Analysis of Migration of Polycyclic Aromatic Hydrocarbons from Sewage Sludge Used for Fertilization to Soils, Surface Waters, and Plants
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- We observed an increase of 10 polycyclic aromatic hydrocarbons in soils after fertilizing doses of sewage sludge. The content of these compounds determined in the experimental objects was within the range characteristic for clean soils.
- Excessive accumulation of PAHs (especially benzo(a)pyrene) was observed in plant biomass in the first year of a lysimetric experiment after sewage sludge fertilization at doses greater than 10 t/ha. The increase in bioaccumulation of this compound in plant biomass compared to the control objects was 138%, 288%, and 505% after application of 20, 30, and 40 t/ha, respectively. These values were indicative of significant biomass contamination with D. glomerata benzo(a)pyrene.
- Fertilization with sewage sludge did not cause contamination with PAHs in water leachates from the soils examined for any doses. If this water continues to infiltrate the soil profile, there is no doubt that the quality of groundwater will be deteriorated.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Silva, J.D.; Leal, T.T.; Araujo, A.; Araujo, R.; Gomes, R.; Melo, W.; Singh, R. Effect of different tannery sludge compost amendment rates on growth, biomass accumulation and yield responses of Capsicum plants. Waste Manag. 2010, 30, 1976–1980. [Google Scholar] [CrossRef] [PubMed]
- Reinthaler, F.F.; Feierl, G.; Galler, H.; Haas, D.; Leitner, E.; Mascher, F.; Melkes, A.; Posch, J.; Winter, I.; Zarfel, G.; et al. ESBL-producing E. coli in Austrian sewage sludge. Water Res. 2010, 44, 1981–1985. [Google Scholar] [CrossRef]
- Aparicio, I.; Santos, J.L.; Alonso, E. Limitation of the concentration of organic pollutants in sewage sludge for agricultural purposes: A case study in South Spain. Waste Manag. 2009, 29, 1747–1753. [Google Scholar] [CrossRef] [PubMed]
- Villar, P.; Callejon, M.; Alonso, E.; Jimenez, J.C.; Guiraum, A. Temporal evolution of polycyclic aromatic hydrocarbons (PAHs) in sludge from wastewater treatment plants: Comparison between PAHs and heavy metals. Chemosphere 2006, 64, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Mo, C.; Wu, Q.; Zeng, Q. Polycyclic aromatic hydrocarbons and phthalic acid esters in the soil–radish (Raphanus sativus) system with sewage sludge and compost application. Biores. Technol. 2008, 99, 1830–1836. [Google Scholar] [CrossRef] [PubMed]
- Oleszczuk, P.; Baran, S. Influence of soil fertilization by sewage sludge on the content of polycyclic aromatic hydrocarbons (PAHs) in crops. J. Environ. Sci. Health A 2005, 40, 2085–2103. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian J. Petroleum 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Oleszczuk, P. Persistence of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge-amended soil. Chemosphere 2006, 65, 1616–1626. [Google Scholar] [CrossRef]
- Oleszczuk, P. Investigation of potentially bioavailable and sequestrated forms of polycyclic aromatic hydrocarbons during sewage sludge composting. Chemosphere 2007, 70, 288–297. [Google Scholar] [CrossRef]
- Bernacka, J.; Pawłowska, L. Potentially Toxic Substances in Sludge from Municipal Sewage Treatment Plants; Instytut Ochrony Środowiska: Warszawa, Poland, 2000. [Google Scholar]
- Sayara, T.; Borràs, E.; Caminal, G.; Sarrà, M.; Sánchez, A. Bioremediation of PAHs-contaminated soil through composting: Influence of bioaugmentation and biostimulation on contaminant biodegradation. Int. Biodeterior. Biodegrad. 2011, 65, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zheng, G.; Zhoua, W.; Wang, J.; Zhou, L. Bioleaching conditioning increased the bioavailability of polycyclic aromatic hydrocarbons to promote their removal during co-composting of industrial and municipal sewage sludges. Sci. Total Environ. 2019, 665, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.V.; Chang, S.W.; Yuan, S.Y. Anaerobic degradation of polycyclic aromatic hydrocarbons in sludge. Adv. Environ. Res. 2003, 7, 623–628. [Google Scholar] [CrossRef]
