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Abstract: In this study, a coupled water–energy balance equation at an arbitrary time scale was
proposed as an extension of the Budyko hypothesis. The second mixed partial derivative was selected
to represent the magnitude of the interaction. The extended hydrological sensitivity method was
used to quantitatively evaluate the impacts of climate change, anthropogenic activities, and their
interaction on dry season runoff in the Lhasa River. In addition, an ABCD model, which is a monthly
hydrological model included a snowmelt module, was used to calculate the change in soil water and
groundwater storage. The Mann–Kendall test, Spearman’s test, dynamic linear model (DLM), and
Yamamoto’s method were used to identify trends and change points in hydro-climatic variables from
1956–2016. The results found that dry season runoff increased non-significantly over the last 61 years.
Climate change, which caused an increase in dry season runoff, was the dominant factor, followed by
anthropogenic activities and their interaction, which led to varying degrees of decrease. This study
concluded that the methods tested here performed well in quantifying the relative impacts of climate
change, anthropogenic activities, and their interaction on dry season runoff change.

Keywords: coupled water–energy balance equation; ABCD model; dry season runoff; attribution
analysis; Lhasa River Basin

1. Introduction

The Qinghai-Tibet Plateau has long been a focus of international academic concern because it is
the source point of many of Asia’s largest rivers and possesses a unique high plateau climate. The
Lhasa River, situated in the southeastern part of the Qinghai-Tibet Plateau, is recognized as a sensitive
area with respect to global climate change and also experiences the most anthropogenic activities in
Tibet [1]. In recent years, much research has focused on streamflow variability and climate change in
the Lhasa River Basin (LRB) [2–4]. Lin et al. [5] analyzed the characteristics of annual and monthly
mean runoff in the LRB from 1956–2003. They observed an increasing trend in annual runoff with
two abrupt change points around 1970 and in the early 1980s. Liu et al. [6] established the correlation
between discharge and temperature using correlation analysis and identified an abrupt change point
for winter streamflow. However, these studies focused more on runoff characteristics at an annual scale
or qualitative attribution analysis of streamflow variability, while few addressed extreme hydrological
regimes such as floods or low flows in the Lhasa River Basin. As the economy and society develop, such
extreme hydrological regimes, especially low flows, could lead to environmental and natural resource
issues [7]. Consequences include water shortages, drinking water contamination, and more. To better
understand the water cycle and water resources in the Qinghai-Tibet Plateau and promote responsible
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water resources development in Lhasa, analysis of Lhasa River runoff characteristics during the dry
season is needed, along with identification of the possible causes of streamflow variability.

It is undeniable that climate change, intensive anthropogenic activities, and their complex
interactions have led to significant changes in water cycles and streamflow variability [8–10]. Climate
change has a direct impact on precipitation and evaporation, while anthropogenic activities can
modify temporal and spatial distribution through land use change, river diversion, dam construction,
and other engineering and management practices. However, quantifying the impacts of climate
change and anthropogenic activities on runoff variation is still in the exploratory stages. Various
methodologies—such as hydrological modeling, the time trend method, paired catchment method, and
Budyko framework—have been used to investigate the impacts of climate change and anthropogenic
activities on streamflow [11–17]. Of these, the hydrological sensitivity method based on the Budyko
hypothesis has attracted more attention due to its convenience and lower data requirements [18,19].
However, this method has two basic assumptions [20]: first, changes in soil and groundwater
storage are generally ignored at annual or multi-annual scales; second, the impacts of climate change
and anthropogenic activities on runoff variation are independent. The first assumption limits the
applicability of the Budyko method at monthly or seasonal scales, but several methods have been
proposed to solve this problem [21,22]. Wang and Alimohammadi [23] suggested that effective rainfall,
as the difference between rainfall and soil water storage, could be used in place of the available
water supply. Therefore, calculated effective rainfall replaces rainfall in both the climate aridity
index and the evaporation ratio. Recently, Han et al. [24] proposed a null-parameter formula of the
storage–evapotranspiration relationship based on a simplified proportionality hypothesis. However,
the attribution analysis methods used in these studies were mostly based on Budyko decomposition [25]
and few studies have applied hydrological sensitivity analysis to seasonal runoff attribution. The
second assumption considers the causes of runoff change including climate change and human
activities, but ignores the interactions between them.

To solve the problems mentioned above, the Budyko hypothesis was first replaced by the “coupled
water–energy balance equation at an arbitrary time scale” derived by Yang et al. [26]. Yang’s equation
is always valid at annual or monthly scales. More interestingly, it takes the same form as the Penman
equation at the daily scale and the Budyko hypothesis at the annual (or multi-annual) scale. Based
on this equation, the second mixed partial derivative was then taken to represent the magnitude of
the interaction between climate change and anthropogenic activities. When using the hydrological
sensitivity method based on the Budyko hypothesis, a fundamental assumption is that both water
storage and deep groundwater losses are negligible during both the baseline or altered periods.
However, the validity of this assumption has been poorly addressed in previous studies [27]. In this
study, an improved ABCD model was proposed to verify whether water storage variability between
the baseline and altered periods could be ignored.

The specific objectives of this study were to: (1) explore trends and abrupt changes in dry season
runoff in the Lhasa River; (2) simulate monthly runoff to assess variability in soil water and groundwater
storage using an improved ABCD model; and (3) based on the results of the above two, quantify the
impacts of climate change, anthropogenic activities, and their interaction on runoff using an extended
hydrological sensitivity method. This is the first effort to attribute changes in runoff to climate change,
anthropogenic activities, and their interaction in the LRB. Analyzing dry season runoff variability and
quantifying the roles of climate change and anthropogenic activities will contribute to the study of
extreme hydrology in the Lhasa River and serve as a guide for future water resource management in
the LRB.
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2. Methods

2.1. Preliminary Data Analysis

The observed streamflow data over the study period from the Lhasa station need to be preliminarily
examined before analyzing the recent trends and abrupt changes of dry season runoff in the LRB.
In this study, we take the normality and homogeneity test to ensure the validity of the observed time.

Many normality tests are widely used in hydrological time series analysis, for example, normal
Q-Q plot, histogram, skewness and kurtosis test, Shapiro–Wilk test and so on [28,29]. Among these
tests, the Shapiro–Wilk test [30] was used in this study to verify the normality of streamflow in the LRB.
This test generates two values: W and P. The value of W is in the range from 0 to 1, and a higher W
values means the acceptance of normality and a lower W values means leads to rejection. If W is equal
to 1, it means that normality is totally satisfied. If the p-value is higher than the critical significance
level, normality will be accepted.

The homogeneity test of the hydrometeorological time series is essential regarding the quality
assurance. Several methods of testing the homogeneity of hydrometeorological time series, for example,
standard normal homogeneity test, Buishand’s test, and Pettitt’s test are offered to check whether a
data series has been sourced from homogeneous heterogeneous records [31,32]. In this study, Pettitt’s
test was applied to check the homogeneity of streamflow records from the Lhasa station over 61 years
from 1956 to 2016.

2.2. Statistical Methods

2.2.1. Trend Analysis Method

To understand existing and future water resources development in any basin, it is important
to investigate trends in hydroclimatic variables. Here, the Mann–Kendall (MK) test, Spearman’s
correlation test, and dynamic linear models (DLM) were used to analyze dry season runoff trends
at Lhasa Hydrological Station. Among these methods, MK test and Spearman’s correlation test are
widely used in hydrological trend analysis, while DLM model is not common. We mainly introduce
DLM model below, and the introduction of MK and Spearman’s test can be referred to relevant
literature [33,34].

