Comparison of Biodegradation of Fats and Oils by Activated Sludge on Experimental and Real Scales
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Methods and Monitoring Parameters
2.1.1. Total Suspended Solids (TSS)
2.1.2. Fats and Oils
2.1.3. Chemical Oxygen Demand (COD)
2.1.4. Monitoring Parameters
2.2. Bench Scale Activated Sludge Reactor
2.2.1. Description of Equipment
Unit Control
Aeration Tank
Sedimentation Tank
2.3. Experimental Methodology
Feed Preparation
2.4. Determination of the Relationship Between COD and Fat
Operation Modes: Bench Scale Reactor
2.5. Real Scale Wastewater Treatment Plant
Wastewater Treatment Plant: Los Angeles, Bío-Bío Region, Chile
3. Results
3.1. Relationship of Fats and Oils with COD
3.2. Mass Balance and Determination of Biodegradability of Fats and Oils in the Bench-Scale Activated Sludge Reactor
3.3. Mass Balance of Fats and Oils in a Real Scale Wastewater Treatment Plant
3.4. Operation Parameters
The Efficiency of Biodegradation of Fats and Oils
3.5. Mass Loading, Biodegradation, and Oil and Fat Removal
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chipasa, K.; Medrzycka, K. Behavior of lipids in biological wastewater treatment processes. J. Ind. Microbiol. Biotechnol. 2006, 33, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Jamaly, S.; Giwa, A.; Hasan, S. Recent improvements in oily wastewater treatment: Progress, challenges and future opportunities. J. Environ. Sci. 2015, 37, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Champagne, P.; Anderson, B. Enhanced biogas production from anaerobic co-digestion of municipal wastewater treatment sludge and fat, oil and grease (FOG) by a modified two-stage thermophilic digester system with selected thermo-chemical pre-treatment. Renew. Energy 2015, 83, 474–482. [Google Scholar] [CrossRef]
- Awe, O.; Zhao, Y.; Nzihou, A.; Minh, P.; Lyczko, N. Anaerobic co-digestion of food waste and FOG with sewage sludge–realising it’s potential in Ireland. Int. J. Environ. Stud. 2018, 75, 496–517. [Google Scholar] [CrossRef]
- Pintor, A.; Vilar, V.; Botelho, C.; Boaventura, R. Oil and grease removal from wastewaters: Sorption treatment as an alternative to state-of-the-art technologies. A critical review. Chem. Eng. J. 2016, 297, 229–255. [Google Scholar] [CrossRef]
- Ziels, R.; Karlsson, A.; Beck, D.; Ejlertsson, J.; Yekta, S.; Bjorn, A.; Svensson, B. Microbial community adaptation influences long-chain fatty acid conversion during anaerobic codigestion of fats, oils, and grease with municipal sludge. Water Res. 2016, 103, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Kirk, R.E. Encyclopedia of Chemical Technology, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Sainz, J. Separación de aceites de efluentes industriales. Ing. Quím. 2004, 409, 93–99. [Google Scholar]
- Ronzano, E.; Dapena, J. Tratamiento Biológico de Las Aguas Residuals, 2nd ed.; Ed. Díaz de Santos: Madrid, Spain, 2002. [Google Scholar]
- Belitz, H.D.; Grosch, W. Química de los Alimentos, 3rd ed.; Editorial Acribia S. A.: Zaragoza, España, 2009. [Google Scholar]
- WEF; American Society of Civil Engineers. Design of Municipal Wastewater Treatment Plants. In WEF Manual of Practice 8, ASCE Manual and Report on Engineering Practice 76; Water Environment Federation: Alexandria, VA, USA, 1992. [Google Scholar]
- Rittmann, B.; McCarty, P. Biotecnología del Medio Ambiente; McGraw-Hill: Madrid, Spain, 2001. [Google Scholar]
- Weatherley, L.; Rooney, D.; Niekerk, M. Clean synthesis of fatty acids in an intensive Lipase-Catalysed Bioreactor. J. Chem. Technol. Biotechnol. 1997, 68, 437–441. [Google Scholar] [CrossRef]
- Tsouris, C.; Neal, S.; Shah, V.; Spurrier, M.; Lee, M. Comparison of liquid-liquid dispersions formed by a stirred tank and elestrostatic spraying. Chem. Eng. Commun. 1997, 160, 175–197. [Google Scholar] [CrossRef]
- Albasi, C.; Riba, J.; Sokolovska, O.; Bales, V. Enzimatic hydrolysis of sunflower oil, Characterization of Interface. J. Chem. Technol. Biotechnol. 1997, 69, 329–336. [Google Scholar] [CrossRef]
- Pongket, U.; Piyatheerawong, W.; Thapphasaraphong, S.; H-Kittikun, A. Enzymatic preparation of linoleic acid from sunflower oil: An experimental design approach. Biotechnol. Biotechnol. Equip. 2015, 29, 926–934. [Google Scholar] [CrossRef]
- APHA-AWWA-WPFC. Métodos Normalizados Para el Análisis de Agua Potable y Aguas Residuales, 17th ed.; Editorial Díaz de Santos: Madrid, Spain, 1992. [Google Scholar]
- Crespi, M.; Huertas, J. Determinación simplificada de la demanda química de oxígeno por el método del dicromato. Tecnol. Del Agua 1984, 13, 35–40. [Google Scholar]
