Study on Characteristics of Nitrogen and Phosphorus Loss under an Improved Subsurface Drainage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment Design
2.2. The Initial Soil Nitrogen and Phosphorus Contents
2.3. Measuring Method of the Nitrogen and Phosphorus in Outflow
3. Results
3.1. pH
3.2. Total Nitrogen
3.3. Ammonia Nitrogen
3.4. Nitrate Nitrogen
3.5. Total Phosphate
3.6. Soluble Reactive Phosphate
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Skaggs, R.W.; Brevé, M.A.; Gilliam, J.W. Hydrologic and water quality impacts of agricultural drainage. Crit. Rev. Environ. Sci. Technol. 1994, 24, 1–32. [Google Scholar] [CrossRef]
- Faridmarandi, S.; Naja, G.M. Phosphorus and Water Budgets in an Agricultural Basin. Environ. Sci. Technol. 2014, 48, 8481–8490. [Google Scholar] [PubMed]
- Kaushal, S.S.; Groffman, P.M.; Band, L.E.; Elliott, E.M.; Shields, C.A.; Kendall, C. Tracking Nonpoint Source Nitrogen Pollution in Human-Impacted Watersheds. Environ. Sci. Technol. 2011, 45, 8225–8232. [Google Scholar] [CrossRef] [PubMed]
- Mrdjen, I.; Fennessy, S.; Schaal, A.; Dennis, R.; Slonczewski, J.L.; Lee, S.; Lee, J. Tile Drainage and Anthropogenic Land Use Contribute to Harmful Algal Blooms and Microbiota Shifts in Inland Water Bodies. Environ. Sci. Technol. 2018, 52, 8215–8223. [Google Scholar] [PubMed]
- Dodds, W.K.; Bouska, W.W.; Eitzmann, J.L.; Pilger, T.J.; Pitts, K.L.; Riley, A.J.; Schloesser, J.T.; Thornbrugh, D.J. Eutrophication of U.S. Freshwaters: Analysis of Potential Economic Damages. Environ. Sci. Technol. 2009, 43, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Ritzema, H.P. Drainage Principles and Applications; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 2006. [Google Scholar]
- Tao, Y.; Wang, S.; Xu, D.; Qu, X. Experiment and analysis on flow rate of improved subsurface drainage with ponded water. Agric. Water Manag. 2016, 177, 1–9. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, S.; Xu, D.; Yuan, H.; Chen, H. Field and numerical experiment of an improved subsurface drainage system in Huaibei plain. Agric. Water Manag. 2017, 194, 24–32. [Google Scholar] [CrossRef]
- Ibrahim, T.G.; Goutelle, A.; Healy, M.G.; Brennan, R.; Tuohy, P.; Humphreys, J.; Lanigan, G.; Brechignac, J.; Fenton, O. Mixed agricultural pollutant mitigation using woodchip/pea gravel and woodchip/zeolite permeable reactive interceptors. Water Air Soil Pollut. 2015, 226, 51. [Google Scholar] [CrossRef]
- Murnane, J.; Brennan, R.; Healy, M.; Fenton, O. Assessment of intermittently loaded woodchip and sand filters to treat dairy soiled water. Water Res. 2016, 103, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, D.; Zhang, G.; Wang, Y.; Wang, C.; Teng, Y.; Christie, P. Nitrogen and phosphorus leaching losses from intensively managed paddy fields with straw retention. Agric. Water Manag. 2014, 141, 66–73. [Google Scholar] [CrossRef]
- Williams, M.R.; King, K.W.; Fausey, N.R. Contribution of tile drains to basin discharge and nitrogen export in a headwater agricultural watershed. Agric. Water Manag. 2015, 158, 42–50. [Google Scholar] [CrossRef]
- King, K.W.; Williams, M.R.; Macrae, M.L.; Fausey, N.R.; Frankenberger, J.; Smith, D.R.; Kleinman, P.J.; Brown, L.C. Phosphorus transport in agricultural subsurface drainage: A review. J. Environ. Qual. 2014, 44, 467. [Google Scholar]
