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Abstract: A groundwater model is needed to describe the complex groundwater confluence process
of the groundwater system in karst areas. This is because surface water flows through dolines,
grikes, and by other means and is directly exchanged with the groundwater. In this study, using the
Xin’anjiang model, the conversion of surface water into groundwater and the influence of multiple
series-parallel underground reservoirs on groundwater confluence through the generalization of
dolines in karst areas were simulated. The water cycle process in the Sancha River Basin was simulated
with measured data using multiobjective particle swarm optimization. Then, model parameters
were validated with measured runoff data and compared with simulation results obtained using
the traditional Xin’anjiang model based on its optimal parameters. The results showed that the
determination coefficients of all hydrological stations over the study period were >0.76, and the Nash
efficiency coefficient was >0.76, which were better than those for the improved Xin’anjiang model.
Next, the simulation accuracy of the flood period in the karst area was analyzed. The model achieved
a high fitting rate for the main flood peaks in a year, and the passing rate for the worst hydrological
stations was 53%. Finally, the influence of karst development on the runoff was examined. The results
indicate that different karst development stages and the heterogeneity of the karst in the basin have
different effects on runoff.
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1. Introduction

Karst aquifers represent approximately 12% of the continental area of Earth. Approximately 25%
of the global population uses drinking water from these hydrogeological systems [1]. Karst aquifers
differ significantly from other aquifers because of their complex and unique characteristics [2]. Physical
and chemical processes, including tectonic movements in limestone, dolomite, and other soluble rocks,
have formed well-linked fissure systems in karst massifs, with dimensions varying from micrometers
to several meters [3]. Water rapidly infiltrates the underground network of karst channels because
there is extensive development of dissolution pores, caverns, solutional cavities, and subterranean
stream systems, which causes surface-water scarcity [1,4–8].

The recharge source for karst water deep in a mining area is water from higher mountain areas,
which is transported via vertical leakage [9]. Surface and subsurface karren, grike, and dissolution
pores in karst mountainous areas are abundant [10], causing the runoff coefficient of the slope surface
to be lower than that in non-karst areas [11–13]. Thus, rainfall rapidly infiltrates the bedrock through
discontinuous systems in the soluble rock mass, creating an underground network of conduits and
caves, which is the most typical feature of karst environments [14]. To describe the runoff process in a
mass-fractured medium, Yurtsever and Payne [15] modeled the nonlinear reservoir characteristics of
an aquifer using three parallel linear reservoirs, and they analyzed the environmental tritium contents
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of the Manavgat River in Turkey. Because karst aquifers are predominantly unconfined, nonlinear
reservoir recession was expected. Ebru and Hartmut [16] determined the aquifer characteristics via flow
recession analysis, and based on the obtained recession parameters, the karst outflow was separated
from the time series of total daily flows. Alon [17] developed a conceptual hydrological model for
karst environment (HYMKE) and used it to simulate the runoff process of three tributaries in the upper
reaches of the Jordan River (in a karst area). Gilboa [18] used the HYMKE model to predict the Lake
Kinneret watershed in the karst area of Israel and obtained good simulation results. Damir [19] coupled
a moisture balance model with a groundwater balance model to perform a hydrological simulation of
the Jadro Spring Basin. Ivana Zěljković [20] established a simple rainfall-runoff model consisting of
two submodels for the Opacac karst spring in Dalmatia (Croatia), and the results demonstrated that
the groundwater equilibrium composition in karst areas could be estimated by adding parallel linear
reservoirs to the model.

Karst areas in China are generally in mountainous regions, mainly concentrated in the Yun-Gui
Plateau and the southwestern part of Sichuan Province [21]. Zhang [22] introduced a hydrological
model for karst areas, in which the karst area was treated as a whole, to simulate the runoff processes
of surface water and groundwater via systematic analysis. Cheng [23] developed a three-source
Xin’anjiang model for karst areas, in which the flow of the karst area was a direct (quick) flow,
and groundwater flow was modeled in the form of linear reservoirs. The soil and water assessment
tool (SWAT) model is a distributed hydrological model developed by the United States Department
of Agriculture (USDA) [24]. Ren [25] modified the SWAT model by using linear reservoirs to depict
the regulation mechanism of the grikes network of the Diaohe River Basin. Considering the spatial
variabilities of hydrological factors and the interrelation of hydrological cells, Beven and Kirkby [26]
proposed the topography-based hydrological model (TOPMODEL) based on variable source flow.
Then, Suo [27] improved the TOPMODEL to calculate runoff generation in subcatchments in a karst
region. Shi [28] simulated runoff in the karst area of Guizhou Province in southwestern China using
the Xin’anjiang model. The results indicated that the Xin’anjiang model was applicable in karst areas,
but its accuracy was not high.

Flood disasters are among the most frequent and severe natural disasters in the world. With the
deepening of scientific research on climate change and regional sustainable development, changes in
flood disaster effects have received increasing attention in the fields of international meteorological,
hydrological, and disaster risk [29]. With the background of persistent global climate anomalies since
the beginning of the 21st century, annual average economic loss from floods in China has reached
nearly 100 billion yuan, and it continues to increase [30]. Floods in karst areas are difficult to simulate
accurately using conventional hydrological models [31]. As the economies of the world develop, flood
losses are increasing, and there is a shortage of water resources [32].

In summary, most hydrological simulations for karst regions divide the runoff into direct surface
flow and groundwater flow, which combine at the basin outlet through the confluence of different forms
to model the complete runoff process. However, multiple media such as karrens, grikes, and dissolution
pores that exchange runoff between surface water and groundwater are not elaborately reflected in the
model structure. The applicability of the method based on the distributed hydrological model for a
karst basin is limited because it requires detailed information. However, a lumped hydrological model
has reasonable application prospects for a complex watershed in the underlying surface, as there is
generalization applied to the overall system.

