Grazing Potential—A Functional Plankton Food Web Metric for Ecological Water Quality Assessment in Mediterranean Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Grazing Potential
2.3. Water Quality Assessment
2.4. The PhyCoIGP Index
2.5. Statistical Analysis
3. Results
3.1. Grazing Potential across Lake Trophic Spectrum and Ecological Water Quality
3.2. PhyCoIGP Application versus PhyCoI
3.3. GP, PhyCoIGP and PhyCoI versus the Eutrophication Proxy TSISD
4. Discussion
4.1. Grazing Potential across Lake Trophic Spectrum and Ecological Water Quality
4.2. PhyCoIGP Application versus PhyCoI
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Lake | Year | Number of Samplings | Phytoplankton Data Literature | Zooplankton Data Literature |
---|---|---|---|---|
Amvrakia | 2016 | 3 | [11] | [11] |
Doirani | 2004 | 3 | [69] | [11] |
Kastoria | 2016 | 3 | [11] | [11] |
Lysimachia | 2016 | 3 | Present study | Present study |
Megali Prespa | 2016 | 3 | [70] | [70] |
Mikri Prespa | 1990–1992; 2016 | 12 | [70,71] | [70,72] |
Pamvotis | 2016 | 3 | [11] | [11] |
Paralimni | 2016 | 3 | [11] | [11] |
Petron | 2010 | 3 | [73] | [73] |
Trichonis | 2016 | 3 | [11] | [11] |
Vegoritis | 2017 | 3 | [11] | [11] |
Volvi | 1984–1986 | 9 | [74] | [75] |
Voulkaria | 2016 | 3 | [11] | [11] |
Type | Lake | Reference Values and Class Boundaries for Total Phytoplankton Biovolume (mm3 L−1) |
---|---|---|
1 | Megali Prespa | 1. Reference: 0.6 |
2. Good-Moderate: 1.7 | ||
3. Moderate-Poor: 5.0 | ||
4. Poor-Bad: 12.0 | ||
2 | Vegoritis | 1. Reference: 0.7 |
2. Good-Moderate: 2.2 | ||
3. Moderate-Poor: 7.0 | ||
4. Poor-Bad: 19.0 | ||
3 | Trichonis, Amvrakia | 1. Reference: 0.9 |
2. Good-Moderate: 2.8 | ||
3. Moderate-Poor: 8.8 | ||
4. Poor-Bad: 23.0 | ||
4 | Volvi | 1. Reference: 1.1 |
2. Good-Moderate: 3.2 | ||
3. Moderate-Poor: 9.0 | ||
4. Poor-Bad: 27 | ||
5 | Mikri Prespa | 1. Reference: 1.1 |
2. Good-Moderate: 3.5 | ||
3. Moderate-Poor: 10.5 | ||
4. Poor-Bad: 28.5 | ||
6 | Kastoria, Pamvotis, Lysimachia | 1. Reference: 1.1 |
2. Good-Moderate: 4.5 | ||
3. Moderate-Poor: 13.5 | ||
4. Poor-Bad: 40.5 | ||
7 | Doirani, Petron, Paralimni | 1. Reference: 1.34 |
2. Good-Moderate: 6.0 | ||
3. Moderate-Poor: 18.0 | ||
4. Poor-Bad: 54.0 | ||
8 | Voulkaria | 1. Reference: 2.3 |
2. Good-Moderate: 12.0 | ||
3. Moderate-Poor: 36.0 | ||
4. Poor-Bad: 108.0 |
References
- Poikane, S.; Birk, S.; Böhmer, J.; Carvalho, L.; de Hoyos, C.; Gassner, H.; Hellsten, S.; Kelly, M.; Lyche Solheim, A.; Olin, M.; et al. A hitchhiker’s guide to European lake ecological assessment and intercalibration. Ecol. Indic. 2015, 52, 533–544. [Google Scholar] [CrossRef]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. J. Eur. Communities 2000, L37, 1–72. [Google Scholar]
- Moss, B. Shallow lakes, the water framework directive and life. What should it all be about? Hydrobiologia 2007, 584, 381–394. [Google Scholar] [CrossRef]
- Caroni, R.; Irvine, K. The potential of zooplankton communities for ecological assessment of lakes: redundant concept or political oversight? Biol. Environ. Proc. R. Ir. Acad. 2010, 110B, 35–53. [Google Scholar] [CrossRef]
