A Two Decadal (1993–2012) Numerical Assessment of Sediment Dynamics in the Northern Gulf of Mexico
Abstract
:1. Introduction
2. Model Setup
2.1. Ocean and Sediment Models
2.2. Wave Model
2.3. Model Nesting and Coupling
3. Model Validation
4. Results
4.1. Seasonal Variations of Hydro- and Sediment Dynamics
4.2. Interannual Variation of Sedimentation Rate
4.3. Spatial Pattern of Deposition
4.4. Sensitivity Tests for High and Low Fluvial Discharge
5. Discussion
5.1. Bay-Shelf Exchange
5.2. Sediment Dynamics over Submarine Shoals
5.2.1. River Supply
5.2.2. Hydrodynamics
5.3. Limitations and Future Work
6. Conclusions
- (1)
- Strong easterly winds prevailed in non-summer seasons. Relatively weak westerly winds in summer reversed currents between 20 and 50 m isobaths to an eastward direction. Wave- and current-induced bottom shear stresses exhibited similar temporal (strong in winter and weak in summer) and spatial (higher over the inner shelf) patterns. High sedimentation rate (>1 cm/season) and SSF (>0.1 kg/m/s) were found in spring near river mouths. During summer, calm hydrodynamics and reversed coastal currents resulted in weak eastward SSF over the Louisiana–Texas shelf. Deposition on the Louisiana–Mississippi–Alabama shelf became negligible in fall;
- (2)
- Over the 20-year simulation, sedimentation rate ranged from almost zero to more than 10 cm/year in waters near the river mouth and surrounding the delta. Interannual variation of sedimentation rates over the shelf (h < 200 m) and inner shelf (h < 50 m) were highly correlated with the fluvial sediment flux. Mississippi-derived sediments dispersed on both sides of the bird-foot delta, while the Atchafalaya-derived sediments were mainly confined in the Atchafalaya Bay. Two major pathways for the Mississippi River-derived sediment were identified: A direct westward alongshore transport from the Southwest Pass, and a gyre-induced clockwise transport centered in Louisiana Bight;
- (3)
- A change point was detected in 1999 in the time series of water and sediment discharge from the Mississippi-Atchafalaya River over the period of 1993–2012. This change point was correlated with the shift of ENSO from a strong warm phase to a strong cold phase. The annual mean water and sediment fluxes decreased sharply from the 1993–1998 period to the 1999–2012 period. Model sensitivity tests indicated that the influence of decreased river inputs on sedimentation rate was limited to waters near the river mouths, which reduced sediment transport into the Barataria Bay during flood tide and potentially worsen the ongoing land loss in the bay;
- (4)
- Model simulated percentages of fluvial sediments over the Tiger, Trinity, and Ship Shoals were less than 18%, indicating the variation of river sediment flux might have limited impact on local sedimentation. Sediment dynamics over these distal sandy bodies were mostly affected by the strong winds in cold season between October and April.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Milliman, J.D.; Meade, R.H. World-wide delivery of river sediment to the oceans. J. Geol. 1983, 91, 1–21. [Google Scholar] [CrossRef]
- Meade, R.H. River-sediment inputs to major deltas. In Sea-Level Rise and Coastal Subsidence; Springer: Berlin/Heidelberg, Germany, 1996; pp. 63–85. [Google Scholar]
- Meade, R.H.; Moody, J.A. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2006. Hydrol. Process. 2010, 49, 35–49. [Google Scholar]
- Allison, M.A.; Demas, C.R.; Ebersole, B.A.; Kleiss, B.A.; Little, C.D.; Meselhe, E.A.; Powell, N.J.; Pratt, T.C.; Vosburg, B.M. A water and sediment budget for the lower Mississippi-Atchafalaya River in flood years 2008–2010: Implications for sediment discharge to the oceans and coastal restoration in Louisiana. J. Hydrol. 2012, 432–433, 84–97. [Google Scholar] [CrossRef]