The DLM model is a state space model [35]. The purpose of fitting and analyzing the time series
is achieved by modeling the regular hidden state contained in the real observation sequence. Similar
to the hidden Markov model (HMM), the hidden state of the DLM model also satisfies the Markov
property. The formula is

yt = Ftxt + vt, vt ∼ N(0, Vt),
xt = Gtxt−1 + wt, wt ∼ N(0, Wt)

(1)

where yt are the observations at time t, with t = 1, 2, . . . , n. Vector xt of length m contains the
unobserved states if the system that are assumed to evolve in time according to linear system operator
Gt (a m × m matrix). We observe a linear combination of the states with noise and matrix Ft (m × p) is
the observation operator that transforms the model states into observations. Both observation and
equations can have additive Gaussian errors with covariance Vt and Wt.

In order to build a DLM for the trend, we introduce xt with two hidden states xt = [µt αt], where
µt is the mean level and αt is the change in the level from time t − 1 to time t. then Equation (1) can be
rewritten as

yt = µt + ξobs, ξobs ∼ N(0, σ2
t ), (2)

µt = µt−1 + αt + ξlevel, ξlevel ∼ N(0, σ2
level), (3)

αt = αt−1 + ξtrend, ξtrend ∼ N(0, σ2
trend) (4)
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where ξ is Gaussian stochastic terms. In terms of the Equation (1), it then becomes

xt = [µt αt], Gtrend =

[
1 1
0 1

]
, Ftrend = [1 0],

Wtrend =

[
σ2

level 0
0 σ2

trend

]
and Vt =

[
σ2

t

] (5)

In our analysis, we will set σ2
level = 0 and estimate σ2

trend from the observations.
A first autoregressive model (AR(1)) is used to estimate autocorrelation in the residuals. In DLM

form, we simply define
GAR = [ρ], FAR = [1], WAR =

[
σ2

AR

]
(6)

Then we combine the selected individual model components into larger model evolution and
observation equations by

G =

[
Gtrend 0

0 GAR

]
, F = [Ftrend FAR],

W =

[
Wtrend 0

0 WAR

] (7)

the parameters and model states are estimated by an efficient adaptive Markov chain Monte Carlo
(MCMC) algorithm by Haario et al. [36] and the Kalman filter likelihood. Seasonal components are not
considered in this study due to the time series being analyzed are at an annual scale. The details of the
estimation procedure can be found in [37,38] and are not covered in this article.

2.2.2. Abrupt Change Analysis

Many methods can be used to detect abrupt hydro-climatic changes, such as the moving T test,
Yamamoto’s method, the Mann–Kendall test, and Crammer’s method. In this paper, MK [39,40] and
Yamamoto methods [41] were selected due to their user-friendly properties, such as no probability
distribution limits for data and simple calculation.

In the MK method, the element in the time series is presumed to be random and independent to
each other [42]. In order to reduce the impact of serial correlation on the MK test, pre-whitening by
Von Storch [43] was used to remove serial correlation from time series as

X′t = Xt − r1Xt−1 (8)

where Xt is the raw time series, r1 is the lag 1 serial correlation coefficient of sample data, which can be
estimated from sample data by an autocorrelation function as given in the work of Salas et al. [44].

Under the null hypothesis of no trend, the time series of variables has no change, the time series
could be regarded as x1, x2, . . . , xn. mi is computed as the number of xi in the series whose values
exceeded xj (1 ≤ j ≤ i)). The test statistic is calculated as

dk =
k∑

i=1

mi(2 ≤ k ≤ N), (9)

The expected value and variance of could be shown as E[dk] = k(k− 1)/4

var[dk] =
k(k−1)(2k+5)

72 (2 ≤ k ≤ N)
, (10)

We define

u(dk) =
dk − E[dk]√

var[dk]
, (11)
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Applying the method to the inverse series, we could obtain the series of u(dk) as{
u(di) = −u(di)

i′ = n + 1− i
(i, i′ = 1, 2, . . . , N) , (12)

The terms of the u(dk) (1 ≤ k ≤ n) constitute curve UF, and the terms of the (dk) (1 ≤ k ≤ n)
constitute curve UB. If the intersection of the two curves (UF and UB) was within the confidence
interval while UF was outside the confidence interval, that point was considered to be the start of
mutation [45].

Yamamoto method is used to test the significant difference for means between two random sample
series, which was proposed based on the t-test. Given a reference year, the signal-to-noise ratio (SNR)
is defined as

SNR =

∣∣∣x1 − x2
∣∣∣

s1 + s2
, (13)

where x1, x2 and s1, s2 are the mean and variance for the data series before and after the reference year.
The MK test was first used to identify change points for runoff, precipitation, and potential

evapotranspiration. If multiple change points were detected in the same time series, Yamamoto’s
method was then used to test the significance of those change points. Only the significant abrupt
change that exceeded the confidence interval in Yamamoto’s method was confirmed as the possible
change point. Finally, the significant change points were combined with anthropogenic activities in
the LRB. Change point detection was used to divide the monthly runoff series into the baseline and
altered periods.

2.3. Coupled Water–Energy Balance Equation at an Arbitrary Time Scale

Yang et al. [26] developed an analytical coupled water–energy balance equation at an arbitrary
time scale to estimate actual evapotranspiration over different time scales. The equation can be
expressed as

E =
E0(P + I + S)(

C + (P + I + S)w + E0w
)1/w

(14)

where E is actual evapotranspiration, E0 is potential evapotranspiration, P is precipitation, I is the
external water supply for a basin, S is soil moisture at the beginning of the month, w is a parameter
representing basin characteristics, and C is a constant for a particular basin.

We assume that I equals zero when there is no irrigation or inter-regional water transportation.
Available water is expressed as P-DS [21], and C is ignored at monthly or daily scales. Equation (1) can
then be further transformed into

E =
E0(P−DS)(

(P−DS)w + E0w
)1/w

(15)

where DS represents the change in total water stored in the basin, including the change in soil
water storage and groundwater storage. Equation (2) has a similar form to the Choudhury-Yang
equation [46,47].

2.4. Extended Hydrological Sensitivity Method

For a natural basin, the water balance equation can be expressed as

R = P− E−DS (16)

where R is runoff and P is precipitation.
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Substituting Equation (2) into Equation (3), we obtain the mathematical expression of R with
respect to P, E0, DS, and w

R = f (P, E0, DS, w) = P−DS−
E0[

(P−DS)w + E0w
] 1

w
(P−DS) (17)

Based on average monthly precipitation P, monthly streamflow R, average monthly potential
evapotranspiration E0, and average change of total stored water DS, the parameter w can be obtained
by solving an implicit function as

solve

 f unction(w)
R

P−DS
+

φ(
1 + φ

w)1/w
− 1 = 0

 (18)

where φ = E0

P−DS
.

For a gauged basin of interest, the first step of runoff attribution analysis using the hydrological
sensitivity method is to split the historic time series into two subseries at a year before which
anthropogenic activity was negligible. The years prior to this split refer to the baseline period (bp for
simplicity), while the latter years refer to the altered period (ap). Then the runoff variability ∆R can be
estimated as

∆R = R
ap
−R

bp
= ∆Rc + ∆Rh (19)

where R
ap

is mean runoff during the altered period, R
bp

is mean runoff during the baseline period, ∆Rc

is the change in runoff due to climate change only, and ∆Rh is the change in runoff due to anthropogenic
activity only.