- Jeppesen, E.; Nõges, P.; Davidson, T.A.; Haberman, J.; Nõges, T.; Blank, K.; Lauridsen, T.L.; Søndergaard, M.; Sayer, C.; Laugaste, R.; et al. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 2011, 676, 279–297. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Kitchell, J.F.; Hodgson, J.R. Cascading trophic interactions and lake productivity. BioScience 1985, 35, 634–639. [Google Scholar] [CrossRef]
- Pace, M.L.; Orcutt, J.D. The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnol. Oceanogr. 1981, 26, 822–830. [Google Scholar] [CrossRef]
- Sommer, U.; Gliwicz, Z.M.; Lampert, W.; Duncan, A. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Für Hydrobiol. 1986, 106, 433–471. [Google Scholar]
- Ejsmont-Karabin, J. The usefulness of zooplankton as lake ecosystem indicators: rotifer trophic state index. Pol. J. Ecol. 2012, 60, 339–350. [Google Scholar]
- Ejsmont-Karabin, J.; Karabin, A. The suitability of zooplankton as lake ecosystem indicators: crustacean trophic state index. Pol. J. Ecol. 2013, 61, 561–573. [Google Scholar]
- Stamou, G.; Katsiapi, M.; Moustaka-Gouni, M.; Michaloudi, E. Trophic state assessment based on zooplankton communities in Mediterranean lakes. Hydrobiologia 2019. [Google Scholar] [CrossRef]
- Sarma, S.S.S.; Nandini, S. Review of Recent Ecotoxicological Studies on Cladocerans. J. Environ. Sci. Health Part B 2006, 41, 1417–1430. [Google Scholar] [CrossRef] [PubMed]
- Snell, T.W.; Joaquim-Justo, C. Workshop on rotifers in ecotoxicology. Hydrobiologia 2007, 593, 227–232. [Google Scholar] [CrossRef]
- Kulkarni, D.; Gergs, A.; Hommen, U.; Ratte, H.T.; Preuss, T.G. A plea for the use of copepods in freshwater ecotoxicology. Environ. Sci. Pollut. Res. 2013, 20, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Haberman, J.; Haldna, M. Indices of zooplankton community as valuable tools in assessing the trophic state and water quality of eutrophic lakes: long term study of Lake Võrtsjärv. J. Limnol. 2014, 73. [Google Scholar] [CrossRef]
- García-Chicote, J.; Armengol, X.; Rojo, C. Zooplankton species as indicators of trophic state in reservoirs from Mediterranean river basins. Inland Waters 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Stamou, G.; Polyzou, C.; Karagianni, A.; Michaloudi, E. Taxonomic distinctness indices for discriminating patterns in freshwater rotifer assemblages. Hydrobiologia 2017, 796, 319–331. [Google Scholar] [CrossRef]
- Moss, B.; Stephen, D.; Alvarez, C.; Becares, E.; Bund, W.V.D.; Collings, S.E.; Donk, E.V.; Eyto, E.D.; Feldmann, T.; Fernández-Aláez, C.; et al. The determination of ecological status in shallow lakes - a tested system (ECOFRAME) for implementation of the European Water Framework Directive: the determination of ecological status in shallow lakes. Aquat. Conserv. Mar. Freshw. Ecosyst. 2003, 13, 507–549. [Google Scholar] [CrossRef]
- Directorate-General for the Environment (European Commission). Guidance Document on Eutrophication Assessment in the Context of European Water Policies No 23; Office for Official Publications of the European Communities (OPOCE): Luxembourg, Luxembourg, 2009; ISBN 978-92-79-12987-2. [Google Scholar]
- Directorate-General for the Environment (European Commission). Monitoring under the Water Framework Directive No 7; Office for Official Publications of the European Communities (OPOCE): Luxembourg, Luxembourg, 2003; ISBN 978-92-894-5127-7. [Google Scholar]