China’s karst landforms are mainly located in the southwestern region and are concentrated in
Guizhou Province. The Central Guizhou Province water diversion project is a long-distance, large-scale
water transfer and conservancy project located in the karst mountain area of the Sancha River (Figure 1).
However, the project is located at the karst hilly area of the Yunnan–Guizhou Plateau, so vigorous
development of the karren and subterranean stream system significantly impacts runoff at the exit of
the basin. Accurate simulation of the runoff at each hydrological site is very useful to balance and
configure the water supply and demand in the project area. In addition, it is necessary to verify the
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applicability of the model in the flood season and determine whether it can accurately simulate flood
peaks. This can provide better assistance and guidance for flood disaster risk management and flood
resource utilization in the Central Guizhou Province water diversion project.

We selected the main research area in the Central Guizhou Province water diversion project
(i.e., the Sancha River Basin) for hydrological simulation research. The primary objectives of this
study were as follows: (a) According to the traditional Xin’anjiang model, a set of methods for
simulating the production and confluence of karst areas was established, and the parameters were
optimized by applying multiobjective particle swarm optimization (MOPSO) to construct an improved
Xin’anjiang model (hereinafter referred to as IXAJ). The daily runoffs from six hydrological stations
were simulated using the IXAJ model, and the average monthly runoffs were calculated accordingly.
Then, the optimization results were compared with the runoff simulated by the traditional Xin’anjiang
model (hereinafter abbreviated as XAJ) with MOPSO. (b) The relative error of the monthly runoff

(bias), the coefficient of certainty (R2), and the Nash efficiency coefficient (Nash) were employed to
evaluate the simulation results of the IXAJ and XAJ models. (c) The simulation results for the flood
period were analyzed using the annual flood peak relative error. (d) Finally, effects of the uneven
distribution of the karst development degree and the karst development degree of the runoff in the
study area were analyzed.

2. Study Area and Data Material

The Sancha River Basin is located in central Guizhou, the river source zone of two rivers at
the watershed, and a karst gorge mountainous area. The project area was located in the central
part of Guizhou Province, at the center of the “Zhuliu” double-line economic belt. This is the most
densely populated industrial base in Guizhou Province. It is located at the junction of the Yangtze
River Basin and the Pearl River Basin. The elevation from the southeast to the northwest (inland
direction) gradually increases, reaching 2761 m. After the project was completed, water could be
supplied directly to the irrigation district of central Guizhou and the urban areas of Guiyang and
Anshun. This could effectively resolve the water shortage in central Guizhou, ensure food security
in the irrigation district, improve the quality of life of urban residents, and provide an opportunity
to improve the local ecological environment. The project provided an important reference for other
areas of Guizhou Province to solve the contradiction between the supply and demand of water
resources. The study area was located at the border of the Yangtze River Basin and the Pearl River Basin.
There were six hydrological stations and 35 reservoirs in the study area. Regarding the hydrological
stations, the Yangchang and Longchangqiao stations were located at the Sancha River, which was
the south branch of the Wujiang River. The Maiweng and Huangmaocun stations were located at
another tributary of the Wujiang River, which belonged to the Yangtze River Basin. The Huangguoshu
and Gaoche stations were located at the Dabanghe River, which belonged to the Pearl River basin.
The catchment area and other information of the above hydrological stations are shown in Table 1.
Among the reservoirs, there were 2 large reservoirs, 5 medium-sized reservoirs, and 25 small reservoirs.
The watershed above the Pingzhai Reservoir in the basin was the water source area of the project,
and the remainder was the water receiving area (Figure 1).

The research period of this paper was from 2000 to 2012, the calibration period was from 2000 to
2008, and the validation period was from 2009 to 2012. Precipitation and evaporation data were
provided by the Guizhou Provincial Bureau of Hydrology and Water Resources, including a total
of 51 weather stations in the study area. Runoff data were taken from the Chinese Hydrographic
Yearbook. The above data were reviewed and had representativeness. Precipitation and evaporation
were processed according to the Thiessen polygon to obtain the daily value.
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Figure 1. Geographical location of the study area.

Table 1. Hydrological stations in study area.

Hydrological Station River Drainage Area (km2) Annual Average Runoff (m3/s) Precipitation (mm)

Yangchang
Sancha River

2696 42.3 980
Longchangqiao 4327 84.9 1149

Maiweng Leping River 189 3.89 1228
Huangmaocun Maotiao River 759 12.5 1168

Gaoche Dabang River 2264 48.5 1205
Huangguoshu 720 12 1293

3. Model Structure of the Improved Xin’anjiang Model (IXAJ) Model

In this study, the XAJ model was improved, and the karst regulation and storage processes
of groundwater simulation were increased to provide better simulation accuracy in karst areas.
The specific description of the improved model (i.e., IXAJ model) was as follows: the runoff generation
and division of water sources for the IXAJ model were kept unchanged, that is, the two parts were
same as the XAJ model. (The structure of the traditional Xin’anjiang model is detailed in Appendix A.)
But the regulation of ground runoff by the clint, doline, etc., was added to the IXAJ model, and the
groundwater system was generalized to better simulate the regulation of runoff in karst areas. Finally,
conduit flow, surface water, and groundwater were combined into total runoff. The main improvement
of the IXAJ model was the groundwater module. The following section focuses on the improvements
to the model.

The most typical characteristic of the karst basin is the unique binary three-dimensional (3D)
system formed by different types of aqueous media. The key to karst basin hydrological simulation is
how to accurately simulate regulation and storage effects of the aquifer medium on the runoff process.
Although the aquifer medium is nonhomogeneous and multitudinal, it can be mainly generalized into
two classes. The first is the pipeline, including dolines and karst funnels. The flow though pipelines
is heavy and usually develops from the surface to the underground or is completely underground.
The pipeline from the surface to the underground generally acts as a channel that transports the
surface water to the groundwater. Part of the surface water does not experience surface regulation and
directly enters the underground to become groundwater runoff, and its main regulation is carried out
underground. Because wider pipes transport larger amounts of surface water to the underground,
we considered this part of the surface water in the model. The second class is the crack, which is
mainly developed underground and has a major regulating effect on the groundwater. Karst water
regulated by the crack can be divided into fast karst flow and slow karst flow according to the strength
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of the regulation and storage effects. It is important to simulate the karst flow because of the extensive
development of the karst and its powerful water storage function. In this article, pipelines and cracks
were collectively referred to as the karst fissure.