Based on the assumption that both soil water and groundwater storage losses are negligible during
the baseline or altered periods, the change in runoff caused by climate change ∆Rc can be simplified as

∆Rc =
∂R
∂P

(∆P) +
∂R
∂E0

(∆E0) (20)

where ∆P and ∆E0 are changes in P and E0 between the altered and baseline periods, respectively.
Then ∆Rh can be solved by combining Equations (6) and (7).

This study also took the interaction between climate change and anthropogenic activities ∆Rit

into account when calculating runoff variability, and Equation (6) becomes

∆R = ∆Rc + ∆Rh + ∆Rit (21)

Konapala et al. [48] presented a three-parameter-based streamflow elasticity model considering
soil water storage variability as an extension of Equation (7), which is expressed as

∆R =
∂R
∂P

(∆P) +
∂R
∂E0

(∆E0) +
∂R
∂DS

(∆DS) (22)

where ∆DS is the changes in DS between the altered and baseline periods.
In fact, Equation (22) is part of the first-order Taylor expansion of Equation (17), and we can also

extend it into second-order Taylor series as follows.
For convenience, we introduce X = {xi|i = 1, 2, 3, 4}, where i = 1, 2, 3, 4 denote P, E0, DS and

w, respectively.
{
xbp

i

}
, i = 1, 2, 3, 4 are the average respective values of P, E0, DS, and w during the

baseline period.
{
xap

i

}
, i = 1, 2, 3, 4 are the average respective values of P, E0, DS, and w during the

altered period.
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Then the second-order Taylor expansion of runoff change and its respective partial derivatives
can be expressed as

∆R =
k∑

i=1

∆xi
∂ f

(
xap

1 , xap
2 , . . . , xap

k

)
∂xi

+
1
2!

k∑
i, j=1

[∆xi∆x j
∂2 f

(
xap

1 , xap
2 , . . . , xap

k

)
∂xi∂x j

] + o2 (23)

where ∂ f
∂xi

∆xi is a linear term, ∂2 f
∂xi

2 ∆xi
2 is a nonlinear term, ∂2 f

∂xi∂x j
∆xi∆x j is the coupled term, o2 is a

two-level Taylor Remainder. The specific formulae for each term are shown in Table 1.

Table 1. Expressions of different partial derivatives.

Linear Terms Coupled Terms Nonlinear Terms

∂ f
∂P = 1− φw+1

(1+φw)
1
w +1

∂2 f
∂P∂E0

= −
∂2 f

∂DS∂E0
= −

(w+1)φw+1

E0(1+φw)
1
w +2

∂2 f
∂P2 =

(w+1)φw+1

E0(1+φw)
1
w +2

∂ f
∂E0

= −1

(1+φw)
1
w +1

∂2 f
∂P∂w = −

∂2 f
∂DS∂w = −

φw[K+w2lnφ]

w2(1+φw)
1
w +2

∂2 f
∂DS2 =

(w+1)φw+1

E0(1+φw)
1
w +2

∂ f
∂DS =

φw+1

(1+φw)
1
w +1
− 1 ∂2 f

∂P∂DS = −
(w+1)φw+2

E0(1+φw)
1
w +2

∂2 f
∂E0

2 =
(w+1)φw

E0(1+φw)
1
w +2

∂ f
∂w = − E0K

w2(1+φw)
1
w +1

∂2 f
∂E0∂w = −

K+w2φwlnφ−1

w2(1+φw)
1
w +2

∂2 f
∂w2 =

−

E0

[
K2
−2w(φw+1)K+φwlnφln 1+φ−m

1+φm

]
w4(1+φw)

1
w +2

Note: K = ln(1 + φw) + φw ln(1 + φ−w).

Runoff change due to climate impacts can generally be regarded as the sum of the linear and
nonlinear terms that quantify the impacts of precipitation and potential evapotranspiration [49].
Considering the close connection between surface water and groundwater in the LRB, the terms that
quantify the impact of water storage change DS and parameter w represent runoff change due to
anthropogenic activities. The remaining coupled term is runoff change due to the interaction between
climate change and anthropogenic activities. Hence

∆Rc =

p∑
i=1

(∆xi
∂ f
∂xi

+
1
2

∆xi
2 ∂

2 f
∂xi2

) (24)

∆Rh =
k∑

i=p+1

(∆xi
∂ f
∂xi

+
1
2

∆xi
2 ∂

2 f
∂xi2

) (25)

∆Rit =
1
2

k∑
i, j=1,i, j

∆xi∆x j
∂2 f
∂xi∂x j

(26)

where p denotes the number of climatic variables (e.g., precipitation or potential evapotranspiration).
The relative impacts of climate change, anthropogenic activities, and their interaction on streamflow
can be further estimated as

ηc =
∆Rc

|∆R|
× 100% (27)

ηh =
∆Rh

|∆R|
× 100% (28)

ηit =
∆Rit

|∆R|
× 100% (29)
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where ηc, ηh, and ηit are the percentages of the impact of climate change, anthropogenic activities, and
their interaction on runoff, respectively.

2.5. An Improved ABCD Model with a Snow Melt Module

The ABCD model is a monthly hydrological model with four parameters (a, b, c, and d) developed
by Thomas Jr. [50], which uses precipitation and potential evapotranspiration to simulate actual
evapotranspiration, surface/subsurface runoff, and storage changes [51]. It has been widely applied as
a hydro-climatologic model to investigate the response of basins to climate change and performs well
in humid or arid regions [52,53]. Considering that summer and autumn snowmelt in the LRB impact
the regional water cycle, the snowmelt module proposed by Xu et al. [54] was embedded into the
primary ABCD model. By introducing the two parameters a1 and a2, the snowmelt module was able
to describe the processes of snowfall, snow cover, and snowmelt. Figure 1 is a structural diagram of
the ABCD model with the snowmelt module. Detailed information on the ABCD model and snowmelt
module can be found in the relevant literature [50,54] and is not covered in this article.Water 2019, 11, x FOR PEER REVIEW 8 of 23 
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2.6. Genetic Algorithm Mehtod

One of the objectives of this paper was to model inter-annual storage change by optimizing the
seasonal variables. The six parameters in the ABCD model (a, b, c, d, a1, and a2) were optimized using a
genetic algorithm (GA) in MATLAB. Model calibration was achieved by maximizing the Nash–Sutcliffe
Efficiency (NSE) of monthly runoff, which can be expressed as

NSE = 1−

∑n
i=1

(
Qobs,i −Qsim,i

)2

∑n
i=1

(
Qobs,i −Qobs

)2 (30)

where Qobs,i and Qsim,i represent the observed and simulated values, respectively.
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GA is a method for solving engineering optimization problems that is based on natural selection,
the process that drives biological evolution [55–57]. The genetic algorithm repeatedly modifies a
population of individual solutions. At each step, the genetic algorithm selects individuals at random
from the current population to be parents and uses them to produce the children for the next generation.
Over successive generations, the population ‘evolves’ toward an optimal solution.