- Moustaka-Gouni, M.; Michaloudi, E.; Sommer, U. Modifying the PEG model for Mediterranean lakes - no biological winter and strong fish predation. Freshw. Biol. 2014, 59, 1136–1144. [Google Scholar] [CrossRef] [Green Version]
- McCauley, E.; Kalff, J. Empirical relationships between phytoplankton and zooplankton biomass in lakes. Can. J. Fish. Aquat. Sci. 1981, 38, 458–463. [Google Scholar] [CrossRef]
- Xu, F.-L.; Zhao, Z.-Y.; Zhan, W.; Zhao, S.-S.; Dawson, R.W.; Tao, S. An ecosystem health index methodology (EHIM) for lake ecosystem health assessment. Ecol. Model. 2005, 188, 327–339. [Google Scholar] [CrossRef]
- Kane, D.D.; Gordon, S.I.; Munawar, M.; Charlton, M.N.; Culver, D.A. The Planktonic Index of Biotic Integrity (P-IBI): An approach for assessing lake ecosystem health. Ecol. Indic. 2009, 9, 1234–1247. [Google Scholar] [CrossRef]
- Jeppesen, E.; Peder Jensen, J.; Søndergaard, M.; Lauridsen, T.; Junge Pedersen, L.; Jensen, L. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 1997, 342, 151–164. [Google Scholar] [CrossRef]
- Weithoff, G. The concepts of “plant functional types” and “functional diversity” in lake phytoplankton - a new understanding of phytoplankton ecology? Freshw. Biol. 2003, 48, 1669–1675. [Google Scholar] [CrossRef]
- Barnett, A.J.; Finlay, K.; Beisner, B.E. Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshw. Biol. 2007, 52, 796–813. [Google Scholar] [CrossRef]
- Fryer, G. The feeding mechanism of some freshwater cyclopoid copepods. Proc. Zool. Soc. Lond. 2009, 129, 1–25. [Google Scholar] [CrossRef]
- Brandl, Z. Feeding strategies of planktonic cyclopoids in lacustrine ecosystems. J. Mar. Syst. 1998, 15, 87–95. [Google Scholar] [CrossRef]
- Arp, W.; Deneke, R. Untersuchungen des Phyto- und Zooplanktons schleswig-holsteinischer Seen 2006; State Office for Agriculture, Environment and Rural Areas of Schleswig-Holstein: Berlin, Germany, 2007; p. 22.
- Arp, W.; Kasten, J.; Maier, G. Untersuchungen des Phyto- und Zooplanktons schleswig-holsteinischer Seen 2009; Landesamt für Natur und Umwelt: Berlin, Germany, 2010; p. 248.
- De Senerpont Domis, L.N.; Elser, J.J.; Gsell, A.S.; Huszar, V.L.M.; Ibelings, B.W.; Jeppesen, E.; Kosten, S.; Mooij, W.M.; Roland, F.; Sommer, U.; et al. Plankton dynamics under different climatic conditions in space and time: Plankton dynamics under different climatic conditions. Freshw. Biol. 2013, 58, 463–482. [Google Scholar] [CrossRef]
- Alvarez Cobelas, M.; Rojo, C.; Angeler, D.G. Mediterranean limnology: current status, gaps and the future. J. Limnol. 2005, 64, 13. [Google Scholar] [CrossRef]
- Ntislidou, C.; Lazaridou, M.; Tsiaoussi, V.; Bobori, D.C. A new multimetric macroinvertebrate index for the ecological assessment of Mediterranean lakes. Ecol. Indic. 2018, 93, 1020–1033. [Google Scholar] [CrossRef]
- Quintana, X.D.; Cañedo-Argüelles, M.; Nebra, A.; Gascón, S.; Rieradevall, M.; Caiola, N.; Sala, J.; Ibàñez, C.; Sánchez-Millaruelo, N.; Boix, D. New tools to analyse the ecological status of Mediterranean wetlands and shallow lakes. In Experiences from Surface Water Quality Monitoring: The EU Water Framework Directive Implementation in the Catalan River Basin District (Part I); Munné, A., Ginebreda, A., Prat, N., Eds.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2016; pp. 171–199. ISBN 978-3-319-23895-1. [Google Scholar]
