Comparison of Acoustic to Optical Backscatter Continuous Measurements of Suspended Sediment Concentrations and Their Characterization in an Agriculturally Impacted River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Instrument Setup
2.2. Conversion of the Acoustic and Optical Backscatters Data to SSC
2.3. Characterization of Sediment Temporal Variation
3. Results
3.1. Indirect Suspended Sediment Measurements
3.2. Sediment Temporal Variation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cunjak, R.A.; Newbury, R.W. 21—Atlantic Coast Rivers of Canada. In Rivers of North America; Benke, A.C., Cushing, C.E., Eds.; Academic Press: Burlington, VT, USA, 2005; pp. 938–980. [Google Scholar] [CrossRef]
- Cloern, J.E.; Abreu, P.C.; Carstensen, J.; Chauvaud, L.; Elmgren, R.; Grall, J.; Greening, H.; Johansson, J.O.R.; Kahru, M.; Sherwood, E.T.; et al. Human activities and climate variability drive fast-paced change across the world’s estuarine–coastal ecosystems. Glob. Chang. Biol. 2016, 22, 513–529. [Google Scholar] [CrossRef]
- Boyd, C.E. Water Quality: An Introduction, 2nd ed.; Springer: New York, NY, USA, 2015. [Google Scholar]
- Suedel, B.C.; Lutz, C.H.; Clarke, J.U.; Clarke, D.G. The effects of suspended sediment on walleye (Sander vitreus) eggs. J. Soils Sediments 2012, 12, 995–1003. [Google Scholar] [CrossRef]
- Hudson, N. Soil Conservation: Fully Revised and Updated, 3rd ed.; New India Publishing Agency: New Delhi, India, 2015; 392p. [Google Scholar]
- Pearce, D.; Barbier, E.; Markandya, A. Sustainable Development: Economics and Environment in the Third World; Routledge: London, UK, 2000. [Google Scholar]
- Ghaffari, P.; Azizpour, J.; Noranian, M.; Chegini, V.; Tavakoli, V.; Shah-Hosseini, M. Estimating suspended sediment concentrations using a broadband ADCP in Mahshahr tidal channel. Ocean Sci. Discuss. 2011, 8, 1601–1630. [Google Scholar] [CrossRef]
- Felix, D.; Albayrak, I.; Boes, R.M. Continuous measurement of suspended sediment concentration: Discussion of four techniques. Measurement 2016, 89, 44–47. [Google Scholar] [CrossRef]
- Merten, G.H.; Capel, P.D.; Minella, J.P.G. Effects of suspended sediment concentration and grain size on three optical turbidity sensors. J. Soils. Sediments 2014, 14, 1235–1241. [Google Scholar] [CrossRef]
- Simmons, S.M.; Parsons, D.R.; Best, J.L.; Oberg, K.A.; Czuba, J.A.; Keevil, G.M. An evaluation of the use of a multibeam echo-sounder for observations of suspended sediment. Appl. Acoust. 2017, 126, 81–90. [Google Scholar] [CrossRef]
- Sahin, C.; Verney, R.; Sheremet, A.; Voulgaris, G. Acoustic backscatter by suspended cohesive sediments: Field observations, Seine Estuary, France. Cont. Shelf. Res. 2017, 134, 39–51. [Google Scholar] [CrossRef]
- Moura, M.G.; Quaresma, V.S.; Bastos, A.C.; Veronez, P. Field observations of SPM using ADV, ADP, and OBS in a shallow estuarine system with low SPM concentration—Vitória Bay, SE Brazil. Ocean Dyn. 2011, 61, 273–283. [Google Scholar] [CrossRef]
- Zhang, W.-x.; Luo, X.-x.; Yang, S.-l. Comparison between measurements of suspended sediment concentration using ADP and OBS. J. Sediment Res. 2010, 5, 59–65. [Google Scholar]
- Wei, X.; Wang, Y.; Yang, Y.; Chen, J.; Gao, J.; Wang, A.; Li, D.; Hu, G. Suspended sediment concentration in shallow sea: Comparative study of methods. Mar. Geol. Quat. Geol. 2013, 1, 161–170. [Google Scholar] [CrossRef]
- Guerrero, M.; Di Federico, V. Suspended sediment assessment by combining sound attenuation and backscatter measurements–analytical method and experimental validation. Adv. Water Resour. 2018, 113, 167–179. [Google Scholar] [CrossRef]