- Meade, R.H.; Parker, R.S. Sediment in rivers of the United States. US Geol. Surv. Water-Supply Pap. 1985, 2275, 49–60. [Google Scholar]
- Keown, M.P.; Dardeau, E.A.; Causey, E.M. Historic trends in the sediment flow regime of the Mississippi River. Water Resour. Res. 1986, 22, 1555–1564. [Google Scholar] [CrossRef]
- Bentley, S.J.; Blum, M.D.; Maloney, J.; Pond, L.; Paulsell, R. The mississippi river source-to-sink system: Perspectives on Tectonic, Climatic, and Anthropogenic Influences, Miocene to Anthropocene. Earth Sci. Rev. 2015. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Day, J.W.; Britsch, L.D.; Hawes, S.R.; Shaffer, G.P.; Reed, D.J.; Cahoon, D. Pattern and Process of Land Loss in the Mississippi Delta: A Spatial and Temporal Analysis of Wetland Habitat Change. Estuaries 2000, 23, 425–438. [Google Scholar] [CrossRef]
- Day, J.W.; Barras, J.; Clairain, E.; Johnston, J.; Justic, D.; Kemp, G.P.; Ko, J.Y.; Lane, R.; Mitsch, W.J.; Steyer, G.; et al. Implications of global climatic change and energy cost and availability for the restoration of the Mississippi delta. Ecol. Eng. 2005, 24, 253–265. [Google Scholar] [CrossRef]
- Blum, M.D.; Roberts, H.H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2009, 2, 488–491. [Google Scholar] [CrossRef]
- Allison, M.A.; Meselhe, E.A. The use of large water and sediment diversions in the lower Mississippi River (Louisiana) for coastal restoration. J. Hydrol. 2010, 387, 346–360. [Google Scholar] [CrossRef]
- Barras, J.; Beville, S.; Britsch, D.; Hartley, S.; Hawes, S.; Johnston, J.; Kemp, P.; Kinler, Q.; Martucci, A.; Porthouse, J. Historical and Projected Coastal Louisiana Land Changes: 1978–2050; United States Geological Survey: Reston, VA, USA, 2003. [Google Scholar]
- Labat, D. Oscillations in land surface hydrological cycle. Earth Planet. Sci. Lett. 2006, 242, 143–154. [Google Scholar] [CrossRef]
- Rossi, A.; Massei, N.; Laignel, B.; Sebag, D.; Copard, Y. The response of the Mississippi River to climate fluctuations and reservoir construction as indicated by wavelet analysis of streamflow and suspended-sediment load, 1950–1975. J. Hydrol. 2009, 377, 237–244. [Google Scholar] [CrossRef]
- Schmidt, N.; Lipp, E.K.; Rose, J.B.; Luther, M.E. ENSO influences on seasonal rainfall and river discharge in Florida. J. Clim. 2001, 14, 615–628. [Google Scholar] [CrossRef]
- Sun, H.; Furbish, D.J. Annual precipitation and river discharges in Florida in response to El Niño- and La Niña-sea surface temperature anomalies. J. Hydrol. 1997, 199, 74–87. [Google Scholar] [CrossRef]
- Hurrell, J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Minobe, S. A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett. 1997, 24, 683–686. [Google Scholar] [CrossRef]
- Rossi, A.; Massei, N.; Laignel, B. A synthesis of the time-scale variability of commonly used climate indices using continuous wavelet transform. Glob. Planet. Chang. 2011, 78, 1–13. [Google Scholar] [CrossRef]
- Massei, N.; Laignel, B.; Rosero, E.; Motelay-Massei, A.; Deloffre, J.; Yang, Z.L.; Rossi, A. A wavelet approach to the short-term to pluri-decennal variability of streamflow in the Mississippi river basin from 1934 to 1998. Int. J. Climatol. 2011, 31, 31–43. [Google Scholar] [CrossRef]
- Schleiss, A.J.; Franca, M.J.; Juez, C.; De Cesare, G. Reservoir sedimentation. J. Hydraul. Res. 2016, 54, 595–614. [Google Scholar] [CrossRef]
- Cho, K.; Reid, R.O.; Nowlin, W.D. Objectively mapped stream function fields on the Texas-Louisiana shelf based on 32 months of moored current meter data. J. Geophys. Res. 1998, 103, 10377–10390. [Google Scholar] [CrossRef] [Green Version]
- Nowlin, W.D.; Jochens, A.E.; Dimarco, S.F.; Reid, R.O.; Howard, M.K. Low-Frequency Circulation Over the Texas—Louisiana Continental Shelf. Am. Geophys. Union 2005, 161, 219–240. [Google Scholar]