Although the surface also has areas with karst landform development, such as clints and karrens,
regulation and storage functions of surface runoff do not differ significantly between karst and non-karst
basins. The storage function of the karst landform for the surface water can be simulated well using
the linear lag algorithm. It can be calculated as follows:

Q(t) = 2·C0·I·(t− τ) + C1·Q·(t− τ− 1). (1)

Here,

C0 =
∆t

2K + ∆t
, C1 =

2K − ∆t
2K + ∆t

, (2)

where τ is the log value (in hours), ∆t is the calculation time (in hours), and K is the discharge coefficient.
Features such as grikes, karrens, and clints on the ground surface in the karst region can transport

water on the surface to the groundwater system and, thus, are combined with the underground
water before being classified. Owing to limitations of the monitoring technology, we were unable
to quantitatively evaluate the distribution of cracks and the discharge capacity in the karst region.
However, the karst fissure development cycle was long, and the discharge capacity was certain.
The IXAJ model considered the discharge capacity of all pipelines and cracks in the basin as a whole by
using a solution crevice as a parameter (Car_flow). Car_flow was similar to the steady infiltration
rate of the two-component structure. When the model calculated surface runoff, if the surface runoff

was less than Car_flow in the calculation unit time, all surface water was considered to be transported
to the groundwater system composed of the karst fissure; the part of the runoff transported into the
groundwater system was calculated as another part of the groundwater. If the surface flow exceeded
Car_flow, the surface water transported to the groundwater system was the constant discharge capacity
(i.e., Car_flow), and the other part was calculated as the surface water. Therefore, simulation of the
pipeline flow in the model was conducted by introducing the Car_flow parameter.

Karst groundwater is mainly affected by the regulating function of the underground karst fissure,
which is related to the development of the pipeline and crack. However, their developments are
complex and differ between the horizontal and vertical directions. The IXAJ model was based on the
treatment method of Professor Zhang Jianyun for the karst basin, which was an improved version
of the XAJ method [22]. Because the size of the karst fissure was different, the regulating function
was different; thus, we considered layering the karst fissure. This model did not consider the area
of the karst, and it generalized the karst fissure pipeline to three different sizes of karst fissure only.
The first type of karst fissure had the highest development degree. The effective diameter was the
largest, the speed of groundwater movement was highest through this part, and the proportion of
the flow through this large fissure to the total flow (Car_flow) was A1. The development degree of
the second type was lower than that of the first type. The effective diameter was medium, and the
proportion of the flow through this medium fissure to the total flow was A2. The third type had the
lowest development degree, the smallest effective diameter, and the proportion of this flow to the total
flow was 1 − A1 − A2.

After regulation by the large fissure, part of the groundwater of A1 was quickly exported through
the karst fissure regulation system at the interface between the large fissure and medium fissure.
Then, the flow formed; the other part continued to infiltrate down. We used the first type of linear
reservoir to replace the regulation and storage functions of the large karst fissure, and its regulation
and storage coefficient was K1. We set the proportion of groundwater that passed out of the storage
system as B1, and the flow that continued to infiltrate downward was 1 – B1. After regulation and
storage by the medium fissure, the part of the groundwater that continued to infiltrate was exported
through the karst fissure to the storage system at the interface between the medium fissure and the
small fissure; the other part continued to infiltrate downward. We used the second type of linear
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reservoir to replace the regulation and storage functions of the medium karst fissure, and its regulation
and storage coefficient was K2. We set the proportion of the groundwater that passed out of the storage
system as B2, and the flow that continued to infiltrate downward was 1 – B2. After regulation and
storage by the medium karst fissure, the water that continued to infiltrate passed out of the linear
reservoir system through the small karst fissure. We used the third type of linear reservoir to replace
the regulation and storage functions of the small karst fissure, and its regulation and storage coefficient
was K3. Part of the groundwater of A2 passed out after regulation and storage by the medium karst
fissure, and the coefficient was B2. The other part continued to infiltrate downward and was discharged
after regulation and storage by the small karst fissure; the coefficient was 1 – B2. The groundwater
of the lowest development degree of the karst fissure (1 – A1 – A2) completely passed out of the
linear reservoir system through the storage system after regulation and storage by the small karst
fissure. The summation of all the flows that were stored by the different karst fissures was the total
groundwater flow, and the whole process of karst basin groundwater flow was regulated by different
connections of multilinear reservoirs (Figure 2).
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Figure 2. Schematic diagram of the confluence of the karst fissure groundwater system. (K1, K2,
and K3 in the figure represent the regulation and storage coefficients of various linear reservoirs,
respectively. A1, A2, and 1 − A2 − A3 are the ratios of large, medium, and small crack overflow to
Car_flow, respectively. B1, B2, and B3 are proportions of the groundwater that pass out of the storage
system from various linear reservoirs.).

Next, the total response function of the groundwater confluence system was derived. Set I as
the inflow of a unit of groundwater, W1 is the storage capacity of the first type of linear reservoir and
the outflow of the ith linear reservoir is Q′i . For linear reservoir 1, the following system of equations
was solved:  continuity equation : A1× I −Q′1 = dW1

dt
dynamic equation : W1 = K1×Q′1

. (3)

The solution obtained is:
Q′1 =

A1

1 + dK1
dt

·I. (4)

Then, the outflow of linear reservoir 1 is given by:

Q1 = B1·Q′1 =
A1·B1

1 + dK1
dt

·I. (5)
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The Laplace transform and the inverse transform were used to obtain the instantaneous response
function of the side outflow of linear reservoir 1 (Formula (6)).

u1(0, t) =
A1·B1

K1
·e−

t
A1 . (6)

Then, (6) was changed to the time-response function:

u1(∆t, t) =
∫ t

0
u1(0, t)dt−

∫ t−1

0
u1(0, t)dt = A1·B1

(
e−

t−1
K1 − e−

t
K1

)
. (7)