- Petriki, O.; Lazaridou, M.; Bobori, D.C. A fish-based index for the assessment of the ecological quality of temperate lakes. Ecol. Indic. 2017, 78, 556–565. [Google Scholar] [CrossRef]
- Katsiapi, M.; Moustaka-Gouni, M.; Sommer, U. Assessing ecological water quality of freshwaters: PhyCoI—a new phytoplankton community Index. Ecol. Inform. 2016, 31, 22–29. [Google Scholar] [CrossRef]
- Carlson, R.E. A trophic state index for lakes1: Trophic state index. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef]
- Pahissa, J.; Catalan, J.; Morabito, G.; Dörflinger, G.; Ferreira, J.; Laplace-Treyture, C.; Gîrbea, R.; Marchetto, A.; Polykarpou, P.; de Hoyos, C. Benefits and limitations of an intercalibration of phytoplankton assessment methods based on the Mediterranean GIG reservoir experience. Sci. Total Environ. 2015, 538, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Mazaris, A.D.; Moustaka-Gouni, M.; Michaloudi, E.; Bobori, D.C. Biogeographical patterns of freshwater micro- and macroorganisms: a comparison between phytoplankton, zooplankton and fish in the eastern Mediterranean: Biogeography of freshwater micro- and macroorganisms. J. Biogeogr. 2010, 37, 1341–1351. [Google Scholar] [CrossRef]
- Reynolds, C.S. The Ecology of Phytoplankton; Cambridge University Press: Cambridge, UK, 2006; ISBN 978-1-139-45489-6. [Google Scholar]
- Smith, V.H. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ. Sci. Pollut. Res. 2003, 10, 126–139. [Google Scholar] [CrossRef]
- Katsiapi, M.; Moustaka-Gouni, M.; Vardaka, E.; Kormas, K.A.R. Different phytoplankton descriptors show asynchronous changes in a shallow urban lake (L. Kastoria, Greece) after sewage diversion. Fundam. Appl. Limnol. Arch. Für Hydrobiol. 2013, 182, 219–230. [Google Scholar] [CrossRef]
- Lathrop, R.C.; Carpenter, S.R.; Robertson, D.M. Summer water clarity responses to phosphorus, Daphnia grazing, and internal mixing in Lake Mendota. Limnol. Oceanogr. 1999, 44, 137–146. [Google Scholar] [CrossRef]
- Lampert, W.; Fleckner, W.; Rai, H.; Taylor, B.E. Phytoplankton control by grazing zooplankton: A study on the spring clear-water phase. Limnol. Oceanogr. 1986, 31, 478–490. [Google Scholar] [CrossRef]
- Sommer, U.; Sommer, F. Cladocerans versus copepods: the cause of contrasting top–down controls on freshwater and marine phytoplankton. Oecologia 2006, 147, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Vardaka, E.; Moustaka-Gouni, M.; Cook, C.M.; Lanaras, T. Cyanobacterial blooms and water quality in Greek waterbodies. J. Appl. Phycol. 2005, 17, 391–401. [Google Scholar] [CrossRef]
- Hansson, L.-A.; Gustafsson, S.; Rengefors, K.; Bomark, L. Cyanobacterial chemical warfare affects zooplankton community composition. Freshw. Biol. 2007, 52, 1290–1301. [Google Scholar] [CrossRef]
- Vijverberg, J.; Boersma, M. Long-term dynamics of small-bodied and large-bodied cladocerans during the eutrophication of a shallow reservoir, with special attention for Chydorus sphaericus. Hydrobiologia 1997, 360, 233–242. [Google Scholar] [CrossRef]