GA algorithm is utilized in order to obtain the optimum for six parameters in the improved
ABCD model (a, b, c, d, a1, and a2). The flow chart in Figure 2 represents the procedure in the
applied algorithm.Water 2019, 11, x FOR PEER REVIEW 9 of 23 
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3. Study Area and Data Sources

3.1. Study Area Description

The Lhasa River is a primary branch on the left bank of the Yarlung Tsangpo River. It originates
from the foothills of the Nyenchen Tanglha Mountains and flows from northeast to southwest through
the Naqu area and Lhasa City. It eventually joins the Yarlung Tsangpo River near Qushui County.
The study area is located in the southeastern part of the Tibet Autonomous Region, with an area of
approximately 32,875 km2 and an average annual streamflow of 107.1 billion m3. Water resources in
this area are abundant but also spatially and temporally heterogeneous. Precipitation is primarily
concentrated from June to September and the low water period is typically from November to April. The
minimum, maximum, and average runoff and precipitation for each month at the Lhasa Hydrological
Station and the Lhasa Meteorological Station are given in Table 2. It is indicated from Table 2 that the
river flow in May to October accounting for 87.7% of the total amount of the annual runoff, and the
precipitation in June to September accounting for 89.1% of the total amount of the annual precipitation.
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Table 2. Runoff and precipitation for each month at the Lhasa Hydrological Station and the Lhasa
Meteorological Station.

Months Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

Runoff (m3/s)
Maximum 85.5 74.3 78.9 172 385 1020 1370 1800 1310 439 191 109

Minimum 33.6 26 31.4 36.3 38.8 121 309 203 141 87.3 59.5 41.1

Average 57.5 51.1 50.2 62.1 124.6 398.0 749.0 849.9 630.0 265.8 125.1 77.9

Precipitation (mm)
Maximum 5.5 18.9 19.3 26.2 78.3 192.5 258.9 283.2 147.2 38.4 22.4 12.7

Minimum 0 0 0 0 0.2 5.9 35.3 29 11 0 0 0

Average 0.6 1.2 2.5 6.9 27.2 76.8 126.8 130.3 62.0 8.1 1.2 0.6

At present, there are three hydrological stations on the main stream: Pondo, Tanggya, and Lhasa,
of which the Lhasa station has the longest time series and the most observations. The study area is the
basin above Lhasa Hydrological Station, covering an area of 26,225 km2. It accounts for 79.8% of the
total area of the LRB. There are three meteorological stations (Lhasa, Maizhokunggar, and Damxung)
in the basin. Maizhokunggar meteorological station has a shorter observation time series and the data
are not suitable for use. Damxung and Lhasa meteorological stations are distributed uniformly in the
basin in the upper and lower parts of the Lhasa River, respectively. In addition, their observation
conditions have not changed in recent decades. Therefore, Damxung and Lhasa meteorological stations
were selected to provide the meteorological data. The geographical positions of hydrological and
meteorological stations are shown in Figure 3.
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3.2. Data

The data used in this study include: (1) average daily observed streamflow from the two
hydrological stations (Lhasa: 1956–1968 and 1973–2016; Tanggya: 1961–2000); (2) daily precipitation,
daily observation data of small/large evaporating dishes, average daily temperature from the two
meteorological stations (Damxung: 1962–2016; Lhasa: 1956–2016). The hydrological data for this
study were obtained from the Hydrological Bureau of Tibet Autonomous Region. Missing data for
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Lhasa hydrological station from 1969 to 1972 were determined by interpolation using the Tanggya
streamflow data, which had a correlation coefficient of 0.98. Then daily streamflow data for Lhasa
hydrological station from 1956 to 2016 were obtained. The meteorological data were collected from the
China Meteorological Data Service Center (CMDC) (http://data.cma.cn). Missing data for Damxung
meteorological station from 1956 to 1961 were interpolated using Lhasa meteorological station data,
and the correlation coefficient was greater than 0.94.

The observed pan evaporation data were recorded using an E20 pan (an evaporimeter with
a diameter of 20 cm) or E-601B pan (an evaporimeter with a diameter of 61.8 cm) depending on
the external environment. In Tibet, average E20 pan and E-601B pan coefficients are 0.585 and 0.9,
respectively [58]. Therefore, the potential evapotranspiration data used in this study were derived
using the E20 pan or E-601B pan observations multiplied by the corresponding coefficient.

The meteorological data, monthly precipitation data, calculated potential evapotranspiration, and
average temperature data were spatially averaged using Thiessen polygons to estimate values over the
entire study area.

4. Results and Discussion

4.1. Preliminary Data Analysis

The Shapiro–Wilk test was applied to check the normality of streamflow, precipitation, and
potential evapotranspiration data at 95% confidence level. Based on the test results W(0.75) and P(0),
monthly streamflow data are considered to be non-normally distributed. The monthly precipitation
and potential evaporation data series also fail to pass the Shapiro–Wilk test, with W(0.73) and P(0), and
W(0.97) and P(0.1), respectively.

According to the above analysis, no observations in the monthly streamflow, precipitation, and
potential evapotranspiration series fit the normality distribution very well. This means that tests which
assume an underlying normality distribution are not appropriate for the trend and abrupt analysis.
Instead, nonparametric methods, such as MK test and Spearman’s test, are better choices.

Pettitt’s test was applied to verify the homogeneity of the monthly streamflow, precipitation, and
potential evapotranspiration data. The p-value of the three series are 1.29, 0.45, and 0.87, respectively.
All the absolute value of them are higher than the typical critical value, i.e., 0.05, which indicates the
three observed series are homogeneity at the 5% significance level.

4.2. Trends for Runoff, Precipitation, and Potential Evapotranspiration during the Dry Season

Prior to analyzing the trend by MK and Spearman’s test, we explore the correlation of the
annual minimum 1-day, 3-day, 7-day, 30-day, and 90-day, dry season streamflow, precipitation, and
potential evapotranspiration by calculating serial correlation coefficient. The results show that all
time series, except dry season precipitation series, fail to pass the autocorrelation test. Figure 4a
presents a serial coefficient under different lags for raw annual minimum 1-day flow series. The lag-one
correlation coefficient (i.e., 0.58) is higher than critical value, which indicates that the assumption
of data independence is not valid. Prewhitening mentioned in Section 2.2 is used to eliminate the
effects of serial correlation on the MK test. As shown in Figure 4b, the lag-one correlation coefficient of
‘pre-whitened’ time series is lower than critical value, indicating that there is no autocorrelation in the
pre-whitened series.

http://data.cma.cn
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Figure 4. Model diagnostic on the (a) original minimum one-day flow and (b) pre-whitened minimum
1-day flow by an estimated autocorrelation function (ACF).

Runoff trends at the 0.05 level of significance are shown in Table 3. As seen in Table 3, there were
no clear trends in the six-flow series, except for minimum one-day flow. Runoff in the Lhasa River
increased non-significantly in both the dry season series and minimum 90-day flow series. In contrast,
minimum 1-day, 3-day, 7-day, and 30-day flows decreased over the past 61 years, and 1d minimum
runoff decreased significantly. Nevertheless, these results suggest that over shorter durations, flow
decreases were more significant.

Table 3. Trends for different flow components in the LRB using the Spearman’s and Mann–Kendall tests.

