springer: Heidelberg, Berlin, 2010. [Google Scholar]
- Aas, K.; Berg, D. Models for construction of multivariate dependence—A comparison study. Eur. J. Finance 2009, 15, 639–659. [Google Scholar] [CrossRef]
- Kurowicka, D.; Cooke, R. Sampling algorithms for generating joint uniform distributions using the vine-copula method. Comput. Stat. Data Anal. 2007, 51, 2889–2906. [Google Scholar] [CrossRef]
- Aas, K.; Czado, C.; Frigessi, A.; Bakken, H. Pair-copula constructions of multiple dependence. Insur. Math. Econ. 2009, 44, 182–198. [Google Scholar] [CrossRef] [Green Version]
- Karmakar, S.; Simonovic, S. Bivariate flood frequency analysis. Part 2: A copula-based approach with mixed marginal distributions. J. Flood Risk Manag. 2009, 2, 32–44. [Google Scholar] [CrossRef]
- Genest, C.; Remillard, B.; Beaudoin, D. Goodness-of-fit tests for copulas: A review and a power study. Insur. Math. Econ. 2009, 44, 199–213. [Google Scholar] [CrossRef]
- De Michele, C.; Salvadori, G. A Generalized Pareto intensity-duration model of storm rainfall exploiting 2-Copulas. J. Geophys. Res. Biogeosciences 2003, 108, 1–11. [Google Scholar] [CrossRef]
- Kao, S.-C.; Govindaraju, R.S. A bivariate frequency analysis of extreme rainfall with implications for design. J. Geophys. Res. Biogeosciences 2007, 112, 1–15. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Koutsoyiannis, D. Battle of extreme value distributions: A global survey on extreme daily rainfall. Water Resour. Res. 2013, 49, 187–201. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X. A Methodology for Assessment of Spatial Distribution of Flood Risk. Doctoral Dissertation, Kyoto University, Kyoto, Japan, 2014. [Google Scholar]
- Jiang, X.; Mori, N.; Tatano, H. Estimation of property loss and business interruption loss caused by storm surge inundation due to climate change: a case of Typhoon Vera revisit. Natural Hazard 2016, 84, 35–49. [Google Scholar] [CrossRef]
- Jiang, X.; Mori, N.; Tatano, H.; Yang, L. Simulation-Based Exceedance Probability Curves to Assess the Economic Impact of Storm Surge Inundations due to Climate Change: A Case Study in Ise Bay, Japan. Sustainability 2019, 11, 1090. [Google Scholar] [CrossRef]
- Dairaku, K.; Emori, S.; Oki, T. Rainfall Amount, Intensity, Duration, and Frequency Relationships in the Mae Chaem Watershed in Southeast Asia. J. Hydrometeorol. 2004, 5, 458–470. [Google Scholar] [CrossRef]
- Jones, P.D.; Hulme, M. Calculating Regional Climatic Time Series for Temperature and Precipitation: Methods and Illustrations. Int. J. Clim. 1996, 16, 361–377. [Google Scholar] [CrossRef]
- Yang, L.; Kajitani, Y.; Tatano, H. A methodology for estimating business interruption loss caused by flood disasters: Insights from business surveys after Tokai Heavy Rain in Japan. Natural Hazards 2016, 84, 411–430. [Google Scholar] [CrossRef]
- Haimes, Y.Y. Risk modeling, Assessment, and Management; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kossieris, P.; Makropoulos, C.; Onof, C.; Koutsoyiannis, D. A rainfall disaggregation scheme for sub-hourly time scales: Coupling a Bartlett-Lewis based model with adjusting procedures. J. Hydrol. 2018, 556, 980–992. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Onof, C.; Kim, D. A hybrid stochastic rainfall model that reproduces some important rainfall characteristics at hourly to yearly timescales. Hydrol. Earth Sci. 2019, 23, 989–1014. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Yang, L.; Tatano, H. Assessing Spatial Flood Risk from Multiple Flood Sources in a Small River Basin: A Method Based on Multivariate Design Rainfall. Water 2019, 11, 1031. https://doi.org/10.3390/w11051031
Jiang X, Yang L, Tatano H. Assessing Spatial Flood Risk from Multiple Flood Sources in a Small River Basin: A Method Based on Multivariate Design Rainfall. Water. 2019; 11(5):1031. https://doi.org/10.3390/w11051031
Chicago/Turabian StyleJiang, Xinyu, Lijiao Yang, and Hirokazu Tatano. 2019. "Assessing Spatial Flood Risk from Multiple Flood Sources in a Small River Basin: A Method Based on Multivariate Design Rainfall" Water 11, no. 5: 1031. https://doi.org/10.3390/w11051031
APA StyleJiang, X., Yang, L., & Tatano, H. (2019). Assessing Spatial Flood Risk from Multiple Flood Sources in a Small River Basin: A Method Based on Multivariate Design Rainfall. Water, 11(5), 1031. https://doi.org/10.3390/w11051031