- Alberto, A.; St-Hilaire, A.; Courtenay, S.C.; van den Heuvel, M.R. Monitoring stream sediment loads in response to agriculture in Prince Edward Island, Canada. Environ. Monit. Assess. 2016, 188, 415. [Google Scholar] [CrossRef]
- Guerrero, M.; Rüther, N.; Haun, S.; Baranya, S. A combined use of acoustic and optical devices to investigate suspended sediment in rivers. Adv. Water Resour. 2017, 102, 1–12. [Google Scholar] [CrossRef]
- Hoitink, A.J.F.; Hoekstra, P. Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment. Coastal Eng. 2005, 52, 103–118. [Google Scholar] [CrossRef]
- Marttila, H.; Postila, H.; Kløve, B. Calibration of turbidity meter and acoustic doppler velocimetry (Triton-ADV) for sediment types present in drained peatland headwaters: Focus on particulate organic peat. River Res. Appl. 2010, 26, 1019–1035. [Google Scholar] [CrossRef]
- Moore, S.A.; Le Coz, J.; Hurther, D.; Paquier, A. On the application of horizontal ADCPs to suspended sediment transport surveys in rivers. Cont. Shelf. Res. 2012, 46, 50–63. [Google Scholar] [CrossRef]
- Aich, V.; Zimmermann, A.; Elsenbeer, H. Quantification and interpretation of suspended-sediment discharge hysteresis patterns: How much data do we need? Catena 2014, 122, 120–129. [Google Scholar] [CrossRef]
- Fan, X.; Shi, C.; Shao, W.; Zhou, Y. The suspended sediment dynamics in the Inner-Mongolia reaches of the upper Yellow River. Catena 2013, 109, 72–82. [Google Scholar] [CrossRef]
- Marttila, H.; Kløve, B. Dynamics of erosion and suspended sediment transport from drained peatland forestry. J. Hydrol. 2010, 388, 414–425. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Davis, J.; Masselink, R.H.; Casalí, J.; Peeters, E.T.H.M.; Dijksma, R. Coupling hysteresis analysis with sediment and hydrological connectivity in three agricultural catchments in Navarre, Spain. J. Soils Sediments 2019, 19, 1598–1612. [Google Scholar] [CrossRef]
- Gellis, A.C.; Mukundan, R. Watershed sediment source identification: Tools, approaches, and case studies. J. Soils Sediments 2013, 13, 1655–1657. [Google Scholar] [CrossRef]
- Vercruysse, K.; Grabowski, R.C.; Rickson, R.J. Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth Sci. Rev. 2017, 166, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Pietroń, J.; Jarsjö, J.; Romanchenko, A.O.; Chalov, S.R. Model analyses of the contribution of in-channel processes to sediment concentration hysteresis loops. J. Hydrol. 2015, 527, 576–589. [Google Scholar] [CrossRef] [Green Version]
- Eder, A.; Strauss, P.; Krueger, T.; Quinton, J.N. Comparative calculation of suspended sediment loads with respect to hysteresis effects (in the Petzenkirchen catchment, Austria). J. Hydrol. 2010, 389, 168–176. [Google Scholar] [CrossRef]
- Coffin, M.R.; Courtenay, S.C.; Pater, C.C.; van den Heuvel, M.R. An empirical model using dissolved oxygen as an indicator for eutrophication at a regional scale. Mar. Pollut. Bull. 2018, 133, 261–270. [Google Scholar] [CrossRef]
- Commission on Land and Local Governance. Report of Commission on Land and Local Governance; Communications PEI-Document Publishing Centre: Charlottetown, PEI, Canada, 2009. [Google Scholar]
- PEI Department of Fisheries and Environment. Water on Prince Edward Island: Understanding the Resource, Knowing the Issues; PEI Department of Fisheries and Environment; Environment Canada: Charlottetown, PEI, Canada, 1996.