- Hetland, R.D.; DiMarco, S.F. How does the character of oxygen demand control the structure of hypoxia on the Texas-Louisiana continental shelf? J. Mar. Syst. 2008, 70, 49–62. [Google Scholar] [CrossRef]
- Wang, L.; Justić, D. A modeling study of the physical processes affecting the development of seasonal hypoxia over the inner Louisiana-Texas shelf: Circulation and stratification. Cont. Shelf Res. 2009, 29, 1464–1476. [Google Scholar] [CrossRef]
- Walker, N.D.; Hammack, A.B. Impacts of winter storms on circulation and sediment transport: Atchafalaya-Vermilion Bay region, Louisiana, USA. J. Coast. Res. 2000, 16, 996–1010. [Google Scholar]
- Pepper, D.A.; Stone, G.W. Hydrodynamic and sedimentary responses to two contrasting winter storms on the inner shelf of the northern Gulf of Mexico. Mar. Geol. 2004, 210, 43–62. [Google Scholar] [CrossRef]
- DiMarco, S.F.; Reid, R.O. Characterization of the principal tidal current constituents on the Texas-Louisiana shelf. J. Geophys. Res. Ocean. 1998, 103, 3093–3109. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; White, J.R.; Chen, C.; Lin, H.; Weeks, E.; Galvan, K.; Bargu, S. Summertime tidal flushing of Barataria Bay: Transports of water and suspended sediments. J. Geophys. Res. Ocean. 2011, 116, 1–15. [Google Scholar] [CrossRef]
- Kim, C.K.; Park, K. A modeling study of water and salt exchange for a micro-tidal, stratified northern Gulf of Mexico estuary. J. Mar. Syst. 2012, 96–97, 103–115. [Google Scholar] [CrossRef]
- Juez, C.; Hassan, M.A.; Franca, M.J. The Origin of Fine Sediment Determines the Observations of Suspended Sediment Fluxes Under Unsteady Flow Conditions. Water Resour. Res. 2018, 54, 5654–5669. [Google Scholar] [CrossRef]
- Wright, L.D.; Nittrouer, C.A. Dispersal of river sediments in coastal seas: Six contrasting cases. Estuaries 1995, 18, 494–508. [Google Scholar] [CrossRef]
- Corbett, D.R.; McKee, B.; Duncan, D. An evaluation of mobile mud dynamics in the Mississippi River deltaic region. Mar. Geol. 2004, 209, 91–112. [Google Scholar] [CrossRef]
- Xu, K.; Harris, C.K.; Hetland, R.D.; Kaihatu, J.M. Dispersal of Mississippi and Atchafalaya sediment on the Texas-Louisiana shelf: Model estimates for the year 1993. Cont. Shelf Res. 2011, 31, 1558–1575. [Google Scholar] [CrossRef]
- Curray, J.R. Sediments and history of Holocene transgression, continental shelf, northwest Gulf of Mexico. In Recent Sediments, Northwest Gulf Mexico: A Symposium Summarizing the Results of Work Carried on in Project 51 of the American Petroleum Institute, 1951–1958; Shepard, F.P., Phleger, F.B., Van Andel, T.H., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1960; pp. 221–266. [Google Scholar]
- Xu, K.; Mickey, R.C.; Chen, Q.; Harris, C.K.; Hetland, R.D.; Hu, K.; Wang, J. Shelf sediment transport during hurricanes Katrina and Rita. Comput. Geosci. 2016, 90, 24–39. [Google Scholar] [CrossRef]
- Allison, M.A.; Sheremet, A.; Goñi, M.A.; Stone, G.W. Storm layer deposition on the Mississippi-Atchafalaya subaqueous delta generated by Hurricane Lili in 2002. Cont. Shelf Res. 2005, 25, 2213–2232. [Google Scholar] [CrossRef]
- Goñi, M.A.; Gordon, E.S.; Monacci, N.M.; Clinton, R.; Gisewhite, R.; Allison, M.A.; Kineke, G. The effect of Hurricane Lili on the distribution of organic matter along the inner Louisiana shelf (Gulf of Mexico, USA). Cont. Shelf Res. 2006, 26, 2260–2280. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Q.; Hu, K.; Xu, K.; Twilley, R.R. Modeling hurricane-induced wetland-bay and bay-shelf sediment fluxes. Coast. Eng. 2018, 135, 77–90. [Google Scholar] [CrossRef]
- Zang, Z.; Xue, Z.G.; Bao, S.; Chen, Q.; Walker, N.D.; Haag, A.S.; Ge, Q.; Yao, Z. Numerical study of sediment dynamics during hurricane Gustav. Ocean Model. 2018, 126, 29–42. [Google Scholar] [CrossRef]
- Coleman, J.M.; Roberts, H.H.; Stone, G.W. Mississippi River Delta: An Overview. J. Coast. Res. 1998, 14, 698–716. [Google Scholar]