Series Number of Years
Spearman’s Test Mann–Kendall Test

r Threshold Tendency z Threshold Tendency

Annual minimum 1-day flow 61 −0.28 * 0.25
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The DLM model without the seasonal component was fitted for observations of annual 
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Annual minimum 3-day flow 61 −0.23 0.25
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The DLM model without the seasonal component was fitted for observations of annual 
minimum 1-, 3-, 7-, 30-, 90-day flow and dry season flow separately. The variance parameters in Vt 
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Figure 4. Model diagnostic on the (a) original minimum one-day flow and (b) pre-whitened minimum 
1-day flow by an estimated autocorrelation function (ACF). 

The DLM model without the seasonal component was fitted for observations of annual 
minimum 1-, 3-, 7-, 30-, 90-day flow and dry season flow separately. The variance parameters in Vt 
and Wt and the autocorrelation coefficient ρ used in the DLM are estimated using he MCMC 
simulation algorithm. The prior mean and prior standard of  are 0.0005 and 200%, respectively, 
while the prior distribution of ρ is uniform (0, 1). Figure 5 shows the measurement series and the 
modeled mean background flow, . Overall, it is easy to see that the fits usually follow the data 
points very accurately. A continuous decay of flow is evident in annual minimum 1-, 3-, 7-, and 30-
day flow series. The change is most visible at shorter durations. The mean value in annual minimum 
90-day and dry season flow has risen from the 1956–2016. These results agree well with those 
obtained by MK test and Spearman’s test. 
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modeled mean background flow, . Overall, it is easy to see that the fits usually follow the data 
points very accurately. A continuous decay of flow is evident in annual minimum 1-, 3-, 7-, and 30-
day flow series. The change is most visible at shorter durations. The mean value in annual minimum 
90-day and dry season flow has risen from the 1956–2016. These results agree well with those 
obtained by MK test and Spearman’s test. 

2
trendσ

tμ

Annual minimum 30-day flow 61 −0.14 0.25
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Figure 4. Model diagnostic on the (a) original minimum one-day flow and (b) pre-whitened minimum 
1-day flow by an estimated autocorrelation function (ACF). 

The DLM model without the seasonal component was fitted for observations of annual 
minimum 1-, 3-, 7-, 30-, 90-day flow and dry season flow separately. The variance parameters in Vt 
and Wt and the autocorrelation coefficient ρ used in the DLM are estimated using he MCMC 
simulation algorithm. The prior mean and prior standard of  are 0.0005 and 200%, respectively, 
while the prior distribution of ρ is uniform (0, 1). Figure 5 shows the measurement series and the 
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Figure 4. Model diagnostic on the (a) original minimum one-day flow and (b) pre-whitened minimum 
1-day flow by an estimated autocorrelation function (ACF). 

The DLM model without the seasonal component was fitted for observations of annual 
minimum 1-, 3-, 7-, 30-, 90-day flow and dry season flow separately. The variance parameters in Vt 
and Wt and the autocorrelation coefficient ρ used in the DLM are estimated using he MCMC 
simulation algorithm. The prior mean and prior standard of  are 0.0005 and 200%, respectively, 
while the prior distribution of ρ is uniform (0, 1). Figure 5 shows the measurement series and the 
modeled mean background flow, . Overall, it is easy to see that the fits usually follow the data 
points very accurately. A continuous decay of flow is evident in annual minimum 1-, 3-, 7-, and 30-
day flow series. The change is most visible at shorter durations. The mean value in annual minimum 
90-day and dry season flow has risen from the 1956–2016. These results agree well with those 
obtained by MK test and Spearman’s test. 
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Figure 4. Model diagnostic on the (a) original minimum one-day flow and (b) pre-whitened minimum 
1-day flow by an estimated autocorrelation function (ACF). 

The DLM model without the seasonal component was fitted for observations of annual 
minimum 1-, 3-, 7-, 30-, 90-day flow and dry season flow separately. The variance parameters in Vt 
and Wt and the autocorrelation coefficient ρ used in the DLM are estimated using he MCMC 
simulation algorithm. The prior mean and prior standard of  are 0.0005 and 200%, respectively, 
while the prior distribution of ρ is uniform (0, 1). Figure 5 shows the measurement series and the 
modeled mean background flow, . Overall, it is easy to see that the fits usually follow the data 
points very accurately. A continuous decay of flow is evident in annual minimum 1-, 3-, 7-, and 30-
day flow series. The change is most visible at shorter durations. The mean value in annual minimum 
90-day and dry season flow has risen from the 1956–2016. These results agree well with those 
obtained by MK test and Spearman’s test. 
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Figure 4. Model diagnostic on the (a) original minimum one-day flow and (b) pre-whitened minimum 
1-day flow by an estimated autocorrelation function (ACF). 

The DLM model without the seasonal component was fitted for observations of annual 
minimum 1-, 3-, 7-, 30-, 90-day flow and dry season flow separately. The variance parameters in Vt 
and Wt and the autocorrelation coefficient ρ used in the DLM are estimated using he MCMC 
simulation algorithm. The prior mean and prior standard of  are 0.0005 and 200%, respectively, 
while the prior distribution of ρ is uniform (0, 1). Figure 5 shows the measurement series and the 
modeled mean background flow, . Overall, it is easy to see that the fits usually follow the data 
points very accurately. A continuous decay of flow is evident in annual minimum 1-, 3-, 7-, and 30-
day flow series. The change is most visible at shorter durations. The mean value in annual minimum 
90-day and dry season flow has risen from the 1956–2016. These results agree well with those 
obtained by MK test and Spearman’s test. 
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Figure 4. Model diagnostic on the (a) original minimum one-day flow and (b) pre-whitened minimum 
1-day flow by an estimated autocorrelation function (ACF). 

The DLM model without the seasonal component was fitted for observations of annual 
minimum 1-, 3-, 7-, 30-, 90-day flow and dry season flow separately. The variance parameters in Vt 
and Wt and the autocorrelation coefficient ρ used in the DLM are estimated using he MCMC 
simulation algorithm. The prior mean and prior standard of  are 0.0005 and 200%, respectively, 
while the prior distribution of ρ is uniform (0, 1). Figure 5 shows the measurement series and the 
modeled mean background flow, . Overall, it is easy to see that the fits usually follow the data 
points very accurately. A continuous decay of flow is evident in annual minimum 1-, 3-, 7-, and 30-
day flow series. The change is most visible at shorter durations. The mean value in annual minimum 
90-day and dry season flow has risen from the 1956–2016. These results agree well with those 
obtained by MK test and Spearman’s test. 
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Figure 4. Model diagnostic on the (a) original minimum one-day flow and (b) pre-whitened minimum 
1-day flow by an estimated autocorrelation function (ACF). 

The DLM model without the seasonal component was fitted for observations of annual 
minimum 1-, 3-, 7-, 30-, 90-day flow and dry season flow separately. The variance parameters in Vt 
and Wt and the autocorrelation coefficient ρ used in the DLM are estimated using he MCMC 
simulation algorithm. The prior mean and prior standard of  are 0.0005 and 200%, respectively, 
while the prior distribution of ρ is uniform (0, 1). Figure 5 shows the measurement series and the 
modeled mean background flow, . Overall, it is easy to see that the fits usually follow the data 
points very accurately. A continuous decay of flow is evident in annual minimum 1-, 3-, 7-, and 30-
day flow series. The change is most visible at shorter durations. The mean value in annual minimum 
90-day and dry season flow has risen from the 1956–2016. These results agree well with those 
obtained by MK test and Spearman’s test. 
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Figure 4. Model diagnostic on the (a) original minimum one-day flow and (b) pre-whitened minimum 
1-day flow by an estimated autocorrelation function (ACF). 