- Jeppesen, E.; Peder Jensen, J.; SØndergaard, M.; Lauridsen, T.; Landkildehus, F. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient: A detailed study of Danish lakes along a phosphorus gradient. Freshw. Biol. 2000, 45, 201–218. [Google Scholar] [CrossRef]
- Brooks, J.L.; Dodson, S.I. Predation, body size, and composition of plankton. Science 1965, 150, 28–35. [Google Scholar] [CrossRef]
- Kleanthidis, P.K.; Sinis, A.I. Feeding habits of the macedonian shad, Alosa macedonica (Vinciguerra, 1921) in Lake Volvi (Greece): seasonal and ontogenetic changes. Isr. J. Zool. 2001, 47, 213–232. [Google Scholar] [CrossRef]
- Chrisafi, E.; Kaspiris, P.; Katselis, G. Feeding habits of sand smelt (Atherina boyeri, Risso 1810) in Trichonis Lake (Western Greece). J. Appl. Ichthyol. 2007, 23, 209–214. [Google Scholar] [CrossRef]
- Meerhoff, M.; Iglesias, C.; De Mello, F.T.; Clemente, J.M.; Jensen, E.; Lauridsen, T.L.; Jeppesen, E. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshw. Biol. 2007, 52, 1009–1021. [Google Scholar] [CrossRef]
- Mehner, T.; Thiel, R. A review of predation impact by 0+ fish on zooplankton in fresh and brackish waters of the temperate northern hemisphere. Environ. Biol. Fishes 1999, 56, 169–181. [Google Scholar] [CrossRef]
- Drenner, R.W.; Smith, J.D.; Threlkeld, S.T. Lake trophic state and the limnological effects of omnivorous fish. Hydrobiologia 1996, 319, 213–223. [Google Scholar] [CrossRef]
- Jeppesen, E.; Meerhoff, M.; Holmgren, K.; González-Bergonzoni, I.; Teixeira-de Mello, F.; Declerck, S.A.J.; De Meester, L.; Søndergaard, M.; Lauridsen, T.L.; Bjerring, R.; et al. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 2010, 646, 73–90. [Google Scholar] [CrossRef]
- Bobori, D.C.; Salvarina, I.; Michaloudi, E. Fish dietary patterns in the eutrophic Lake Volvi (East Mediterranean). J. Biol. Res. Thessalon. 2013, 19, 139–149. [Google Scholar]
- Varveris, T. Monitoring Results of Biotic Parameters of Fish at Prespa Lakes. Del. 4.4.1 IPA Project “ProLife—The Quality of Life Prerequisite for Progress and Sustainable Development in the Cross Border Area”; Region of Western Macedonia: Kozani, Greece, 2016; p. 34. [Google Scholar]
- Rosecchi, E.; Crivelli, A.J.; Catsadorakis, G. The establishment and impact of Pseudorasbora parva, an exotic fish species introduced into Lake Mikri Prespa (north-western Greece). Aquat. Conserv. Mar. Freshw. Ecosyst. 1993, 3, 223–231. [Google Scholar] [CrossRef]
- Almeida, D.; Almodóvar, A.; Nicola, G.G.; Elvira, B. Feeding tactics and body condition of two introduced populations of pumpkinseed Lepomis gibbosus: taking advantages of human disturbances? Ecol. Freshw. Fish 2009, 18, 15–23. [Google Scholar] [CrossRef]
- Rezsu, E.; Specziár, A. Ontogenetic diet profiles and size-dependent diet partitioning of ruffe Gymnocephalus cernuus, perch Perca fluviatilis and pumpkinseed Lepomis gibbosus in Lake Balaton. Ecol. Freshw. Fish 2006, 15, 339–349. [Google Scholar] [CrossRef]
- Hébert, M.-P.; Beisner, B.E.; Maranger, R. Linking zooplankton communities to ecosystem functioning: toward an effect-trait framework. J. Plankton Res. 2017, 39, 3–12. [Google Scholar] [CrossRef]