This was the outflow time response function of linear reservoir 1 after regulation by the first type
of linear reservoir. Similarly, the outflow time response functions of linear reservoir 4 (after regulation
by the second type of linear reservoir) and linear reservoir 6 (after regulation by the third type of linear
reservoir) are given as follows:

u4(∆t, t) = A2·B2·
(
e−

t−1
K2 − e−

t
K2

)
. (8)

u6(∆t, t) = (1−A1−A2)·
(
e−

t−1
K3 − e−

t
K3

)
. (9)

Linear reservoirs 2 and 5 represented the outflows of two types of reservoirs connected in series.
The time-response functions of the second and fifth linear reservoirs using the formulas for these series
reservoirs were obtained.

u2(∆t, t) =
K1·A1·B2·(1− B1)

K1−K2

(
e−

t−1
K1 − e−

t
K2

)
+

K2·A1·B2·(1− B1)
K2−K1

(
e−

t−1
K2 − e−

t
K2

)
. (10)

u5(∆t, t) =
K2·A2·(1− B2)

K2−K3

(
e−

t−1
K2 − e−

t
K2

)
+

K3·A2·(1− B2)
K3−K2

(
e−

t−1
K3 − e−

t
K3

)
. (11)

The sixth linear reservoir was the outflow of the first, second, and third types of linear reservoirs
in series, and we obtained its time response function as well.

u3(∆t, t) = A1·(1− B1)·(1− B2)·[ K1·K1
(K1−K2)·(K1−K3)

(
e−

t−1
K1 − e−

t
K1

)
+

K2·K2
(K2−K3)(K2−K1)

(
e−

t−1
K2 − e−

t
K2

)
+ K3·K3

(K3−K1)·(K3−K2)

(
e−

t−1
K3 − e−

t
K3

)]
.

(12)

Because the groundwater confluence was a linear system that followed the summation principle,
we calculated the total time-response function of the groundwater confluence.

u(∆t, t) =
∑6

i=1
ui(∆t, t). (13)

After obtaining the total response function, the total groundwater flow contribution by the inflow
was calculated.

In order to optimize the effects of a flood simulation, the objective functions for parameter
optimization in the model were as follows. Function F1 ensured that the best possible similarity was
achieved between the simulated runoff process and the observed runoff process, and F2 reduced the
errors in the runoff peak and the total flow between the simulation and the observation in a given
calculation interval.

F1 =

∑N
i=1(QSi −QOi)

2∑N
i=1

(
QOi −QO

)2 . (14)

F2 =

∣∣∣∣∣QSmax −QOmax

QOmax

∣∣∣∣∣·ε+
∣∣∣∣∣∣ sum(QS) − sum(QO)

sum(QO)

∣∣∣∣∣∣·(1− ε). (15)
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Here, QSi is the simulated runoff for period i; QOi is the observed runoff for period i; QO is
the average observed runoff; QSmax is the simulated runoff flood peak; QOmax is the observed runoff

flood peak, which corresponds to QSmax; sum(QS) is the total simulated runoff; sum(QO) is the total
observed runoff; ε = 0.5 is the weight coefficient, which is helpful to ensure that the flood peak and
total runoff can be simulated well during the whole observation period; and N is the number of days
in an observation period.

4. Verification and Analysis

4.1. Model Parameters

The IXAJ model added 10 confluence parameters to the 12 parameters of the XAJ model, resulting
in a total of 22 parameters. As the number of parameters of the improved model increased, and the
difficulty of optimization increased, a stable and efficient multiobjective particle swarm optimization
algorithm was selected to calibrate the parameters of the model [33]. Among these, Delt—the lag value
of the confluence calculation—was the average time of net rainfall flow with respect to the export of
the river basin. This value was calculated according to the observed response curve of precipitation
and runoff in the basin. We concluded from the lag relationship of the precipitation and runoff peak
for more than one flood that the lag time of a flood in the Sancha River Basin was approximately 24 h.
According to experience, the peak lag time did not generally exceed 10 d; thus, the Delt value was 1–10.
Parameters 15 to 22 were coefficients; thus, their ranges were 0–1. The measured monthly average
runoffs of the six hydrological stations were sorted from lowest to highest. The minimum values
of the six hydrological stations were compared, and the highest value was taken as the lower limit
of Car_flow. Similarly, the upper limit was the largest of the quartiles of each hydrological station,
which was 21.36 m3/s. The range of Car_flow was intended to ensure that the parameters obtained via
the model calibration were not unreasonable. The parameters of runoff yield and flow confluence used
in the model are shown in Table 2. Those marked with an * were newly added parameters.

Table 2. The runoff parameters of the improved Xin’anjiang model (IXAJ) model.

No. Name Meaning Lower Limit Ceiling

1 C The deep evaporation coefficient 0.1 0.3
2 Epc The evaporation capacity reduction factor 0.5 0.95
3 IMP The ratio of impervious area 0 1
4 WM1 The upper tension water capacity 5 100
5 WM2 The lower tension water capacity 50 300
6 WM3 The deeper tension water capacity 5 100
7 B Parabolic basin water capacity curve index 0.15 0.35
8 SM Topsoil free water storage capacity 5 100
9 EX The curve index of topsoil free water storage capacity 0.5 2
10 KG The discharge coefficient of free water reservoir to groundwater 0.05 0.65
11 KSS The discharge coefficient of free water reservoir to interflow 0.65 0.8
12 KKSS The fading coefficient of interflow 0.5 0.95
13 Car_flow* The stable ability of water seepage of karst fissure 0.28 21.36
14 K* The coefficient of surface water flow to river 0 1
15 Delt* The lag value of surface water calculation 0 10
16 K1* The storage coefficient of the first kind of linear reservoir 0 1
17 K2* The storage coefficient of the second kind of linear reservoir 0 1
18 K3* The storage coefficient of the third kind of linear reservoir 0 1
19 A1* The proportion of large karst fissure water 0 1
20 A2* The proportion of middle karst fissure water 0 1
21 B1* The drainage proportion of the first kind of linear reservoir of the large karst fissure 0 1
22 B2* The drainage proportion of the second kind of linear reservoir of the large karst fissure 0 1

Note: The absence of * is the original parameter of IXAJ, and the * is the newly added parameters of the IXAJ model.