The DLM model without the seasonal component was fitted for observations of annual 
minimum 1-, 3-, 7-, 30-, 90-day flow and dry season flow separately. The variance parameters in Vt 
and Wt and the autocorrelation coefficient ρ used in the DLM are estimated using he MCMC 
simulation algorithm. The prior mean and prior standard of  are 0.0005 and 200%, respectively, 
while the prior distribution of ρ is uniform (0, 1). Figure 5 shows the measurement series and the 
modeled mean background flow, . Overall, it is easy to see that the fits usually follow the data 
points very accurately. A continuous decay of flow is evident in annual minimum 1-, 3-, 7-, and 30-
day flow series. The change is most visible at shorter durations. The mean value in annual minimum 
90-day and dry season flow has risen from the 1956–2016. These results agree well with those 
obtained by MK test and Spearman’s test. 
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Figure 4. Model diagnostic on the (a) original minimum one-day flow and (b) pre-whitened minimum 
1-day flow by an estimated autocorrelation function (ACF). 

The DLM model without the seasonal component was fitted for observations of annual 
minimum 1-, 3-, 7-, 30-, 90-day flow and dry season flow separately. The variance parameters in Vt 
and Wt and the autocorrelation coefficient ρ used in the DLM are estimated using he MCMC 
simulation algorithm. The prior mean and prior standard of  are 0.0005 and 200%, respectively, 
while the prior distribution of ρ is uniform (0, 1). Figure 5 shows the measurement series and the 
modeled mean background flow, . Overall, it is easy to see that the fits usually follow the data 
points very accurately. A continuous decay of flow is evident in annual minimum 1-, 3-, 7-, and 30-
day flow series. The change is most visible at shorter durations. The mean value in annual minimum 
90-day and dry season flow has risen from the 1956–2016. These results agree well with those 
obtained by MK test and Spearman’s test. 
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represents an increasing trend. * Indicates significance at the 0.05 level. Annual
dry season flow represents average seasonal runoff from November to April.

The same methods were also applied for dry season precipitation (Pdry) and potential
evapotranspiration (E0,dry). Pdry and E0,dry values using the Spearman’s test were −0.45 and −0.14,
respectively, while their corresponding statistics using the MK test were 3.54 and 0.89. This showed that
there was a significant increasing trend for Pdry during the dry season and a non-significant decreasing
trend for E0,dry over the same period. Some research [4] has confirmed increasing precipitation and
almost no trend in evapotranspiration during the winter. The trend analysis results in this paper were
consistent with these prior conclusions.

The DLM model without the seasonal component was fitted for observations of annual minimum
1-, 3-, 7-, 30-, 90-day flow and dry season flow separately. The variance parameters in Vt and Wt and the
autocorrelation coefficient ρ used in the DLM are estimated using he MCMC simulation algorithm. The
prior mean and prior standard of σ2

trend are 0.0005 and 200%, respectively, while the prior distribution
of ρ is uniform (0, 1). Figure 5 shows the measurement series and the modeled mean background flow,
µt. Overall, it is easy to see that the fits usually follow the data points very accurately. A continuous
decay of flow is evident in annual minimum 1-, 3-, 7-, and 30-day flow series. The change is most
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visible at shorter durations. The mean value in annual minimum 90-day and dry season flow has risen
from the 1956–2016. These results agree well with those obtained by MK test and Spearman’s test.Water 2019, 11, x FOR PEER REVIEW 13 of 23 
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Figure 5. DLM fit for (a) annual minimum 1-day flow runoff, (b) annual minimum 3-day flow runoff, 
(c) annual minimum 7-day flow runoff, (d) annual minimum 30-day flow runoff, (e) annual minimum 
90-day flow runoff and (f) dry season runoff at Lhasa station. The dots are the observations used in 
the analysis, the solid line following the observations is the DLM fit obtained by a Kalman filter. The 
smooth solid line is the background level component of the model with 95% probability envelope. 

4.3. Change Point Identification of Hydro-Climatic Variables 

Figure 6a and 6b shows the abrupt changes in precipitation and potential evapotranspiration 
identified from the dry season time series using the MK test at a significance level of 0.05. Figure 6a 
shows that an abrupt change in precipitation occurred during the dry season from 1970–1980. As 
shown in Figure 6b, there was no clear change point in dry season potential evapotranspiration. 

The MK test was also used to detect change points for low water extremes related to daily, 
weekly, monthly, and seasonal cycles. An abrupt change occurred in 1970 for the 1-, 3-, and 7-day 
annual minimum time series (shown in Figure 6c,e), and two change points occurred in the 1970s and 
1980s for 30- and 90-day annual minimum time series (shown in Figure 6f,g), where 1970 was a non-
significant change point. Figure 6h shows that five abrupt changes in average dry season runoff 
occurred between 1970 and 1990. Considering the abrupt change in precipitation in 1970, the results 
indicate that shorter duration extreme low flows responded faster and more significantly to climate 
change. However, the change points for longer duration extreme low flows may reflect the impacts 
of human activities to some extent, which are gradual and build up over time. To reflect the effects 
of human activities, the average dry season runoff series was selected to be representative of low flow. 

Streamflows and the abrupt climate change points detected by Yamamoto’s method at a 
significance level of 0.05 are shown in Figure 7a,b. An abrupt change occurred in 1986 for mean runoff 
in the dry season, and an abrupt change in mean dry season precipitation occurred in 1975. These 
results were consistent with the MK test results. 

Because the abrupt change in dry season precipitation occurred nearly 10 years earlier than 
average runoff change over the same period, the change in dry season runoff in the 1980s was likely 
due to both climate change and anthropogenic activities rather than climate change alone. According 
to the relevant literature, there was low water resource development in the LRB until the 1980s. Since 
the implementation of basin planning in 1987, Zhikong hydropower station construction (2007), the 
Pondo hydropower station (2013), and the Moda Irrigation District (2011) have been developed in 
succession [59]. Earlier studies also observed abrupt changes in Lhasa River seasonal runoff in the 
1980s [5]. Therefore, 1986 was selected as an abrupt change point for dry season runoff. The baseline 
and altered periods were then adjusted to be 1956–1985 and 1986–2016, respectively. 

Figure 5. DLM fit for (a) annual minimum 1-day flow runoff, (b) annual minimum 3-day flow runoff,
(c) annual minimum 7-day flow runoff, (d) annual minimum 30-day flow runoff, (e) annual minimum
90-day flow runoff and (f) dry season runoff at Lhasa station. The dots are the observations used in
the analysis, the solid line following the observations is the DLM fit obtained by a Kalman filter. The
smooth solid line is the background level component of the model with 95% probability envelope.

4.3. Change Point Identification of Hydro-Climatic Variables

Figure 6a and 6b shows the abrupt changes in precipitation and potential evapotranspiration
identified from the dry season time series using the MK test at a significance level of 0.05. Figure 6a
shows that an abrupt change in precipitation occurred during the dry season from 1970–1980. As
shown in Figure 6b, there was no clear change point in dry season potential evapotranspiration.