- Neill, C.F.; Allison, M.A. Subaqueous deltaic formation on the Atchafalaya Shelf, Louisiana. Mar. Geol. 2005, 214, 411–430. [Google Scholar] [CrossRef]
- Corbett, D.R.; McKee, B.; Allison, M. Nature of decadal-scale sediment accumulation on the western shelf of the Mississippi River delta. Cont. Shelf Res. 2006, 26, 2125–2140. [Google Scholar] [CrossRef]
- Allison, M.A.; Bianchi, T.S.; McKee, B.A.; Sampere, T.P. Carbon burial on river-dominated continental shelves: Impact of historical changes in sediment loading adjacent to the Mississippi River. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef]
- Osterman, L.E.; Poore, R.Z.; Swarzenski, P.W.; Senn, D.B.; DiMarco, S.F. The 20th-century development and expansion of Louisiana shelf hypoxia, Gulf of Mexico. Geo-Mar. Lett. 2009, 29, 405–414. [Google Scholar] [CrossRef]
- Kineke, G.C.C.; Sternberg, R.W.W.; Trowbridge, J.H.H.; Geyer, W.R.R. Fluid-mud processes on the Amazon continental shelf. Cont. Shelf Res. 1996, 16, 667–696. [Google Scholar] [CrossRef]
- Traykovski, P.; Trowbridge, J.; Kineke, G.C. Mechanisms of surface wave energy dissipation over a high-concentration sediment suspension. J. Geophys. Res. Ocean. 2015, 1–44. [Google Scholar] [CrossRef]
- Ross, M.A.; Mehta, A.J. On the Mechanics of Lutoclines and Fluid Mud. J. Coast. Res. 1989, 51–62. [Google Scholar]
- Mehta, A.J.; Samsami, F.; Khare, Y.P.; Sahin, C. Fluid Mud Properties in Nautical Depth Estimation. J. Waterw. Port Coast. Ocean Eng. 2014, 140, 210–222. [Google Scholar] [CrossRef]
- Sahin, C.; Safak, I.; Sheremet, A.; Mehta, A.J. Observations on cohesive bed reworking by waves: Atchafalaya Shelf, Louisiana. J. Geophys. Res. Ocean. 2012, 117, 1–14. [Google Scholar] [CrossRef]
- Sheremet, A.; Jaramillo, S.; Su, S.F.; Allison, M.A.; Holland, K.T. Wave-mud interaction over the muddy Atchafalaya subaqueous clinoform, Louisiana, United States: Wave processes. J. Geophys. Res. Ocean. 2011, 116, 1–14. [Google Scholar] [CrossRef]
- Safak, I.; Sheremet, A.; Allison, M.A.; Hsu, T.J. Bottom turbulence on the muddy Atchafalaya Shelf, Louisiana, USA. J. Geophys. Res. Ocean. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Couvillion, B.R.; Beck, H.; Schoolmaster, D.; Fischer, M. Land Area Change in Coastal Louisiana 1932 to 2016: U.S. Geological Survey Scientific Investigations Map 3381, 16 p. Pamphlet; U.S. Geological Survey: Reston, VA, USA, 2017. [Google Scholar]
- Fitzgerald, D.M.; Kulp, M.; Hughes, Z.; Georgiou, I.; Miner, M.; Penland, S.; Howes, N. Impacts of rising sea level to backbarrier wetlands, tidal inlets, and barrier islands: Barataria Coast, Louisiana. In Proceedings of the Coastal Sediments’ 07, 6th International Symposium on Coastal Engineering and Science of Coastal Sediment Processes, New Orleans, LA, USA, 13–17 May 2007; pp. 1179–1192. [Google Scholar]
- Penland, S.; Boyd, R.; Suter, J.R. Transgressive depositional systems of the Mississippi Delta plain; a model for barrier shoreline and shelf sand development. J. Sediment. Res. 1988, 58, 932–949. [Google Scholar]
- Frazier, D.E. Depositional Episode: Their Relationship to the Quaternary Stratigraphic Framework in the Northwestern Portion of the Gulf Basin; Bureau of Economic Geology, University of Texas at Austin: Austin, TX, USA, 1974; Volume 74, p. 28. [Google Scholar]
- Khalil, S.M.; Finkl, C.W.; Roberts, H.H.; Raynie, R.C. New Approaches to Sediment Management on the Inner Continental Shelf Offshore Coastal Louisiana. J. Coast. Res. 2010, 264, 591–604. [Google Scholar] [CrossRef]
- Kobashi, D.; Jose, F.; Stone, G.W. Impacts of fluvial fine sediments and winter storms on a transgressive shoal, off South-Central Louisiana, U.S.A. J. Coast. Res. 2007, 2007, 858–862. [Google Scholar]