- Włodarczyk-Makuła, M.; Janosz Rajczyk, M.; Wiśniowska, E.; Zarębska, A.; Zgrzebna, A. Examinations of PAHs content in sewage sludge (in Polish). Ochrona Środowiska 2000, 4, 15–19. [Google Scholar]
- Boruszko, D. Research on the influence of anaerobic stabilization of various dairy sewage sludge on biodegradation of polycyclic aromatic hydrocarbons PAHs with the use of effective microorganisms. Environ. Res. 2017, 155, 344–352. [Google Scholar] [CrossRef]
- Stefaniuk, M.; Oleszczuk, P. Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil. Environ. Pollut. 2016, 218, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Stefaniuk, M.; Tsang, D.C.W.; Ok, Y.S.; Oleszczuk, P. A field study of bioavailable polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and biochar amended soils. J. Hazard. Mater. 2018, 349, 27–34. [Google Scholar] [CrossRef] [PubMed]
- European Union Draft Directive on Sewage Sludge (2000). Brussels, 27/04. pp. 1–20. Available online: http://ec.europa.eu/environment/archives/waste/sludge/pdf/sludge_disposal3.pdf. (accessed on 6 April 2019).
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods of analysis and evaluation of soil and plant properties. Catalog of the Institute of Environmental Protection: Warszawa, Poland, 1991. (In Polish) [Google Scholar]
- Regulation of the Minister of the Environment of 6 February 2015 on municipal sewage sludge. Available online: http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20150000257/O/D20150257.pdf (accessed on 6 April 2019).
- Regulation of the Minister of the Environment of 1 September 2016 on the method of conducting the assessment of pollution of the earth surface. Available online: http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20160001395/O/D20161395.pdf (accessed on 6 April 2019). (In Polish)
- Regulation of the Minister of the Environment of 21 December 2015 on Criteria and methods for assessing the status of bodies of groundwater. Available online: http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20160000085/O/D20160085.pdf (accessed on 6 April 2019). (In Polish)
- Kabata-Pendias, A.; Piotrowska, M.; Motowicka-Terelak, T. Fundamentals of Evaluation of Chemical Soil Contamination (Heavy Metals, Sulphur and PAH); Państwowa Inspekcja Ochrony Środowiska IUNG w Puławach: Puławy, Poland, 1995. [Google Scholar]
- Oleszczuk, P.; Baran, S. Concentration of polycyclic aromatic hydrocarbons in sewage sludge-amended soil. Commun. Soil Sci. Plant Anal. 2005, 36, 1083–1097. [Google Scholar] [CrossRef]
- Wołejko, E.; Wydro, U.; Jabłońska-Trypuć, A.; Butarewicz, A.; Łoboda, T. The effect of sewage sludge fertilization on the concentration of PAHs in urban soils. Environ. Pollut. 2018, 232, 347–357. [Google Scholar] [CrossRef]
- Oleszczuk, P.; Baran, S. Leaching of individual PAHs in soil varies with the amounts of sewage sludge applied and total organic carbon content. Pol. J. Environ. Stud. 2005, 14, 491–500. [Google Scholar]
- Kipopoulou, A.M.; Manoli, E.; Samara, C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environ. Pollut. 1999, 106, 369–380. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No. 208/2005 of 4 February 2005. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:034:0003:0005:EN:PDF (accessed on 6 April 2019).
- Commission Regulation (EC) No. 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R1881-20170728&from=EN (accessed on 6 April 2019).