- Vittadini, G. Catálogo de Información de Equipamiento de Biocontrol; Vittadini Riferiment: Milan, Italy, 1991. [Google Scholar]
- Tchobanoglous, G.; Burton, F.; Stensel, H. Wastewater Engineering, Treatment and Reuse, 4th ed.; Metcalf & Eddy, Inc.; McGraw-Hill Companies, Inc.: New York, NY, USA, 2003. [Google Scholar]
- Degremont. Diseño, Construcción, Montaje y Operación Planta de Tratamiento de Aguas Servidas de Los Angeles, Chile; Degremont: Rueil-Malmaison, France, 2001. [Google Scholar]
- Henze, M.; Harremoes, P.; Jansen, J.; Arvin, E. Wastewater, Volumes and Composition: Biological and Chemical Process, Wastewater Treatment; Springer: Berlin, Germany, 1995. [Google Scholar]
- Brenes, M.; Garcia, P.; Romero, C.; Garrido, A. Treatment of green table olive wastewater by activated-sludge process. J. Chem. Technol. Biotechnol. 2000, 75, 459–463. [Google Scholar] [CrossRef]
- Young, J. Removal of grease and oil by biological treatment processes. J. Water Pollut. Control Fed. 1979, 51, 2071–2087. [Google Scholar] [PubMed]
- Schwarzenbeck, N.; Borges, J.; A, W. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl. Microbiol. Biotechnol. 2005, 66, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Chipasa, K.; Medrzycka, K. Characterization of the fate of lipids in activated sludge. J. Environ. Sci. 2008, 20, 536–542. [Google Scholar] [CrossRef]
- Cisterna, P. Biological Treatment by Active Sludge with High Biomass Concentration at Laboratory Scale for Mixed Inflow of Sunflower Oil and Saccharose. Environments 2017, 4, 69. [Google Scholar] [CrossRef]
- Fernandez, M.; Abalos, A.; Crombet, S.; Caballero, H. Ensayos de biodegradabilidad anaerobia de aguas residuales generadas en una planta refinadora de aceite de soja. Interciencia 2010, 35, 600–604. [Google Scholar]
- Cisterna, P.; Gutiérrez, A.; Sastre-Andres, H. Impact of previous acclimatization of biomass and alternative substrates in sunflower oil biodegradation. Dyna 2015, 82, 56–61. [Google Scholar] [CrossRef]
Fat/Oil | Position | 16:0 | 18 | 18:1 (9) | 18:2 (9.12) | 18:3 (9.12.15) |
---|---|---|---|---|---|---|
Sunflower oil | 1 | 10.6 | 3.3 | 16.6 | 69.5 | 0.1 |
2 | 1.3 | 1.1 | 21.5 | 76 | ||
3 | 9.7 | 9.2 | 27.6 | 53.5 |
Parameter | WWTP-LA | Activated Sludge Experimental Plant |
---|---|---|
Single substrate | Fats and oils | Sunflower oil |
ML ((kg COD/day)/kg MLSS) | 0.3–1.5 | 0.15–1.1 |
Structure | SBR | Conventional–continuous |
Concentration Fats and Oil of the influent | 1000–2500 | 333–460 |
MLSS (kg/m3) | 8.8–14 | 3.2–4.8 |
Fats and oils biodegradation (%) | 69–95 | 64–75 |
Volume (m3) | 5128 | 0.01 |
Influent flow (m3/day) | 1000 | 0.024 |
Length of Operation Including Balance (days) | Mass of Oil Fed (g) | Mass of Retained Oil (g) | Mass of Oil in the Effluent (g) | Mass of Biodegr-Adation (g) | Mass of Sedimentation Oil (g) | Biodegradation Efficiency (%) |
---|---|---|---|---|---|---|
1 to 8 | 79 | 12.3 | 5.4 | 54.8 | 6.5 | 75 |
9 to 16 | 120 | 28 | 8 | 65 | 19 | 71 |
17 to 23 | 157 | 70 | 10 | 56 | 21 | 64 |
Period | Influent (kg) | Effluent (kg) | Efficiency Elimination Water Line (%) | Sludge (kg) | Biodegraded Mass (kg) | Efficiency Biodegradation System (%) |
---|---|---|---|---|---|---|
1 | 46.604 | 2.072 | 96 | 264 | 44.268 | 95 |
2 | 19.005 | 1.456 | 92 | 676 | 16.872 | 89 |
3 | 25.572 | 3.164 | 88 | 85 | 22.323 | 87 |
4 | 10.083 | 1.045 | 90 | 110 | 8.927 | 89 |
5 | 16.562 | 4.725 | 71 | 439 | 11.398 | 69 |
6 | 11.031 | 1.446 | 87 | 118 | 9.467 | 86 |
7 | 9.269 | 987 | 89 | 0 | 8.282 | 89 |
Total | 138.126 | 14.895 | 89 | 1.693 | 121.538 | 88 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cisterna-Osorio, P.; Arancibia-Avila, P. Comparison of Biodegradation of Fats and Oils by Activated Sludge on Experimental and Real Scales. Water 2019, 11, 1286. https://doi.org/10.3390/w11061286
Cisterna-Osorio P, Arancibia-Avila P. Comparison of Biodegradation of Fats and Oils by Activated Sludge on Experimental and Real Scales. Water. 2019; 11(6):1286. https://doi.org/10.3390/w11061286
Chicago/Turabian StyleCisterna-Osorio, Pedro, and Patricia Arancibia-Avila. 2019. "Comparison of Biodegradation of Fats and Oils by Activated Sludge on Experimental and Real Scales" Water 11, no. 6: 1286. https://doi.org/10.3390/w11061286
APA StyleCisterna-Osorio, P., & Arancibia-Avila, P. (2019). Comparison of Biodegradation of Fats and Oils by Activated Sludge on Experimental and Real Scales. Water, 11(6), 1286. https://doi.org/10.3390/w11061286