- Krawiec, W. Recent Sediments of the Louisiana Inner Continental Shelf. Ph.D. Thesis, Rice University, Houston, TX, USA, 1966. [Google Scholar]
- Stone, G.W.; Condrey, R.E.; Fleeger, J.W.; Khalil, S.M.; Kobashi, D.; Jose, F.; Evers, E.; Dubois, S.; Liu, B.; Arndt, S. Environmental Investigation of Long-Term Use of Ship Shoal Sand Resources for Large Scale Beach and Coastal Restoration in Louisiana; Gulf of Mexico OCS Region Publications OCS Study MMS; US Dept. of the Interior, Minerals Management Service: New Orleans, LA, USA, 2009; Volume 24, p. 278. [Google Scholar]
- Kulp, M.; Penland, S.; Williams, S.J.; Jenkins, C.; Flocks, J.; Kindinger, J. Geologic framework, evolution, and sediment resources for restoration of the Louisiana coastal zone. J. Coast. Res. 2005, SI, 56–71. [Google Scholar]
- Penland, S.; Connor, P.F., Jr.; Beall, A.; Fearnley, S.; Williams, S.J. Changes in Louisiana’s shoreline: 1855–2002. J. Coast. Res. 2005, SI, 7–39. [Google Scholar]
- Khalil, S.M.; Finkl, C.W. Regional sediment management strategies for coastal restoration in Louisiana, USA. J. Coast. Res. 2009, SI, 1320–1324. [Google Scholar]
- Finkl, C.W.; Khalil, S.M. Offshore exploration for sand sources: General guidelines and procedural strategies along deltaic coasts. J. Coast. Res. 2005, SI, 203–233. [Google Scholar]
- Khalil, S.M.; Finkl, C.W.; Andrews, J.; Knotts, C.P. Restoration-Quality Sand from Ship Shoal, Louisiana: Geotechnical Investigation for Sand on a Drowned Barrier Island. In Proceedings of the Coastal Sediments’ 07, 6th International Symposium on Coastal Engineering and Science of Coastal Sediment Processes, New Orleans, LA, USA, 13–17 May 2007; pp. 685–698, ISBN 978-0-7844-0926-8. [Google Scholar]
- Denommee, K.C.; Bentley, S.J.; Harazim, D. Mechanisms of muddy clinothem progradation on the Southwest Louisiana Chenier Plain inner shelf. Geo-Mar. Lett. 2018, 38, 273–285. [Google Scholar] [CrossRef]
- Yeager, K.M.; Santschi, P.H.; Rowe, G.T. Sediment accumulation and radionuclide inventories (239,240Pu, 210Pb and 234Th) in the northern Gulf of Mexico, as influenced by organic matter and macrofaunal density. Mar. Chem. 2004, 91, 1–14. [Google Scholar] [CrossRef]
- Warner, J.C.; Armstrong, B.; He, R.; Zambon, J.B. Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. Ocean Model. 2010, 35, 230–244. [Google Scholar] [CrossRef]
- Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. Geosci. 2008, 34, 1284–1306. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Haidvogel, D.B.; Arango, H.; Budgell, W.P.; Cornuelle, B.D.; Curchitser, E.; Di Lorenzo, E.; Fennel, K.; Geyer, W.R.; Hermann, A.J.; Lanerolle, L.; et al. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys. 2008, 227, 3595–3624. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Ocean. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhi, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; Technical Report; National Center For Atmospheric Research: Boulder, CO, USA, 2005; Volume 113. [Google Scholar]
- Jacob, R.; Larson, J.; Everest, O. M x N Communication and Parallel Interpolation in Community Climate System Model Version 3 Using the Model Coupling Toolkit. Int. J. High Perform. Comput. Appl. 2005, 19, 293–307. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Arango, H.; Dietrich, D.; Ezer, T.; Ghil, M.; Haidvogel, D.B.; Ma, C.-C.; Mehra, A.; Paiva, A.M.; Sirkes, Z. DAMEE-NAB: The base experiments. Dyn. Atmos. Ocean. 2000, 32, 155–183. [Google Scholar] [CrossRef]
- Haidvogel, D.B.; Arango, H.G.; Hedstrom, K.; Beckmann, A.; Malanotte-Rizzoli, P.; Shchepetkin, A.F. Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Ocean. 2000, 32, 239–281. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Smith, L.T.; Halliwell, G.R.; Bleck, R. North Atlantic Simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the Vertical Coordinate Choice, Reference Pressure, and Thermobaricity. J. Phys. Oceanogr. 2003, 33, 2504–2526. [Google Scholar] [CrossRef] [Green Version]