- Xing, Z.; Chow, L.; Cook, A.; Benoy, G.; Rees, H.; Ernst, B.; Meng, F.; Li, S.; Zha, T.; Murphy, C.; et al. Pesticide Application and Detection in Variable Agricultural Intensity Watersheds and Their River Systems in the Maritime Region of Canada. Arch. Environ. Contam. Toxicol. 2012, 63, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Hellou, J.; Cook, A.; Ernst, B.; Leonard, J.; Steller, S. Pesticides in an estuary on Prince Edward Island, Canada. Environment Canada, Atlantic Region, Occasional Report 23. In Proceedings of the 6th Bay of Fundy Ecosystem Partnership Workshop, Cornwallis, NS, Canada, 29 September–2 October 2004; pp. 425–429. [Google Scholar]
- Sirabahenda, Z.; St-Hilaire, A.; Courtenay, S.C.; Alberto, A.; van den Heuvel, M.R. A modelling approach for estimating suspended sediment concentrations for multiple rivers influenced by agriculture. Hydrol. Sci. J. 2017, 62, 2209–2221. [Google Scholar] [CrossRef]
- Van de Poll, H. Lithostratigraphy of the Prince Edward Island redbeds. Atlantic Geol. 1989, 25, 23–35. [Google Scholar] [CrossRef]
- Omar, A.F.B.; Matjafri, M.Z.B. Turbidimeter design and analysis: A review on optical fiber sensors for the measurement of water turbidity. Sensors 2009, 9, 8311–8335. [Google Scholar] [CrossRef] [PubMed]
- Pavey, B.; Saint-Hilaire, A.; Courtenay, S.; Ouarda, T.; Bobée, B. Exploratory study of suspended sediment concentrations downstream of harvested peat bogs. Environ. Monit. Assess. 2007, 135, 369–382. [Google Scholar] [CrossRef]
- The MathWorks, Inc. Matlab: Curve Fitting ToolboxTM User’s Guide. R2019a. 2019. Available online: https://www.mathworks.com/help/pdf_doc/curvefit/curvefit.pdf (accessed on 10 April 2019).
- Gartner, J.W. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California. Mar. Geol. 2004, 211, 169–187. [Google Scholar] [CrossRef]
- Deines, K.L. Backscatter estimation using Broadband acoustic Doppler current profilers. In Proceedings of the IEEE Sixth Working Conference on Current Measurement (Cat. No.99CH36331), San Diego, CA, USA, 13–13 March 1999; pp. 249–253. [Google Scholar]
- Mullison, J. Backscatter Estimation Using Broadband Acoustic Doppler Current Profilers-Updated. In Proceedings of the ASCE Hydraulic Measurements & Experimental Methods Conference, Durham, NH, USA, 9–12 July 2017. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I-A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Hauke, J.; Kossowski, T. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data. Quaest. Geogr. 2011, 30, 87. [Google Scholar] [CrossRef]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Z.; Shen, N.; Wang, S. Modelling sediment transport capacity of rill flow for loess sediments on steep slopes. Catena 2016, 147, 453–462. [Google Scholar] [CrossRef]
- Tena, A.; Vericat, D.; Batalla, R.J. Suspended sediment dynamics during flushing flows in a large impounded river (the lower River Ebro). J. Soils Sediments 2014, 14, 2057–2069. [Google Scholar] [CrossRef]
- Yang, S.-Q. Sediment transport capacity in rivers. J. Hydraul. Res. 2005, 43, 131–138. [Google Scholar] [CrossRef]
- Sun, L.; Yan, M.; Cai, Q.; Fang, H. Suspended sediment dynamics at different time scales in the Loushui River, south-central China. Catena 2016, 136, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Fang, N.F.; Shi, Z.H.; Chen, F.X.; Zhang, H.Y.; Wang, Y.X. Discharge and suspended sediment patterns in a small mountainous watershed with widely distributed rock fragments. J. Hydrol. 2015, 528, 238–248. [Google Scholar] [CrossRef]