- Waqas, M.; Khan, S.; Qing, H.; Reid, B.J.; Chao, C. The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L. Chemosphere 2014, 105, 53–61. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | S | SS |
---|---|---|---|
Organic substance | [% d.m.] | 0.8 | 47.0 |
Reaction (pHH20) | - | 6.4 | 8.2 |
Hh (hydrolytic acidity) | [me/100 g] | 2.6 | - |
Organic carbon | [g∙kg−1 d.m.] | 9.65 | 230 |
Total nitrogen | 0.65 | 37.12 | |
Available P | [mg∙kg−1 d.m.] | 35.12 | 611.5 |
Available K | 19.49 | 262.4 | |
Available Mg | 59.9 | 885.4 | |
Cr | 1.6 | 19 | |
Zn | 3.6 | 775 | |
Pb | 7.1 | 27 | |
Cu | 1.1 | 156 | |
Cd | 0.1 | 2.6 | |
Ni | 0.92 | 120.1 | |
Hg | 0.0018 | 0.52 |
Type of PAH | Unit | S | SS |
---|---|---|---|
Naphthalene | [μg∙kg−1 d.m.] | 2.8 ± 0.22 | 1040 ± 10.2 |
Acenaphthylene | 4 ± 0.50 | 86 ± 6.14 | |
Acenaphthalene * | 0.2 ± 0.06 | 100 ± 6.2 | |
Flouorene * | 0.3 ± 0.05 | 22 ± 2.14 | |
Phenanthrene * | 1.4 ± 0.15 | 672 ± 6.12 | |
Anthracene | 0.2 ± 0.04 | 114 ± 5.24 | |
Fluoranthene * | 0.9± 0.24 | 1080 ± 16.4 | |
Pyrene * | 0.8 ± 0.25 | 759 ± 15.3 | |
Benzo(a)anthracene | 0.2 ± 0.05 | 607 ± 7.1 | |
Chrysene | 0.4 ± 0.02 | 1270 ± 17.3 | |
Benzo(b)fluoranthene * | 0.4 ± 0.03 | 1070 ± 11.3 | |
Benzo(k)fluoranthene * | 0.2 ± 0.03 | 470 ± 9.33 | |
Benzo(a)pyrene * | 0.3 ± 0.04 | 718 ± 15.6 | |
Dibenzo(a,h)anthracene | 0.2 ± 0.02 | 219 ± 4.11 | |
Benzo(g,h,i)perylene * | 0.7 ± 0.07 | 660 ± 8.2 | |
Indeno(1,2,3-cd)pyrene * | 0.2 ± 0,04 | 820 ± 9.7 | |
Total of 16 PAHs [according to US EPA] | 13.0 | 9212 | |
Total of 11 PAHs (*) [according to the EU’s directive] | 5.6 | 6866 |
Contents of Polycyclic Aromatic Hydrocarbons [µg∙kg−1 d.m.] | One Year of Experience | Two Years of Experience | Three Years of Experience | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type of Fertilizer Combination | |||||||||||||||
C | S+SS 10 | S+SS 20 | S+SS 30 | S+SS 40 | C | S+SS 10 | S+SS 20 | S+SS 30 | S+SS 40 | C | S+SS 10 | S+SS 20 | S+SS 30 | S+SS 40 | |
Naphthalene | 2.30 ± 0.22 | 4.30 ± 0.20 | 5.00 ± 0.55 | 6.00 ± 0.60 | 5.30 ± 0.53 | 2.17 ± 0.21 | 4.10 ± 0.22 | 4.40 ± 0.22 | 5.20 ± 0.56 | 5.00 ± 0.35 | 2.10 ± 0.22 | 3.90 ± 0.21 | 4.00 ± 0.23 | 3.90 ± 0.13 | 4.80 ± 0.26 |
Anthracene | 0.13 ± 0.01 | 0.27 ± 0.03 | 0.60 ± 0.03 | 0.70 ± 0.08 | 0.74 ± 0.02 | 0.10 ± 0.01 | 0.17 ± 0.03 | 0.31 ± 0.02 | 0.35 ± 0.02 | 0.40 ± 0.08 | n.d. | n.d. | n.d. | 0.10 ± 0.02 | 0.14 ± 0.02 |