4.2. Model Calibration and Validation

Based on daily precipitation, runoff, and evaporation data for the Sancha River Basin from 2000 to
2012, the multiobjective particle swarm optimization algorithm was used to automatically optimize the
model parameters, taking into account the karst region runoff and confluence. The total particle swarm
number was set to 500, and the number of iterations was 1000. The calibrated parameters were directly
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introduced to the XAJ model, and the only variable was whether to consider the conversion of surface
and groundwater in the karst area to evaluate the effect between the IXAJ model and XAJ model.
Measured daily runoff data from 2000 to 2008 were used to calibrate model parameters. The period
from 2009 to 2012 was the verification period, and the first year of the calibration period was taken as
the warm-up period for adjusting the model state parameters. We evaluated the simulation results
year-by-year. Four indices were chosen to evaluate the simulation results: the relative error of the
monthly runoff (bias), the coefficient of certainty (R2), the Nash efficiency coefficient (Nash), and the
annual flood peak relative error (FPRE). These four indicators were used to evaluate the adaptability
of the simulated runoff and observed runoff from four viewpoints: numerical value, correlation,
total amount, and extremum of the whole simulation process. After selecting the solution within
the Pareto-optimal solution set according to the multiobjective function, the model calibration and
verification results for the six hydrological stations in the Sancha River Basin were obtained (Figure 3
and Table 3). In Table 3, the calibration period was abbreviated as CP, the verification period was
abbreviated as VP, and the whole observation period was abbreviated as WOP.
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Figure 3. Runoff simulation processes in the model calibration period (2000–2008) and the validation
period (2009–2012). (a) Runoff simulation in Yangchang hydrological station. (b) Runoff simulation in
Longchangqiao hydrological station. (c) Runoff simulation in Maiweng hydrological station. (d) Runoff

simulation in Huangmaocun hydrological station. (e) Runoff simulation in Huangguoshu hydrological
station. (f) Runoff simulation in Gaoche hydrological station.



Water 2019, 11, 991 10 of 20

Table 3. Evaluation of simulation results.

Station Yangchang Longchangqiao Gaoche Huangguoshu Huangmaocun Maiweng

Model Type IXAJ XAJ IXAJ XAJ IXAJ XAJ IXAJ XAJ IXAJ XAJ IXAJ XAJ

Nash
CP 0.83 0.78 0.76 0.75 0.87 0.81 0.85 0.60 0.88 0.62 0.81 0.64
VP 0.79 0.77 0.75 0.71 0.70 0.68 0.89 0.69 0.87 0.73 0.89 0.71

WOP 0.82 0.76 0.76 0.74 0.81 0.78 0.85 0.65 0.88 0.68 0.84 0.67

R2
CP 0.83 0.80 0.76 0.75 0.86 0.74 0.85 0.65 0.90 0.75 0.82 0.75
VP 0.81 0.77 0.76 0.71 0.72 0.88 0.87 0.74 0.91 0.78 0.91 0.84

WOP 0.83 0.79 0.77 0.73 0.83 0.75 0.86 0.69 0.90 0.76 0.85 0.79

Bias (%)
CP 2.93 −11.05 2.24 4.76 −3.82 −19.93 −5.65 21.54 2.76 25.28 −1.06 26.95
VP 10.82 −4.62 −4.53 −7.96 −12.68 −31.39 −5.75 18.08 9.32 23.01 7.91 27.13

WOP 4.85 −8.21 0.32 −3.03 −6.37 −25.61 −5.68 19.82 5.06 24.15 1.39 27.04

Note: The calibration period is abbreviated as CP, the verification period is abbreviated as VP, and the whole
observation period is abbreviated as WOP. The improved Xin’anjiang is referred to as IXAJ, and the traditional
Xin’anjiang with multiobjective particle swarm optimization algorithm is referred to as XAJ.

According to the simulation results for the Sancha River Basin in Figure 3, the six hydrological
stations of the IXAJ model reproduced runoff better than those of the XAJ model, except for
overestimation or underestimation of the individual peak runoff for Longchangqiao and Huangguoshu.
Additionally, in the IXAJ simulation, all hydrological stations had fewer fluctuations in the runoff

simulation during the dry season. Compared with the IXAJ model, the XAJ model exhibited greater
fluctuations in the simulated runoff during the dry season, and the peak simulations for Yangchang,
Huangmaocun, and Huangguoshu showed large deviations.

The final simulation results are presented in Table 3. From to the perspective of Nash and R2, for the
IXAJ model, the Nash values for Yangchang, Huangguoshu, Gaoche, Maiweng, and Huangmaocun
all reached 0.80 in the calibration stage, indicating good calibration results; however, the calibration
result for Longchangqiao was relatively poor, with a Nash value of 0.76. The R2 value for all
hydrological stations except Longchangqiao was >0.80 in the calibration period. In the validation
period, the Nash value was the highest for Huangguoshu and Maiweng (0.89 for both). The Nash
values for Longchangqiao and Gaoche were lower (0.75 and 0.70, respectively). The Nash value and
R2 for the three hydrological stations of Yangchang, Longchangqiao, and Gaoche were lower in the
validation period than in the calibration period.

For the XAJ model, the Nash values were 0.60–0.81 throughout the simulation period, and the
highest value achieved was lower than that for the IXAJ model. In the calibration period, only the Nash
value for Gaoche was >0.80. The R2 values reached 0.65 throughout the study period, indicating good
correlation. Throughout the entire research period, the R2 value of hydrological stations simulated by
the XAJ model was lower than that of the IXAJ model, except Gaoche, including the calibration and
validation periods.