The MK test was also used to detect change points for low water extremes related to daily, weekly,
monthly, and seasonal cycles. An abrupt change occurred in 1970 for the 1-, 3-, and 7-day annual
minimum time series (shown in Figure 6c,e), and two change points occurred in the 1970s and 1980s for
30- and 90-day annual minimum time series (shown in Figure 6f,g), where 1970 was a non-significant
change point. Figure 6h shows that five abrupt changes in average dry season runoff occurred between
1970 and 1990. Considering the abrupt change in precipitation in 1970, the results indicate that shorter
duration extreme low flows responded faster and more significantly to climate change. However, the
change points for longer duration extreme low flows may reflect the impacts of human activities to
some extent, which are gradual and build up over time. To reflect the effects of human activities, the
average dry season runoff series was selected to be representative of low flow.
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Figure 6. Mutation analysis using MK testing: (a) precipitation, (b) potential evapotranspiration, (c)
annual minimum 1-day flow runoff, (d) annual minimum 3-day flow runoff, (e) annual minimum 7-day
flow runoff, (f) annual minimum 30-day flow runoff, (g) annual minimum 90-day flow runoff, and (h)
dry season runoff at Lhasa station in the dry season. UF and UB were calculated using the MK test in the
forward and backward directions, respectively. Horizontal dashed lines are ±95% confidence intervals.
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Streamflows and the abrupt climate change points detected by Yamamoto’s method at a significance
level of 0.05 are shown in Figure 7a,b. An abrupt change occurred in 1986 for mean runoff in the dry
season, and an abrupt change in mean dry season precipitation occurred in 1975. These results were
consistent with the MK test results.Water 2019, 11, x FOR PEER REVIEW 15 of 23 
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Because the abrupt change in dry season precipitation occurred nearly 10 years earlier than
average runoff change over the same period, the change in dry season runoff in the 1980s was likely
due to both climate change and anthropogenic activities rather than climate change alone. According
to the relevant literature, there was low water resource development in the LRB until the 1980s. Since
the implementation of basin planning in 1987, Zhikong hydropower station construction (2007), the
Pondo hydropower station (2013), and the Moda Irrigation District (2011) have been developed in
succession [59]. Earlier studies also observed abrupt changes in Lhasa River seasonal runoff in the
1980s [5]. Therefore, 1986 was selected as an abrupt change point for dry season runoff. The baseline
and altered periods were then adjusted to be 1956–1985 and 1986–2016, respectively.

4.4. Modeling Dry Season Water Storage Change

Because initial soil water storage, groundwater storage, and snow depth must be known before
the model run, the initial six years of the time series were chosen as the spin-up period to diminish the
influence of the model state at the start of the model run. Monthly soil water and groundwater storage
in the LRB were then simulated using parameters calibrated by Equation (30).

However, there was concern as to whether the parameters changed significantly before and
after the change point. To verify this, the improved ABCD model was calibrated and validated
based on streamflows from both the baseline and altered periods. As shown in Table 4, streamflow
during the baseline period was divided into two periods: calibration (1962.5–1970.4) and validation
(1970.5–1986.4). The corresponding NSE values were 0.86 and 0.84. Streamflow during the altered
period was also divided into a calibration period (1986.5–1996.4) and a validation period (1996.5–2017.4),
with corresponding NSE values of 0.83 and 0.81. The improved ABCD model produced good runoff

simulation results for the Lhasa River. Monthly runoff simulation results at Lhasa Hydrological Station
are shown in Figure 8.

Table 4. Calibration and validation period details.

Model Calibration Method Spin-Up Period
Baseline Period Altered Period

Calibration
Periods

Validation
Periods

Calibration
Periods

Validation
Periods

Improved ABCD model Genetic algorithm 1956.5–1962.4 1962.5–1970.4 1970.5–1986.4 1986.5–1996.4 1996.5–2017.4
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To verify the applicability of the improved ABCD model in the LRB, this paper considered the
problem from two perspectives: the calibrated parameters and the runoff simulation results. From the
perspective of calibrated parameters, Table 5 shows parameter ranges and corresponding calibration
results. As mentioned in Section 2.5, parameter b is the upper limit of the sum of evapotranspiration
and soil moisture storage in a given month. The calibration value (approximately 199.97 mm) was
slightly higher than the actual value of 133 mm. Parameter c represents the proportion of streamflow
derived from groundwater in a given month. The calibration value of c (0.11–0.16 mm) was about the
same as the actual value (about 13%). Parameter d represents the reciprocal of average groundwater
residence time. The calibration value of d was within a reasonable range considering the frequent
exchange of groundwater and surface flow in the LRB [60,61]. From the perspective of the model
output, simulated monthly soil water and groundwater storage are shown in Figure 9. Simulated
average annual groundwater storage was 27.05mm, which was close to actual groundwater storage
(about 24.7 mm). In addition, simulated soil water storage results were in good agreement with the
HIMS model simulation results by Wang et al. [62]. Overall, the improved ABCD model was applicable
in the LRB.

Table 5. NSE values for simulated and calibrated parameter results.

Nash-Sutcliffe Efficiency a b c d a1 a2

Range / 0~1 0~200 0~1 0~20 0~30 −20~20

Baseline period Calibration periods 0.86
0.64 199.97 0.16 0.08 18.4 9.2

Validation periods 0.84

Altered period Calibration periods 0.83
0.65 199.98 0.11 0.07 14.5 9.5

Validation periods 0.81
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Figure 9. Simulated results for monthly change in groundwater and soil water storage in the basin
from 1962–2016.

The change in dry season total stored water, DSdry, was evaluated by adding the monthly DS
values in the dry season. Total dry season precipitation Pdry and runoff Rdry was used to calculate total
actual evapotranspiration Edry using the water balance equation. Table 6 summarizes the differences
between Pdry, Rdry, DSdry, and Edry before and after 1986. It can be observed that the absolute value of
DSdry was about twice that of Pdry during both the baseline and altered periods, indicating that change
in total stored water could be a significant recharge source for runoff. It was clear that neither water
storage nor deep groundwater losses can be neglected during either period.

Table 6. Change in hydro-climatic variables (mm) in the dry season between the baseline and
altered periods.

Period Pdry Rdry DSdry Edry

Baseline period (1962–1985) 454.3 799.8 −1026.7 681.1

Altered period (1986–2016) 753.9 1100.7 −1057.0 710.3

Total period (1962–2016) 1208.2 1900.5 −2083.7 1391.4

4.5. Quantitative Assessment of the Impacts of Climate Change and Anthropogenic Activities on Streamflow

Average values and variability for each variable in the baseline and altered periods are shown
in Table 7. According to Equations (24)–(26) in Section 2.4, the direct impacts of P, potential
evapotranspiration E0, water storage variability DS, and underlying surface w on runoff variability
were quantified using the sum of corresponding linear and non-linear terms. Similarly, their interacting
impacts were quantified by the sum of the coupled terms. The value of each partial derivative is
summarized in Table 8. The results showed that a 10% increase in precipitation would result in a 2.30%
increase in runoff, while a 10% increase in potential evapotranspiration would lead to a 13.2% decrease
in runoff. For basin characteristics, a 10% increase in DS would cause a 3.2% decrease in runoff, while a
10% increase in parameter w would lead to a 6.34% decrease in runoff.
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Table 7. Change in mean monthly hydro-climatic variables due to climate change and
anthropogenic activities.

Variables Baseline Period Altered Period Variability

Rdry (mm/month) 33.33 35.51 2.18

Pdry (mm/month) 18.93 24.32 5.39

E0,dry (mm/month) 489.24 465.04 −24.20

DSdry (mm/month) −42.78 −34.10 8.68

mdry 0.44 0.39 −0.05

Table 8. Partial derivatives of runoff variables in the Lhasa River during the dry season.