Chrysene | 0.27 ± 0.04 | 1.10 ± 0.03 | 3.20 ± 0.23 | 5.10 ± 0.53 | 5.47 ± 0.51 | 0.93 ± 0.06 | 0.90 ± 0.03 | 1.50 ± 0.06 | 2.80 ± 0.23 | 3.50 ± 0.21 | 0.70 ± 0.03 | 0.70 ± 0.05 | 1.60 ± 0.06 | 2.10 ± 0.23 | 2.67 ± 0.22 |
Benzo(a)antracene | 0.13 ± 0.03 | 1.10 ± 0.02 | 2.70 ± 0.21 | 3.90 ± 0.13 | 4.03 ± 0.23 | 0.20 ± 0.04 | 0.90 ± 0.06 | 1.20 ± 0.22 | 1.10 ± 0.23 | 1.90 ± 0.20 | 0.17 ± 0.03 | 0.70 ± 0.08 | 1.00 ± 0.03 | 1.50 ± 0.22 | 1.57 ± 0.20 |
Dibenzo(a,h)anthracene | 0.20 ± 0.03 | 0.20 ± 0.02 | 0.23 ± 0.03 | 0.30 ± 0.07 | 0.30 ± 0.05 | n.d | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Benzo(a)pyrene | 0.30 ± 0.06 | 0.70 ± 0.05 | 1.80 ± 0.20 | 3.10 ± 0.21 | 3.07 ± 0.17 | 0.20 ± 0.02 | 0.53 ± 0.08 | 1.30 ± 0.13 | 1.20 ± 0.23 | 1.87 ± 0.093 | 0.10 ± 0.06 | 0.40 ± 0.08 | 1.10 ± 0.0.2 | 1.00 ± 0.13 | 1.50 ± 0.06 |
Benzo(b)fluoranthene | 0.33 ± 0.07 | 0.90 ± 0.06 | 2.60 ± 0.03 | 4.50 ± 0.23 | 4.97 ± 0.27 | 0.37 ± 0.07 | 0.77 ± 0.03 | 2.10 ± 0.23 | 2.90 ± 0.23 | 4.70 ± 0.26 | 0.30 ± 0.07 | 0.63 ± 0.03 | 1.50 ± 0.13 | 2.10 ± 0.23 | 3.40 ± 0.33 |
Bbenzo(k)fluoranthene | 0.10 ± 0.03 | 0.40 ± 0.07 | 1.10 ± 0.06 | 1.30 ± 0.23 | 1.23 ± 0.15 | 0.10 ± 0.01 | 0.30 ± 0.02 | 0.47 ± 0.05 | 0.80 ± 0.03 | 0.87 ± 0.05 | 0.09 ± 0.01 | 0.30 ± 0.02 | 0.45 ± 0.07 | 0.50 ± 0.05 | 0.63 ± 0.07 |
Benzo(g,h,i)perylene | n.d. | 0.09 ± 0.02 | 0.09 ± 0.01 | 1.00 ± 0.03 | 1.10 ± 0.01 | n.d. | n.d. | n.d. | n.d. | 0.09 ± 0.01 | n.d. | n.d. | n.d. | n.d. | n.d. |
Indeno(1,2,3-cd)pyrene | n.d. | n.d. | 0.09 ± 0.01 | 0.90 ± 0.03 | 1.00 ± 0.13 | n.d. | n.d. | n.d. | n.d. | 0.09 ± 0.01 | n.d. | n.d. | n.d. | n.d. | n.d. |
The total of 10 PAHs [µg∙kg−1 d.m.] | 3.76 | 9.06 | 17.41 | 26.8 | 27.21 | 4.07 | 7.67 | 11.28 | 14.35 | 18.42 | 3.46 | 6.63 | 9.65 | 11.20 | 14.71 |
Contents of Polycyclic Aromatic Hydrocarbons [ng/L] | One Year of Experience | Two Years of Experience | Three Years of Experience | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type of Fertilizer Combination | |||||||||||||||
C | S+SS 10 | S+SS 20 | S+SS 30 | S+SS 40 | C | S+SS 10 | S+SS 20 | S+SS 30 | S+SS 40 | C | S+SS 10 | S+SS 20 | S+SS 30 | S+SS 40 | |
Benzo(b)fluoranthene | 6.10 ± 0.65 | 9.20 ± 0.83 | 13.10 ± 0.13 | 18.62 ± 1.51 | 24.40 ± 2.13 | 2.50 ± 0.20 | 4.60 ± 0.21 | 6.33 ± 0.77 | 8.13 ± 0.56 | 9.90 ± 0.63 | 1.30 ± 0.20 | 1.40 ± 0.25 | 4.12 ± 0.31 | 4.82 ± 0.42 | 5.10 ± 0.43 |