According to the relative error results, the results for all sites were good for the IXAJ model.
However, the bias for Yangchang and Gaoche during the validation period exceeded 10%. According to
the runoff simulation chart (Figure 3), runoff for the Yangchang hydrological station was overestimated
during 2011, and that of the Gaoche hydrological station was significantly underestimated in 2012.
In addition, simulation results for the Huangguoshu hydrological station underestimated the actual
flow by similar amounts for the calibration period, the validation period, and the whole observation
period. As shown in Figure 3e, the simulated runoff for Huangguoshu during the entire study
period was low. Detailed data for the Sancha River Basin indicated that the river section where the
Huangguoshu hydrological station was located was relatively short, and the 200 m section downstream
from this section was relatively straight, which was followed by the Huangguoshu Waterfall. Therefore,
the reason for the underestimation in the whole study period might be the use of lumped parameters
for the Huangguoshu watershed, while the underlying surface environment of the export hydrological
station in the basin was complex, and the parameters vary greatly, which ultimately made the simulation
results low. For the XAJ model, the absolute value of the relative deviation ranged from 3.03% to 27.04%
throughout the study period (WOP), which was 2 to 19 times greater than that in the IXAJ model.
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5. Discussion

In China, flood disasters occur frequently, are widely distributed, and there is risk of flooding
in karst regions. In addition, the changes and distribution of karst development in a karst area will
also have a certain impact on runoff. Therefore, this section mainly discusses the flood period effect
analysis based on the IXAJ model and the influence of karst changes on runoff.

5.1. Flood Period Effect Analysis

The objective function values for each hydrological station in the flood period simulation results
are presented in Table 4.

Table 4. Objective function values for each hydrological station during Flood Periods.

Hydrological Station Calibration Period Validation Period

F1 F2 F1 F2

Yangchang 0.19 0.01 0.21 0.02
Longchangqiao 0.26 0.24 0.24 0.27

Maiweng 0.19 0.10 0.19 0.07
Huangmaocun 0.16 0.21 0.16 0.22
Huangguoshu 0.14 0.17 0.15 0.16

Gaoche 0.18 0.04 0.21 0.01

The relative errors of the main flood peaks (FPRE)in each year were calculated for the six
hydrological stations. Floods within 20% of the relative error between the measured main flood
peaks and the corresponding simulated flood peaks in the year were recorded as a qualified flood,
and simulations of these floods had high accuracy. The ratio of the number of qualified floods to
the total number of floods was the pass rate, which was calculated from 2000–2012 for each station
(Figure 4).

Simulation results for the runoff of each hydrological station in Figure 3 and the results for the
main-peak simulations in Figure 4 indicated that Longchangqiao and Maiweng had the worst flood
peak simulations, with an FPRE of only 53.85%. For Longchangqiao, this was mainly caused by the
poorly simulated flood peaks for 2005 and 2006. For Maiweng, the flood peaks for 2000 and 2002 were
both underestimated and overestimated, respectively. Possible reasons for the bias in the simulation are
as follows. There were two large-scale reservoirs in the small watershed of Longchangqiao, which may
have had large reservoir dispatches in 2005 and 2006, giving rise to large errors in the simulated runoff.
Maiweng had the smallest area among the stations, so minor regulation of reservoirs in the basin
also greatly affected flood simulation peaks. Gaoche and Huangmaocun had the best main flood
peak simulations, and the number of qualified floods was as high as nine. For Gaoche, the simulated
flood peaks were often overestimated. For Huangmaocun, the frequencies of overestimation and
underestimation of the flood peaks were similar. The flood peak simulation for the Huangguoshu
station was also good. The number of qualified floods was eight, the pass rate was 61.54%, and the
simulated deviations of the main flood peaks fluctuated by approximately 20% in most of the year.
The number of qualified floods for the Yangchang station was also eight, but the simulation error for
2012 was close to 50%.

According to the simulation accuracy and the relative error of the flood peaks for Yangchang and
Longchangqiao, which were both located on the Sancha River, we saw that if the hydrological station
was farther downstream, there were more water conservancy projects in the basin, so the flow process
of the section was more significantly affected. These reasons explained the phenomenon that if the
hydrological station was closer to the lower reaches of the river, there were more (and larger) water
conservancy projects in the river basin, and the simulation results were worse. In the Gaoche and
Huangmaocun watersheds, there were few water conservancy projects, and the reservoir grade was
low; thus, the error of the runoff simulation was small.
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Overall, the IXAJ model did not consider the impact of water conservancy projects on the runoff in
the basin; thus, the prediction of flood peaks during the flood period had different degrees of deviation.
When there were many water conservancy projects in the basin, and their scales were large, the peak
pass rate of the flood peaks decreased, but the simulation results were acceptable. Therefore, in a
follow-up study, the influence of water conservancy projects on the runoff during flood period will be
considered in the model to improve simulation accuracy.

5.2. Effect of Karst Change on Runoff

In the study area, although the karst landforms were widely distributed, the karst development
degrees in different regions differed during the same period. With the change of stage, the dissolution
of limestone became stronger and then weaker, and the karst fissure also changed. The enlargement of
fissures led to higher flow velocities in karst fissures, and vice versa [34].

The development of the karst goes through infancy, adolescence, middle age, and finally reaching
old age. This development sequence is called the stages of karst development [35]. In infancy, there are
karrens, stone teeth, and dolines on the karst surface, and there is a relatively complete surface water
system. The exchange of surface water and groundwater is relatively small. In adolescence, the karst
surface is more developed, and there are many subterranean streams. Most of the surface water
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is converted into groundwater. In middle age, the surface river is blocked by lower impervious
rock formation, or erosion of the surface river is stopped, the cave is further enlarged, and the cave
collapses. Many subterranean streams turn into surface rivers, and many karst hills/depressions and
peak forest/plains develop simultaneously. In old age, the impervious rock layers are widely exposed,
and the surface water is re-exposed to form a karst plain with isolated peaks and karst hills [36].
The different stages of karst development significantly influence runoff of the basin outlet. Therefore,
according to the IXAJ model, Car_flow represents the overall degree of karst development in the
study area, that is, the exchange capacity of surface water and groundwater. The relationship between
Car_flow and the degree of karst development can be roughly expressed by a normal distribution
(Figures 5 and 6), and B represents the uneven distribution of the karst development degree in the
study area. On this basis, the effects of the degree of karst development and the uneven distribution of
the degree of karst developments on the runoff at the outlet of the basin were simulated. However,
it was impossible to know exactly at what stage each karst in the basin was in; thus, we only adjusted
the change on the basis of optimal Car_flow. Because the adjustments of B and Car_flow were based on
optimal simulation parameters, analysis of the change of the runoff was based on the runoff obtained
via optimal parameter simulations.