- Flather, R.A. Results from a Storm Surge Prediction Model of the North-West European Continental Shelf for April, November and December, 1973; Institute of Oceanographic Sciences: Wormley, UK, 1976. [Google Scholar]
- Orlanski, I. A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 1976, 21, 251–269. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D. NCEP Climate Forecast System Reanalysis (CFSR) 6-Hourly Products, January 1979 to December 2010; Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory: Boulder, CO, USA, 2010. [Google Scholar]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.; Iredell, M. NCEP Climate Forecast System Version 2 (CFSv2) 6-Hourly Products; Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory: Boulder, CO, USA, 2011. [Google Scholar]
- Amante, C.; Eakins, B.W. ETOPO1 Global Relief Model Converted to PanMap Layer Format; NOAA-National Geophysical Data Center: Boulder, CO, USA, 2009. [Google Scholar]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef]
- Styles, R.; Glenn, S.M. Modeling stratified wave and current bottom boundary layers on the continental shelf. J. Geophys. Res. Ocean. 2000, 105, 24119–24139. [Google Scholar] [CrossRef] [Green Version]
- Madsen, O.S. Spectral wave-current bottom boundary layer flows. Coast Eng 1994, 384–398. [Google Scholar] [CrossRef]
- Ariathurai, R.; Arulanandan, K. Erosion rates of cohesive soils. J. Hydraul. Div. 1978, 104, 279–283. [Google Scholar]
- Harris, C.K.; Traykovski, P.A.; Geyer, W.R. Flood dispersal and deposition by near-bed gravitational sediment flows and oceanographic transport: A numerical modeling study of the Eel River shelf, northern California. J. Geophys. Res. Ocean. 2005, 110, 1–16. [Google Scholar] [CrossRef]
- Sherwood, C.R.; Aretxabaleta, A.L.; Harris, C.K.; Paul Rinehimer, J.; Verney, R.; Ferré, B. Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST r1234). Geosci. Model Dev. 2018, 11, 1849–1871. [Google Scholar] [CrossRef]
- Kahma, K.K.; Calkoen, C.J. Reconciling discrepancies in the observed growth of wind-generated waves. J. Phys. Oceanogr. 1992, 22, 1389–1405. [Google Scholar] [CrossRef]
- Madsen, O.S.; Poon, Y.K.; Graber, H.C. Spectral Wave Attenuation by Bottom Friction: Theory, Paper Presented at 21st International Conference on Coastal Engineering; America Society of Civil Engineers: Torremolinos, Spain, 1988; pp. 492–504. [Google Scholar]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.L.; McKee, B.A. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens. Environ. 2004, 93, 259–266. [Google Scholar] [CrossRef] [Green Version]
- D’Sa, E.J.; Miller, R.L.; McKee, B.A. Suspended particulate matter dynamics in coastal waters from ocean color: Application to the northern Gulf of Mexico. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef]
- Twine, T.E.; Kucharik, C.J.; Foley, J.A. Effects of El Nino-Southern Oscillation on the climate, water balance, and streamflow of the Mississippi River basin. J. Clim. 2005, 18, 4840–4861. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Xue, Z.G.; Gochis, D.J.; Yu, W.; Keim, B.D.; Rohli, R.V.; Zang, Z.; Sampson, K.; Dugger, A.; Sathiaraj, D.; Ge, Q. Modeling Hydroclimatic Change in Southwest Louisiana Rivers. Water 2018, 10, 596. [Google Scholar] [CrossRef]
- Ma, Z.; Kang, S.; Zhang, L.; Tong, L.; Su, X. Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China. J. Hydrol. 2008, 352, 239–249. [Google Scholar] [CrossRef]
- Villarini, G.; Serinaldi, F.; Smith, J.A.; Krajewski, W.F. On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour. Res. 2009, 45, 1–17. [Google Scholar] [CrossRef]
- Coastal Protection and Restoration Authority of Louisiana. Louisiana’s Comprehensive Master Plan for a Sustainable Coast; Office of Coastal Protection and Restoration: Baton Rouge, LA, USA, 2017. [Google Scholar]