- Zhang, Q.; Harman, C.J.; Ball, W.P. An improved method for interpretation of riverine concentration-discharge relationships indicates long-term shifts in reservoir sediment trapping. Geophys. Res. Lett. 2016, 43, 10–215. [Google Scholar] [CrossRef]
- Chanat, J.G.; Rice, K.C.; Hornberger, G.M. Consistency of patterns in concentration-discharge plots. Water Resour. Res. 2002, 38, 22-1–22-10. [Google Scholar] [CrossRef]
- Warrick, J.A. Trend analyses with river sediment rating curves. Hydrol. Process. 2015, 29, 936–949. [Google Scholar] [CrossRef]
- Zimmermann, A.; Francke, T.; Elsenbeer, H. Forests and erosion: Insights from a study of suspended-sediment dynamics in an overland flow-prone rainforest catchment. J. Hydrol. 2012, 428–429, 170–181. [Google Scholar] [CrossRef]
- De Girolamo, A.M.; Pappagallo, G.; Lo Porto, A. Temporal variability of suspended sediment transport and rating curves in a Mediterranean river basin: The Celone (SE Italy). Catena 2015, 128, 135–143. [Google Scholar] [CrossRef]
Annual Period | n | NSE | R2 | p | RMSE | PBIAS |
---|---|---|---|---|---|---|
(Days) | (mg L−1) | (%) | ||||
17 May–27 to August 2013 | 103 | 0.96 | 0.98 | <0.001 | 5.1 | −9.6 |
20 June–31 to October 2014 | 144 | 0.93 | 0.96 | <0.001 | 11.7 | −18.8 |
24 June–28 to October 2015 | 127 | 0.95 | 0.98 | <0.001 | 7.3 | −8.8 |
25 June–12 to October 2016 | 110 | 0.94 | 0.96 | <0.001 | 8.7 | −9.7 |
Threshold of SSC | SSC—Flow | SSC—Precipitation | SSC—Velocity | ||||
---|---|---|---|---|---|---|---|
Rho | r | Rho | r | Rho | r | ||
SSC > 0 mg L−1 | 2013 | 0.58 | 0.49 | 0.33 | 0.23 | 0.60 | 0.54 |
2014 | 0.30 | 0.30 | 0.44 | 0.33 | 0.23 | 0.26 | |
2015 | 0.39 | 0.17 | 0.46 | 0.62 | |||
2016 | 0.26 | 0.34 | 0.43 | 0.41 | 0.23 | 0.21 | |
SSC > 10 mg L−1 | 2013 | 0.34 | 0.28 | 0.29 | 0.25 | 0.40 | 0.43 |
2014 | 0.22 | 0.21 | −0.41 | −0.35 | 0.29 | ||
2015 | 0.20 | 0.25 | 0.43 | 0.29 | 0.23 | 0.15 | |
2016 | 0.23 | 0.30 | 0.43 | 0.28 | 0.35 | ||
SSC > 15 mg L−1 | 2013 | 0.45 | 0.30 | 0.34 | 0.37 | 0.49 | 0.52 |
2014 | 0.34 | 0.27 | −0.33 | 0.21 | 0.40 | 0.37 | |
2015 | 0.35 | 0.31 | 0.58 | 0.45 | 0.39 | 0.40 | |
2016 | 0.27 | 0.30 | 0.31 | 0.36 | 0.38 | 0.45 | |
SSC > 25 mg L−1 | 2013 | 0.51 | 0.54 | 0.21 | 0.61 | 0.56 | |
2014 | 0.46 | 0.31 | −0.17 | 0.40 | 0.34 | ||
2015 | 0.44 | 0.19 | 0.41 | 0.55 | 0.49 | 0.36 | |
2016 | 0.41 | 0.38 | 0.21 | 0.37 | 0.49 | 0.48 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirabahenda, Z.; St-Hilaire, A.; Courtenay, S.C.; van den Heuvel, M.R. Comparison of Acoustic to Optical Backscatter Continuous Measurements of Suspended Sediment Concentrations and Their Characterization in an Agriculturally Impacted River. Water 2019, 11, 981. https://doi.org/10.3390/w11050981
Sirabahenda Z, St-Hilaire A, Courtenay SC, van den Heuvel MR. Comparison of Acoustic to Optical Backscatter Continuous Measurements of Suspended Sediment Concentrations and Their Characterization in an Agriculturally Impacted River. Water. 2019; 11(5):981. https://doi.org/10.3390/w11050981
Chicago/Turabian StyleSirabahenda, Zacharie, André St-Hilaire, Simon C. Courtenay, and Michael R. van den Heuvel. 2019. "Comparison of Acoustic to Optical Backscatter Continuous Measurements of Suspended Sediment Concentrations and Their Characterization in an Agriculturally Impacted River" Water 11, no. 5: 981. https://doi.org/10.3390/w11050981
APA StyleSirabahenda, Z., St-Hilaire, A., Courtenay, S. C., & van den Heuvel, M. R. (2019). Comparison of Acoustic to Optical Backscatter Continuous Measurements of Suspended Sediment Concentrations and Their Characterization in an Agriculturally Impacted River. Water, 11(5), 981. https://doi.org/10.3390/w11050981