∂ f
∂P ∆P

∂ f
∂E0

∆E0
∂ f
∂DS (∆DS) ∂ f

∂m ∆m ∂2 f
∂P2 (∆P)2 ∂2 f

∂E0
2 (∆E0)

2 ∂2 f
∂DS2 (∆DS)2

3.63 0.40 −5.84 4.02 0.03 0.01 0.08

∂2 f
∂m2 (∆m)2 ∂2 f

∂P∂E0
(∆P∆E0)

∂2 f
∂P∂DS (∆P∆DS) ∂2 f

∂P∂m (∆P∆m)
∂2 f

∂E0∂DS (∆E0∆DS) ∂2 f
∂E0∂m (∆E0∆m) ∂2 f

∂DS∂m (∆DS∆m)

0.19 0.04 −0.11 0.298 −0.06 −0.03 −0.48

Equations (24)–(29) were used to calculate the relative contributions of climate change,
anthropogenic activities, and their interaction on streamflow (shown in Figure 10). It was found
that climate change with a relative contribution of 188.8% was the dominant factor affecting dry
season runoff variability in the LRB. Climate change had a positive impact on dry season runoff,
contributing to water supply for users and water demand in the river channel. The relative contribution
of anthropogenic activities was −70.9%, indicating that it prevented the increase of runoff. This might
be due to recent increases in water intake and consumption in the LRB, which countered the positive
shift due to climate change to some extent. The interacting impacts also inhibited the increase in
dry season runoff with a relative contribution of only −17.1%. The P and w coupled term had the
largest impact of the interaction terms, which indicated that the interaction between climate change
and anthropogenic activities was mainly reflected by coupled P and w. Prior literature [63] also found
that climate change had a stronger impact on runoff in the LRB than anthropogenic activities, and the
results of this paper were consistent with those conclusions.
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Lhasa River during the dry season.

4.6. Discussion

In this study, an extended hydrological sensitivity method was used to separate the impacts
of climate change, anthropogenic activities, and their interaction on dry season runoff in the LRB.
Compared with the current popular methods of attribution analysis [11–13], such as the hydrological
model and Budyko framework method, the greatest advantage of the new method is that it can
quantitatively determine the interaction effect. The result of the attribution analysis shows that the P
and w coupled term (i.e., 0.298) had the most positive impact on the interaction. It can be explained
from two perspectives. On the one hand, the changing characteristics of the underlying surface induced
by anthropocentric activities, such as urbanization and afforestation, can affect regional climate cycle.
On the other hand, the rainfall change also affects the underlying surface characteristics by adjusting
the regional vegetation coverage in return. However, the specific mechanism of the interaction effect
on streamflow is not clear and needs continued in-depth study. Another remarkable advantage of
the extended hydrological sensitivity method is its applicability on monthly scales. Although many
literatures [4–6] have provided the attribution analysis of runoff in the LRB, almost all focus on the
annual scale and qualitative analysis. Besides simply function structure, the extended hydrological
sensitivity method is suitable for the attribution analysis on shorter time scales and describes the
contribution of different factors more accurately.

In this study, MK, Spearman’s test and DLM model was applied to investigate trends and abrupt
change of annual minimum 1-day, 3-day, 7-day, 30-day, and 90-day streamflow. It is found that over
shorter durations, flow decreases were more significant. Therefore, it is important to focus on low
flow events (e.g., annual minimum 1-day and 3-day flow) so that the change of dry season flow can be
detected early and scientifically.

With the recommended structure of the improved ABCD model for snowmelt areas, we simulated
the change of soil water and groundwater in the LRB with ensured model performance on NSE. The
result is close to that obtained by Wang et al. [62] who simulate streamflow of the LRB by the HIMS, VIC,
and Swat models at monthly time step. The improved ABCD model has the advantage that simulate
changes in soil water and groundwater simultaneously while Wang et al. obtained simulation of the
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soil water only. Because the water consumption in Lhasa city is highly dependent on groundwater, the
simulation results of the model can provide decision-making guidance for urban development.

The extended hydrological sensitivity method and the improved ABCD model are only applied in
the LRB in this study. We cannot guarantee that the basic equation, namely “Coupled water–energy
balance equation at an arbitrary time scale”, has the same form in other areas. It is more likely that the
form of the equation varies spatially and temporally. Therefore, the applicability of the model in other
parts of the world remains to be further studied. In addition, there exits several uncertainties in the
method. Firstly, the limitations due to the number and distribution of hydro-meteorological stations
affect the accuracy of the simulation. Secondly, the actual evaporation was calculated using PET and
pan coefficients, which increase the uncertainty of the model simulations. Finally, uncertainty of the
model parameter can also influence the simulation results. Therefore, these uncertainties will affect the
computational results to a certain extent.

5. Conclusions

It is important to quantify the impacts of climate change and anthropogenic activities on runoff

variation of the study areas, due to the influence of human activities on water cycling processes.
However, most existing sensitivity methods cannot be applied at monthly scales and ignore the
interaction effect because of the basic assumptions of the Budyko hypothesis. To solve these problems,
this study proposes an extended hydrological sensitivity method and an improved ABCD model to
quantify the impacts of climate change, anthropogenic activities, and their interaction on dry season
runoff in the LRB.

Trend and abrupt analysis can be a delicate matter and it is always challenging to give causal
explanations. Hydro-climatic variable trends in the LRB were analyzed for the past 60 years. MK
test, Spearman’s test, and DLM model showed that annual minimum 1-day, 3-day, 7-day, and 30-day
streamflows exhibited varying levels of decrease from 1956–2016. Only the annual minimum one-day
flow results tested at the 0.05 significance level. Annual minimum 90-day streamflows and mean
dry season flows had non-significant increasing trends. Precipitation in the dry season significantly
increased and potential evapotranspiration decreased non-significantly. Results from mutation testing
for the dry season time series indicated that shorter duration low flow extremes responded faster and
more significantly to climate change, while longer duration low flow extremes reflected the impacts
of human activities. Combined MK and Yamomoto’s methods identified the year 1986 as an abrupt
change point in dry season runoff. The monthly runoff series was then divided into two periods. Prior
to 1986 (1957–1985) was regarded as the baseline period and after 1986 (1986–2016) was referred to as
the altered period.

In order to simulate monthly runoff to assess variability in soil water and groundwater storage,
an improved ABCD model with an embedded snowmelt module was proposed to simulate dry season
runoff in the LRB. The NSE coefficient of the improved model is above 0.80. The simulation results
showed that water storage variability made up a large proportion of runoff recharge, therefore neither
water storage nor deep groundwater loss can be neglected in seasonal runoff change attribution.

We have shown that the extended hydrological sensitivity method is well suited for separating
climate change, anthropogenic activities, and their interaction on dry season runoff in the LRB. The
results showed that climate change had the greatest impacts on dry season runoff, followed by
anthropogenic activities, and finally their interactions, whose relative contributions were only 1/2 and
1/11 of the former. Climate change increased runoff in the dry season, while anthropogenic activities
and the interaction impact caused varying degrees of runoff reductions. The results contribute to a
better understanding of the critical factors affecting the evolution of the Lhasa River runoff and can be
used to serve as a guide for future water resource management in the LRB.
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