- Baird, D.J.; Rubach, M.N.; den Brinkt, P.J.V. Trait-based ecological risk assessment (TERA): The new frontier? Integr. Environ. Assess. Manag. 2008, 4, 2–3. [Google Scholar] [CrossRef]
- Moustaka-Gouni, M.; Katsiapi, M.; Stefanidou, N.; Vardaka, E.; Genitsaris, S.; Kormas, K.A.; Georgoulis, F. Restoration of two Greek lakes (Kastoria and Koronia): Success stories? In Proceedings of the Book of abstracts International Conference Protection and Restoration of the Environment XIV, Thessaloniki, Greece, 3–6 July 2018; p. 102. [Google Scholar]
- Moustaka-Gouni, M.; Sommer, U.; Economou-Amilli, A.; Arhonditsis, G.B.; Katsiapi, M.; Papastergiadou, E.; Kormas, K.A.; Vardaka, E.; Karayanni, H.; Papadimitriou, T. Implementation of the Water Framework Directive: Lessons learned and future perspectives for an ecologically meaningful classification of the status of Greek lakes, Mediterranean region. BioRxiv 2018, 371799. [Google Scholar] [CrossRef]
- Katsiapi, M.; Michaloudi, E.; Moustaka-Gouni, M.; Pahissa Lopez, J. First ecological evaluation of the ancient Balkan Lake Megali Prespa based on plankton. J. Biol. Res.-Thessalon. 2012, 17, 51–56. [Google Scholar]
- Lyche-Solheim, A.; Feld, C.K.; Birk, S.; Phillips, G.; Carvalho, L.; Morabito, G.; Mischke, U.; Willby, N.; Søndergaard, M.; Hellsten, S.; et al. Ecological status assessment of European lakes: a comparison of metrics for phytoplankton, macrophytes, benthic invertebrates and fish. Hydrobiologia 2013, 704, 57–74. [Google Scholar] [CrossRef] [Green Version]
- Polykarpou, P. Phytoplankton and microbial food web in Lake Doirani: assessment of ecological status. Master’s Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2006. [Google Scholar]
- Katsiapi, S.; Michaloudi, E.; Moustaka-Gouni, M. Phytoplankton, Zooplankton and Ecological Water Quality. Del. 4.3.1. IPA Project “ProLife—The Quality of Life Prerequisite for Progress and Sustainable Development in the Cross Border Area”; Region of Western Macedonia: Kozani, Greece, 2016; p. 62. [Google Scholar]
- Tryfon, E.; Moustaka-Gouni, M. Species composition and seasonal cycles of phytoplankton with special reference to the nanoplankton of Lake Mikri Prespa. Hydrobiologia 1997, 351, 61–75. [Google Scholar] [CrossRef]
- Michaloudi, E.; Zarfdjian, M.; Economidis, P.S. The zooplankton of Lake Mikri Prespa. Hydrobiologia 1997, 361, 77–94. [Google Scholar] [CrossRef]
- Vourka, A. Assessment of the ecological quality of Lake Petron based on phytoplankton and zooplankton. Master’s Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2011. [Google Scholar]
- Moustaka-Gouni, M. Phytoplankton succession and diversity in a warm monomictic, relatively shallow lake: Lake Volvi, Macedonia, Greece. Hydrobiologia 1993, 249, 33–42. [Google Scholar] [CrossRef]
- Zarfdjian, M.H.; Vranovský, M.; Economidis, P.S. Les invertébrés planctoniques du Lac Volvi (Macédoine, Grèce). Int. Rev. Gesamten Hydrobiol. Hydrogr. 1990, 75, 403–412. [Google Scholar] [CrossRef]
Lake | Abbreviations | Latitude | Longtitude | Surface Area (Km2) | Altitude (m a.s.l.) | Mean Depth (m) | Max Depth (m) | Trophic State 1 |
---|---|---|---|---|---|---|---|---|
Amvrakia | Amv | 38°45′15.60″ | 21°10′55.09″ | 14.5 | 25 | 22 | 53 | Oligo |
Doirani | Doi | 41°12′55.52″ | 22°44′48.34″ | 34.8 | 142 | 3 | 8 | Hyper |