- Georgiou, I.Y.; FitzGerald, D.M.; Stone, G.W. The impact of physical processes along the Louisiana coast. J. Coast. Res. 2005, SI, 72–89. [Google Scholar]
- Fitzgerald, D.M.; Kulp, M.; Penland, S.; Flocks, J.; Kindinger, J. Morphologic and stratigraphic evolution of muddy ebb-tidal deltas along a subsiding coast: Barataria Bay, Mississippi River delta. Sedimentology 2004, 51, 1157–1178. [Google Scholar] [CrossRef]
- Snedden, G. River, Tidal and Wind Interactions in a Deltaic Estuarine System. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2006. [Google Scholar]
- Li, C.; Swenson, E.; Weeks, E.; White, J.R. Asymmetric tidal straining across an inlet: Lateral inversion and variability over a tidal cycle. Estuar. Coast. Shelf Sci. 2009, 85, 651–660. [Google Scholar] [CrossRef]
- Penland, S.; Boyd, R. Transgressive Depositional Environments of the Mississippi River Delta Plain: A Guide to the Barrier Islands, Beaches, and Shoals in Louisiana; Department of Natural Resources, Louisiana Geological Survey: Baton Rouge, LA, USA, 1985. [Google Scholar]
- Flocks, J.; Miner, M.D.; Twichell, D.C.; Lavoie, D.L.; Kindinger, J. Evolution and preservation potential of fluvial and transgressive deposits on the Louisiana inner shelf: Understanding depositional processes to support coastal management. Geo-Mar. Lett. 2009, 29, 359–378. [Google Scholar] [CrossRef]
- Draut, A.E.; Kineke, G.C.; Huh, O.K.; Grymes, J.M.; Westphal, K.A.; Moeller, C.C. Coastal mudflat accretion under energetic conditions, Louisiana chenier-plain coast, USA. Mar. Geol. 2005, 214, 27–47. [Google Scholar] [CrossRef]
- Kobashi, D. Bottom Boundary Layer Physics and Sediment Transport along a Transgressive Sand Body, Ship Shoal, South-Central Louisiana: Implications for Fluvial Sediments and Winter Storms. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2009. [Google Scholar]
- Jaramillo, S.; Sheremet, A.; Allison, M.A.; Reed, A.H.; Holland, K.T. Wave-mud interactions over the muddy Atchafalaya subaqueous clineform, Louisiana, United States: Wave-supported sediment transport. J. Geophys. Res. 2009, 114, C04002. [Google Scholar] [CrossRef]
- Vose, R.S.; Applequist, S.; Bourassa, M.A.; Pryor, S.C.; Barthelmie, R.J.; Blanton, B.; Bromirski, P.D.; Brooks, H.E.; Degaetano, A.T.; Dole, R.M.; et al. Monitoring and understanding changes in extremes: Extratropical storms, winds, and waves. Bull. Am. Meteorol. Soc. 2014, 95, 377–386. [Google Scholar] [CrossRef]
- Yang, X.; Vecchi, G.A.; Gudgel, R.G.; Delworth, T.L.; Zhang, S.; Rosati, A.; Jia, L.; Stern, W.F.; Wittenberg, A.T.; Kapnick, S.; et al. Seasonal predictability of extratropical storm tracks in GFDL’s high-resolution climate prediction model. J. Clim. 2015, 28, 3592–3611. [Google Scholar] [CrossRef]
- Senkbeil, J.C.; Brommer, D.M.; Comstock, I.J.; Loyd, T. Hydrometeorological application of an extratropical cyclone classification scheme in the southern United States. Theor. Appl. Climatol. 2012, 109, 27–38. [Google Scholar] [CrossRef]
- Ng, J.Y.; Turner, S.W.D.; Galelli, S. Influence of El Niño Southern Oscillation on global hydropower production. Environ. Res. Lett. 2017, 12, 1–12. [Google Scholar] [CrossRef]
- Appendini, C.M.; Torres-Freyermuth, A.; Salles, P.; López-González, J.; Mendoza, E.T. Wave climate and trends for the Gulf of Mexico: A 30-yr wave hindcast. J. Clim. 2014, 27, 1619–1632. [Google Scholar] [CrossRef]
- Hemer, M.A.; Fan, Y.; Mori, N.; Semedo, A.; Wang, X.L. Projected changes in wave climate from a multi-model ensemble. Nat. Clim. Chang. 2013, 3, 471–476. [Google Scholar] [CrossRef]
- Hardy, J.W.; Henderson, K.G. Cold front variability in the southern United States and the influence of atmospheric teleconnection patterns. Phys. Geogr. 2003, 24, 120–137. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hodges, K.I.; Keenlyside, N. Will extratropical storms intensify in a warmer climate? J. Clim. 2009, 22, 2276–2301. [Google Scholar] [CrossRef]