This research program was divided into two types. First, the optimal parameters obtained
in Section 4 were fixed, and then the runoff simulation was performed for the entire study period
(2000–2012) by adjusting Car_flow or B. The specific schemes were as follows: (1) The degree of
karst unevenness in the study area was constant, and the overall development degree increased and
decreased. That is, B did not change, and Car_flow was adjusted to be 50% and 150% of the current
optimal value. (2) The overall development degree of the karst area remained unchanged, but the
degree of inhomogeneity in the area increased and decreased to 150% and 50% of the present value,
respectively (0 < B < 1). In the runoff simulation of 4.2 knots, the value of B ranged from 0.15 to
0.35 because the initial karst state of the basin was unchanged. However, according to this hypothesis,
the distribution of karst development changed; thus, the B range was adjusted to 0–1. The final
simulation results are shown in Figures 7 and 8. The value in the figures is the multiyear average
daily flow.
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degree of karst development. With the different stages of karst development, the corresponding
ordinates change from small to large and then smaller.
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Figure 7. Simulation results under each scheme. All simulation results are based on the IXAJ model.
The light blue column represents the runoff simulation results under the optimal parameters, the green
column represents the runoff simulated when the karst development is weakened, and the dark blue
column represents the runoff simulated when the karst development is more uniform in the basin.
The purple column represents the runoff simulated when the degree of karst development is enhanced,
and the red column represents the runoff simulated when the degree of karst development is more
uneven in the basin. The unit of runoff is m3/s.

In the case of a decrease in B, the simulated runoffs for the six hydrological stations were reduced.
Except Maiweng, which had the smallest basin area, the decreases of other hydrological stations were
more than 10%. When B increased, all stations exhibited an increase in runoff. Therefore, in the Sancha
River Basin, an increase in the uneven distribution of the karst development degree increased the
runoff. If the uneven distribution of the karst development degree was reduced, the runoff of the basin
outlet was reduced. In accordance with the article by the creators of the XAJ model [37], the value of B
was determined by the uneven distribution of water storage conditions. Its relationship with the water
storage capacity curve is shown in Figure 9, where A is the maximum field water storage capacity,

and W0 is the initial soil water content of the basin. The curve is expressed as α = 1 −
(
1− WM

WMM

)B
.

The area α0 in the basin is already full of water, and the rainfall in this area forms runoff. The rainfall
in the 1− α0 area cannot form runoff. Therefore, the reason karst distribution unevenness influenced
variations in the runoff was as follows: on the premise that the initial soil water content in the basin
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was constant, a more uniform distribution of karst development yielded a smaller B and a smaller
runoff generation area of the basin; thus, the runoff decreased.
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Figure 9. Basin storage capacity curve. A is the maximum field water storage, and W0 is the initial

soil water content of the basin. The curve is expressed as α = 1−
(
1− WM

WMM

)B
. WM’ is the symbol for

water storage capacity at a point in the basin, WMM represents the maximum reservoir capacity of the
single point in the basin (in millimeters), and WM represents the average water storage capacity of
the basin. The area α0 in the basin is already full of water, and the rainfall in this area forms runoff.
The rainfall in the area of 1− α0 cannot form runoff.

When Car_flow decreased, the runoff decreased in some hydrological stations and increased in
other stations. The same hydrological station could exhibit opposite changes in the runoff with both
increasing and decreasing Car_flow. Among the stations, Longchangqiao, Huangmaocun, Yangchang,
and Huangguoshu exhibited increased runoffs when Car_flow decreased; Maiweng and Gaoche
exhibited decreased runoffs when Car_flow decreased. According to the influence of the karst on the
surface runoff in different development periods, it can be estimated that the karsts of the four basins
of Longchangqiao, Huangmaocun, Yangchang, and Huangguoshu were all in their youth or infancy.
If Car_flow increased, the karst had a stronger development; thus, more surface water was converted
into groundwater. While the karsts in the two watersheds of Maiweng and Gaoche were in middle age
or old age, the increase of Car_flow degraded the karsts; thus, their ability to transform surface water
into groundwater was weakened, and the runoff eventually increased.
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6. Summary

The XAJ model is a conceptual model with the characteristics of high generalization capability and
high precision for water cycle simulation in complex regions. It combines experience and physics in a
conceptual model. It can accurately simulate the water cycle and assist in water resource management
and development in the karst region. But the XAJ model is imperfect regarding the description of the
physical runoff process. So, this is still a problem that needs to be promptly solved in order to develop
a hydrological model with a more physical meaning.

The XAJ model had difficulty in simulating the peak runoff and runoff process in the karst area,
mainly because of the hydrogeological characteristics of the karst basin. This was the root cause of
all errors in the hydrological model of the karst basin. The karst basin is a typical binary 3D system,
and the two water systems on the surface and underground are not closed. The pipelines and cracks
significantly affect the movement of water flow. The existing groundwater storage reservoirs had
large regulation and storage effects, which greatly impacted the simulation results of the models.
By adding the groundwater simulation system in the karst area to the model, the actual situation of the
underlying surface of the basin can be more closely reflected. In this study, according to the geological
and hydrological characteristics of the karst area, a system of linear reservoirs was used to simulate the
karst hydrological process, and the advantages of using linear reservoirs to simulate groundwater in
the karst area were verified. Overall, the IXAJ model reduced the runoff error caused by karst fissures
in the karst basin.