Benzo(k)fluoranthene | 4.80 ± 0.32 | 5.20 ± 0.63 | 6.17 ± 0.70 | 6.94 ± 0.65 | 8.70 ± 0.31 | 2.60 ± 0.37 | 4.80 ± 0.33 | 4.10 ± 0.77 | 3.90 ± 0.21 | 4.95 ± 0.43 | 1.50 ± 0.20 | 1.50 ± 0.06 | 2.10 ± 0.23 | 2.50 ± 0.21 | 3.60 ± 0.31 |
Benzo(a)pyrene | 4.10 ± 0.25 | 5.24 ± 0.38 | 9.60 ± 0.52 | 15.80 ± 0.71 | 18.10 ± 0.92 | 2.16 ± 0.23 | 2.60 ± 0.37 | 5.14 ± 0.42 | 7.28 ± 0.64 | 8.13 ± 0.97 | 0.90 ± 0.07 | 1.00 ± 0.10 | 1.90 ± 0.23 | 3.42 ± 0.21 | 5.10 ± 0.37 |
Dibenzo(a,h)anthracene | 6.30 ± 0.27 | 6.80 ± 0.42 | 6.95 ± 0.51 | 7.13 ± 0.67 | 7.10 ± 0.93 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Benzo(g,h,i)perylene | 9.25 ± 0.46 | 9.40 ± 0.52 | 14.90 ± 0.13 | 16.40 ± 0.22 | 20.10 ± 1.20 | 7.10 ± 0.62 | 6.90 ± 0.52 | 8.12 ± 0.98 | 9.13 ± 0.97 | 9.52 ± 0.31 | 1.20 ± 0.27 | 2.11 ± 024 | 3.40 ± 0.33 | 5.00 ± 0.57 | 8.70 ± 0.43 |
Indeno(1,2,3-cd)pyrene | 6.10 ± 0.42 | 8.73 ± 0.50 | 10.45 ± 0.12 | 12.60 ± 0.73 | 16.80 ± 1.30 | 2.60 ± 0.42 | 4.90 ± 0.32 | 4.17 ± 0.23 | 8.00 ± 0.31 | 8.73 ± 0.47 | 1.13 ± 0.21 | 2.60 ± 0.29 | 3.23 ± 0.37 | 5.10 ± 0.52 | 6.10 ± 0.57 |
The total of 6 PAHs | 36.65 | 44.57 | 61.17 | 77.49 | 95.20 | 16.96 | 23.80 | 27.86 | 36.44 | 41.23 | 6.03 | 8.61 | 14.75 | 20.84 | 28.60 |
Contents of Polycyclic Aromatic Hydrocarbons [µg∙kg−1 d.m.] | One Year of Experience | Two Years of Experience | Three Years of Experience | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type of Fertilizer Combination | |||||||||||||||
C | S+SS 10 | S+SS 20 | S+SS 30 | S+SS 40 | C | S+SS 10 | S+SS 20 | S+SS 30 | S+SS 40 | C | S+SS 10 | S+SS 20 | S+SS 30 | S+SS 40 | |
Naphthalene | 3.21 | 9.90 | 24.10 | 167.20 | 280.30 | 1.13 | 1.10 | 1.30 | 4.21 | 10.10 | n.d. | n.d. | n.d. | 1.20 | 3.34 |
Acenaphthalene | 14.95 | 14.20 | 19.20 | 27.30 | 35.05 | 1.06 | 1.10 | 1.50 | 2.00 | 2.55 | n.d. | n.d. | n.d. | n.d | 0.50 |
Acenaphthene | 1.70 | 6.60 | 7.80 | 11.60 | 12.00 | n.d. | 1.10 | 1.20 | 1.10 | 1.30 | n.d. | n.d. | n.d. | n.d. | n.d. |
Fluorene | 4.60 | 7.70 | 8.00 | 12.30 | 11.70 | n.d. | 1.2 | n.d | n.d. | 2.10 | n.d. | n.d. | n.d. | n.d. | n.d. |
Phenanthrene | 23.50 | 21.80 | 67.90 | 115.60 | 128.50 | 1.07 | 1.13 | 2.70 | 4.50 | 3.00 | n.d. | n.d. | n.d. | n.d. | 0.50 |
Anthracene | 1.10 | 2.37 | 3.10 | 4.20 | 4.54 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Fluoranthene | 5.77 | 4.20 | 9.00 | 16.40 | 22.64 | n.d. | n.d. | 1.00 | 4.20 | 3.00 | n.d. | n.d. | n.d. | n.d. | n.d. |