- Tweel, A.W.; Turner, R.E. Landscape-Scale Analysis of Wetland Sediment Deposition from Four Tropical Cyclone Events. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Keen, T.R.; Bentley, S.J.; Chad Vaughan, W.; Blain, C.A. The generation and preservation of multiple hurricane beds in the northern Gulf of Mexico. Mar. Geol. 2004, 210, 79–105. [Google Scholar] [CrossRef]
- Turner, R.E. Wetland loss in the northern Gulf of Mexico: Multiple working hypotheses. Estuaries 1997, 20, 1–13. [Google Scholar] [CrossRef]
- Sasser, C.E.; Dozier, M.D.; Gosselink, J.G.; Hill, J.M. Spatial and Temporal Changes in Louisiana Barataria Basin Marshes, 1945–1980. Environ. Manag. 1986, 10, 671–680. [Google Scholar] [CrossRef]
- Morton, R.A.; Bernier, J.C.; Barras, J.A. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA. Environ. Geol. 2006, 50, 261–274. [Google Scholar] [CrossRef]
- Ross, C.B.; Gardner, W.D.; Richardson, M.J.; Asper, V.L. Currents and sediment transport in the Mississippi Canyon and effects of Hurricane Georges. Cont. Shelf Res. 2009, 29, 1384–1396. [Google Scholar] [CrossRef]
- Kineke, G.C.; Higgins, E.E.; Hart, K.; Velasco, D. Fine-sediment transport associated with cold-front passages on the shallow shelf, Gulf of Mexico. Cont. Shelf Res. 2006, 26, 2073–2091. [Google Scholar] [CrossRef]
- Draut, A.E.; Kineke, G.C.; Velasco, D.W.; Allison, M.A.; Prime, R.J. Influence of the Atchafalaya River on recent evolution of the chenier-plain inner continental shelf, northern Gulf of Mexico. Cont. Shelf Res. 2005, 25, 91–112. [Google Scholar] [CrossRef]
- Zordan, J.; Juez, C.; Schleiss, A.J.; Franca, M.J. Entrainment, transport and deposition of sediment by saline gravity currents. Adv. Water Resour. 2018, 115, 17–32. [Google Scholar] [CrossRef]
- Snedden, G.A. Drivers of Barotropic and Baroclinic Exchange through an Estuarine Navigation Channel in the Mississippi River Delta Plain. Water 2016, 8, 184. [Google Scholar] [CrossRef]
Sediment Type | Grain Diameter (mm) | Settling Velocity (mm/s) | Critical Shear Stress (Pa) | Erosion Rate (10−4 kg/m2/s) |
---|---|---|---|---|
Mud_01(Mississippi River) | 0.004 | 0.1 | 0.10 | 5 |
Mud_02(Mississippi River) | 0.03 | 0.1 | 0.16 | 5 |
Mud_03(Atchafalaya River) | 0.004 | 0.1 | 0.10 | 5 |
Mud_04(Atchafalaya River) | 0.03 | 0.1 | 0.16 | 5 |
Sand_01(Mississippi River) | 0.0625 | 1 | 0.20 | 5 |
Sand_02(Atchafalaya River) | 0.0625 | 1 | 0.20 | 5 |
Sand_03(seabed) | 0.14 | 1 | 100.0 | 5 |
Shoals | Benchmark | High River Scenario | Low River Scenario |
---|---|---|---|
Tiger Shoal | 17.6% | 17.1% | 16.5% |
Ship Shoal | 10.0% | 12.1% | 10.1% |
Trinity Shoal | 7.1% | 7.6% | 6.5% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, Z.; Xue, Z.G.; Xu, K.; Bentley, S.J.; Chen, Q.; D’Sa, E.J.; Ge, Q. A Two Decadal (1993–2012) Numerical Assessment of Sediment Dynamics in the Northern Gulf of Mexico. Water 2019, 11, 938. https://doi.org/10.3390/w11050938
Zang Z, Xue ZG, Xu K, Bentley SJ, Chen Q, D’Sa EJ, Ge Q. A Two Decadal (1993–2012) Numerical Assessment of Sediment Dynamics in the Northern Gulf of Mexico. Water. 2019; 11(5):938. https://doi.org/10.3390/w11050938
Chicago/Turabian StyleZang, Zhengchen, Z. George Xue, Kehui Xu, Samuel J. Bentley, Qin Chen, Eurico J. D’Sa, and Qian Ge. 2019. "A Two Decadal (1993–2012) Numerical Assessment of Sediment Dynamics in the Northern Gulf of Mexico" Water 11, no. 5: 938. https://doi.org/10.3390/w11050938
APA StyleZang, Z., Xue, Z. G., Xu, K., Bentley, S. J., Chen, Q., D’Sa, E. J., & Ge, Q. (2019). A Two Decadal (1993–2012) Numerical Assessment of Sediment Dynamics in the Northern Gulf of Mexico. Water, 11(5), 938. https://doi.org/10.3390/w11050938