Kastoria | Kas | 40°31′09.59″ | 21°17′36.13″ | 30 | 629 | 4 | 9 | Eu |
Lysimachia | Lys | 38°33′38.09″ | 21°22′22.59″ | 13 | 14.5 | 3.9 | 9 | Meso |
Megali Prespa | MgP | 40°52′03.87″ | 21°01′29.31″ | 256.8 | 844 | 18 | 55 | Meso-Eu |
Mikri Prespa | MkP | 40°46′22.80″ | 21°05′05.96″ | 39.2 | 850 | 4 | 9 | Eu |
Pamvotis | Pam | 39°39′45.57″ | 20°53′27.68″ | 22 | 470 | 4.3 | 9.2 | Hyper |
Paralimni | Par | 38°27′53.70″ | 23°20′55.50″ | 10 | 51 | 4 | 8 | Meso |
Petron | Pet | 40°43′38.79″ | 21°41′49.60″ | 11 | 572 | 3 | 6 | Eu |
Trichonis | Tri | 38°32′47.10″ | 21°35′12.70″ | 97.2 | 16 | 30 | 59 | Eu |
Vegoritis | Veg | 40°45′11.06″ | 21°47′13.76″ | 46 | 524 | 25 | 52 | Eu |
Volvi | Vol | 40°40′37.57″ | 23°28′50.61″ | 68.6 | 37 | 13 | 28 | Eu |
Voulkaria | Vou | 38°52′12.80″ | 20°50′24.20″ | 9.4 | 5 | 1.6 | 2.5 | Hyper |
Metrics/Sub-Indices | Scores | |||||
---|---|---|---|---|---|---|
Total Phytoplankton Biovolume (TB) | Classification scheme | Reference (ΕxJu/NaBo) or Ultra-oligo/Oligotrophic | Good (ΕxJu/NaBo) or Mesotrophic | Moderate (ΕxJu/NaBo) or Eutrophic I | Poor (ΕxJu/NaBo) or Eutrophic II | Bad (ΕxJu/NaBo) or Hypertrophic |
PhyCoIGP Score | 1.8 | 1.4 | 0.8 | 0.4 | 0.2 | |
WHO Guidelines (WG) | Classification scheme | <Level 1 | Level 1: 0.2–1 mm3 L−1 | Level 1: >1 mm3 L−1 | Level 2: >10 mm3 L−1 | Scum formation |
PhyCoIGP Score | 0.8 | 0.7 | 0.4 | 0.3 | 0.1 | |
Nygaard Biomass (NB) | Classification scheme | 0–1 | 1–10 | 10–100 | 100–1000 | >1000 |
PhyCoIGP Score | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 | |
Nygaard Species (NS) | Classification scheme | <2 | 2–4 | >4–6 | >6–8 | >8 |
PhyCoIGP Score | 0.6 | 0.5 | 0.3 | 0.2 | 0.1 | |
Quality Group species sub-Index (QG) | Classification scheme | >60 | 46–60 | 31–45 | 16-30 | <16 |
PhyCoIGP Score | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 | |
Grazing Potential (GP) | Classification scheme | >120 | 55–120 | 15–55 | 5–15 | <5 |
PhyCoIGP Score | 0.8 | 0.7 | 0.4 | 0.3 | 0.1 |
Index | Equation | R2 | p |
---|---|---|---|
GP | y = 81.45 − 0.94 x | 0.13 | 0.008 |
PhyCoIGP | y = 5 − 0.04 x | 0.46 | <0.0001 |
PhyCoI | y = 5.19 − 0.04 x | 0.50 | <0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamou, G.; Katsiapi, M.; Moustaka-Gouni, M.; Michaloudi, E. Grazing Potential—A Functional Plankton Food Web Metric for Ecological Water Quality Assessment in Mediterranean Lakes. Water 2019, 11, 1274. https://doi.org/10.3390/w11061274
Stamou G, Katsiapi M, Moustaka-Gouni M, Michaloudi E. Grazing Potential—A Functional Plankton Food Web Metric for Ecological Water Quality Assessment in Mediterranean Lakes. Water. 2019; 11(6):1274. https://doi.org/10.3390/w11061274
Chicago/Turabian StyleStamou, Georgia, Matina Katsiapi, Maria Moustaka-Gouni, and Evangelia Michaloudi. 2019. "Grazing Potential—A Functional Plankton Food Web Metric for Ecological Water Quality Assessment in Mediterranean Lakes" Water 11, no. 6: 1274. https://doi.org/10.3390/w11061274
APA StyleStamou, G., Katsiapi, M., Moustaka-Gouni, M., & Michaloudi, E. (2019). Grazing Potential—A Functional Plankton Food Web Metric for Ecological Water Quality Assessment in Mediterranean Lakes. Water, 11(6), 1274. https://doi.org/10.3390/w11061274