Pyrene | 4.10 | 4.20 | 15.50 | 38.80 | 47.80 | n.d. | n.d. | 1.10 | 1.80 | 2.50 | n.d. | n.d. | n.d. | n.d. | n.d. |
Chrysene | 1.27 | 1.33 | 4.20 | 7.80 | 8.17 | n.d. | n.d. | n.d. | n.d. | 1.10 | n.d. | n.d. | n.d. | n.d. | n.d. |
Benzo(a)antracene | 0.90 | 0.97 | 1.00 | 1.42 | 1.67 | n.d. | n.d. | n.d. | n.d. | 0.70 | n.d. | n.d. | n.d. | n.d. | n.d. |
Dibenz(a,h)anthracene | 0.87 | 0.83 | 0.96 | 1.55 | 1.63 | n.d. | n.d. | n.d. | 0.60 | 0.72 | n.d. | n.d. | n.d. | n.d. | n.d. |
Benzo(a)pyrene | 0.80 | 0.74 | 1.90 | 3.10 | 4.84 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Benzo(b)fluoranthene | 0.87 | 0.80 | 1.90 | 4.90 | 7.77 | n.d. | n.d. | n.d. | n.d. | 0.50 | n.d. | n.d. | n.d. | n.d. | n.d. |
Benzo(k)fluoranthene | 0.74 | 0.70 | 1.90 | 2.60 | 3.43 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Benzo(g,h,i)perylene | 0.80 | 2.20 | 3.00 | 3.10 | 4.87 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Indeno(1,2,3-cd)pyrene | 0.80 | 0.77 | 0.90 | 2.10 | 3.24 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
The total of 16 PAHs [µg∙kg−1 d.m.] | 65.98 | 79.31 | 170.36 | 419.97 | 578.15 | 3.26 | 5.63 | 8.80 | 18.41 | 27.57 | n.d. | n.d. | n.d. | 1.20 | 4.34 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stańczyk-Mazanek, E.; Stępniak, L.; Kępa, U. Analysis of Migration of Polycyclic Aromatic Hydrocarbons from Sewage Sludge Used for Fertilization to Soils, Surface Waters, and Plants. Water 2019, 11, 1270. https://doi.org/10.3390/w11061270
Stańczyk-Mazanek E, Stępniak L, Kępa U. Analysis of Migration of Polycyclic Aromatic Hydrocarbons from Sewage Sludge Used for Fertilization to Soils, Surface Waters, and Plants. Water. 2019; 11(6):1270. https://doi.org/10.3390/w11061270
Chicago/Turabian StyleStańczyk-Mazanek, Ewa, Longina Stępniak, and Urszula Kępa. 2019. "Analysis of Migration of Polycyclic Aromatic Hydrocarbons from Sewage Sludge Used for Fertilization to Soils, Surface Waters, and Plants" Water 11, no. 6: 1270. https://doi.org/10.3390/w11061270
APA StyleStańczyk-Mazanek, E., Stępniak, L., & Kępa, U. (2019). Analysis of Migration of Polycyclic Aromatic Hydrocarbons from Sewage Sludge Used for Fertilization to Soils, Surface Waters, and Plants. Water, 11(6), 1270. https://doi.org/10.3390/w11061270