Finally, the effects of the degree of karst development and the unevenness of the karst spatial
distribution on the runoff at the outlet of the basin were discussed. However, owing to the lack of data,
the spatial and temporal distributions of the karst in the Sancha River Basin could not be specifically
described. They could only be replaced by the generalization of the parameter Car_flow. Results
indicated that the development degree and spatial distribution of the karst had significant effects on
runoff. Therefore, accurately describing temporal and spatial distributions of the karst is crucial to
accurately simulate the outlet flow of a basin.
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Appendix A

The XAJ model is a conceptual hydrological model developed by Zhao et al. [38] that is based on
extensive observed data from the Xin’anjiang reservoir watershed. It has been widely used in China for
flood forecasting, hydrological station network design, and water availability estimation. The lumped
XAJ model has advantages in karst areas, in which the data are relatively poor [25].

(1) Method of runoff generation

XAJ’s runoff mode is stored-full runoff, which mainly occurs in humid and subhumid regions.
Stored-full runoff refers to soil moisture that does not produce runoff until it reaches field capacity.
Distribution of soil water deficiency is nonuniform, which is reflected by the reservoir capacity curve.
Reservoir capacity refers to the difference of the soil water content between the full and very dry
(utmost water deficiency) states of the aeration zone. IM indicates the proportion of impervious area to
total area. WM’ is the symbol for the reservoir capacity at a point in the basin, and the reservoir capacity
curve indicates the proportion of the watershed area for which the reservoir capacity is equal to or less
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than WM’. WM represents the average water storage capacity of the basin. In practice, the reservoir
capacity curve is generally a parabola. Assuming the IM is 0, the curve is expressed as follows:

f
F
= 1− (1−

WM′

WMM
)

B

, (A1)

where f represents the runoff generation area (in km2), WM’ represents the reservoir capacity at a single
point in the basin (in millimeters), WMM represents the maximum reservoir capacity of the single
point in the basin (in millimeters), and B is the power of the reservoir capacity curve. The following
can be obtained:

W0 =
WMM
B + 1

[1− (1−
A

WMM
)

B+1
], (A2)

When A = WMM, W0 = WM, yielding:

WM =
(1− IM)·WMM

B + 1
. (A3)

The W0 corresponding to ordinate value A is as follows:

A = WMM[1− (1−
W0

WM
)

1
1+B

]. (A4)

Set PE as the effective precipitation in the rain period after the subtraction of the evaporation.
When PE < 0, the precipitation does not produce runoff, i.e., R = 0.
When PE > 0, the runoff generation is divided into the local runoff and total basin runoff.
If PE + A < WMM, the local runoff is given as follows:

R = PE− (WM−W0) + WM·
(
1−

PE + 1
(1− IM)·WMM

)(1+B)

. (A5)

If PE + A > WMM, the total basin runoff is given as follows:

R = PE− (WM−W0). (A6)

(2) Water source division

R, which represents the total runoff calculated using the stored-full runoff, contains a variety of
runoff components. It can be divided into the surface runoff, interflow, and underground runoff in the
karst basin. The underground runoff can be divided into fast-fractured water flow and slow-fractured
water flow. The confluence regularity and the flow rate, as well as the calculation methods for the
confluence, differ among these runoff components. Thus, we must divide the total runoff R. This model
uses the three-component water division structure.

According to the method of saturation excess runoff, R flows into the free-water reservoir first
and is then divided. We set up two exports in the free-water reservoir in the runoff area: one is the
side exit of interflow RI, and the other is the underside exit of the underground runoff RG. Because
the XAJ model considers the runoff generation area as parameter FR, the free-water reservoir only
occurs in the runoff area. As the FR changes, the distribution of the capacity of its free-water reservoir
is asymmetrical. The three-component water division structure uses the free-water storage capacity
curve, which is similar to the water storage capacity curve. The free-water storage capacity curve
refers to the cumulative frequency curve of the partial runoff generation area changes with respect to
the capacity of the free-water reservoir. The line type is given by:
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f
F
= 1−

(
1−

S′

MS

)EX

, (A7)

where S′ is the water storage capacity at a particular point in the basin (in millimeters), MS is the
largest capacity at the single point of the free-water reservoir in the watershed (in millimeters), EX is
the power of the free-water storage capacity curve of the basin, f is the flow-producing area (in km2),
and F is the area of the entire basin (in km2).

KG and KI are the outflow coefficients of the underground runoff and interflow, respectively.
The following can be obtained:

S0 =
MS

EX + 1
·[1− (1−

AU
MS

)
EX+1

]. (A8)

Assume that the initial water storage capacity at the single point of the free-water reservoir is
S0, and its corresponding ordinate is AU. The maximum value of S0 is SM (The unit of SM is not
millimeter). When S0 = SM, and the following can be obtained:

SM =
MS

EX + 1
. (A9)

We can determine the maximum free-water storage capacity of the single point in the basin, i.e.,
MS, as follows:

MS = SM·(1 + EX). (A10)

AU, which is the ordinate corresponding to S0, is given as:

AU = MS·[1−
(
1−

S0·FR0/FR
SM

) 1
1+EX

]. (A11)

The runoff generation area FR is given as follows:

FR =
R

PE
. (A12)

When PE + AU < MS, the surface runoff RS is given as follows:

RS = FR·[PE + S0·FR0/FR− SM + SM·(1−
PE + AU

MS
)

1+EX
]. (A13)

When PE + AU > MS, the surface runoff RS is given as:

RS = FR·(PE + S0·FR0/FR− SM). (A14)

The capacity of free water is given as follows:

S = S0·
FR0

FR
+ (R−RS)/FR. (A15)

The corresponding interflow and groundwater runoff without karst fissure water are given as:

RI = KI·S·FR, (A16)

RG = KG·S·FR. (A17)
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At the end of this period, as well as at the beginning of the next period, the storage of free water is
given as:

S0 = S·(1−KI −KG). (A18)

FR0/FR is the ratio of the runoff area in the previous period and this period.

(3) Surface confluence

The storage function of the karst landform for the surface water can be simulated well using the
linear lag algorithm. It can be calculated as follows:

Q(t) = 2·C_0·I·(t − τ) + C_1·Q·(t − τ− 1). (A19)

Here,
C_0 = ∆t/(2K + ∆t), C_1 = (2K − ∆t)/(2K + ∆t). (A20)

where τ is the log value (in hours), ∆t is the calculation time (in hours), and K is the discharge coefficient.
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