- Algoazany, A.S.; Kalita, P.K.; Czapar, G.F.; Mitchell, J.K. Phosphorus transport through subsurface drainage and surface runoff from a flat watershed in east central Illinois, USA. J. Environ. Qual. 2007, 36, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Eastman, M.; Gollamudi, A.; Stämpfli, N.; Madramootoo, C.A.; Sarangi, A. Comparative evaluation of phosphorus losses from subsurface and naturally drained agricultural fields in the Pike River watershed of Quebec, Canada. Agric. Water Manag. 2010, 97, 596–604. [Google Scholar] [CrossRef]
- Baker, J.L.; Melvin, S.W.; Lemke, D.W.; Lawlor, P.A.; Crumpton, W.G.; Helmers, M.J. Subsurface Drainage in Iowa and the Water Quality Benefits and Problem; American Society of Agricultural Engineers: St. Joseph, MI, USA, 2004; pp. 39–50. [Google Scholar]
- Bengtson, R.L. Agricultural Drainage and Water Quality in Mississippi Delta. J. Irrig. Drain. Eng. 1995, 121, 292–295. [Google Scholar] [CrossRef]
- Grazhdani, S.; Jacquin, F.; Sulçe, S. Effect of subsurface drainage on nutrient pollution of surface waters in south eastern Albania. Sci. Total Environ. 1996, 191, 15–21. [Google Scholar] [CrossRef]
- Turtola, E.; Paajanen, A. Influence of improved subsurface drainage on phosphorus losses and nitrogen leaching from a heavy clay soil. Agric. Water Manag. 1995, 28, 295–310. [Google Scholar] [CrossRef]
- Bruun, J.; Pugliese, L.; Hoffmann, C.C.; Kjaergaard, C. Solute transport and nitrate removal in full-scale subsurface flow constructed wetlands of various designs treating agricultural drainage water. Ecol. Eng. 2016, 97, 88–97. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, M.; Liu, L. Experimental study on permeability and nitrogen removal of envelope materials for drainage pipe. J. Irrig. Drain. 2013, 32, 21–23. [Google Scholar]
- Nie, F.; Xiang, S.; Min, L.; Liu, J.; Wang, B. Simulation experiment of treating rainwater runoff with different inf’lltration media. Hubei Agric. Sci. 2012, 51, 5318–5323. [Google Scholar]
- Fisher, L.H. Effect of Water-Column pH on Sediment-Phosphorus Release Rates in Upper Klamath Lake, Oregon, 2001; U.S. Geological Survey: Reston, VA, USA, 2004.
- Kim, L.H.; Choi, E.; Stenstrom, M.K. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere 2003, 50, 53–61. [Google Scholar] [CrossRef]
- Xu-Qian, L.I.; Zhu, Y.N.; Guang, Y.U.; Xie, X.; Song, S. Experimental study on migration and transformation of NH4+-N in aquitard under influence of pH. Water Resour. Prot. 2011, 15, 35–37. [Google Scholar]
- Cui, T.; Li, Z.; Wang, S. Effects of in-situ straw decomposition on composition of humus and structure of humic acid at different soil depths. J. Soils Sediments 2017, 17, 2391–2399. [Google Scholar] [CrossRef]
- Lin, J.J.; Zhang, S.; Liu, D.; Zhou, B.; Xiao, X.J.; Ma, H.Y.; Yu, Z.G. Effect of Seasonal Temperature Increasing on Nitrogen Mineralization in Soil of the Water Level Fluctuating Zone of Three Gorge Tributary During the Dry Period. Environ. Sci. 2016, 37, 697–702. [Google Scholar]
- Wang, L.; Zhao, L.; Bin, Z.; Wang, X. Characteristics and evaluation of matrix fertilities of the waste lands after construction of Ha-Tong expressway. Soil Fertil. Sci. China 2016, 3, 49-53; 66. [Google Scholar]
- Chen, S.; Ding, X.Q.; Zhu, Z.K.; Wang, J.; Peng, P.Q.; Ge, T.D.; Wu, J.S. Effect of Straw Application on the Dynamics of Exogenous Nitrogen and Microbial Activity in Paddy Soil. Environ. Sci. 2017, 38, 1613–1621. [Google Scholar]
- Lu, W. Form Distribution of Nitrogen and Phosphorus and Corn Growth Characteristics in the Straw Improved Soil. Ph.D. Thesis, College of Environment and Resources, Jilin University, Changchun, China, 2016. [Google Scholar]
- Chen, D. Studies on Effect of Soil Tillage and Straw Returning to Field in Multi-Cropping Paddy Field. Ph.D. Thesis, Agronomy College, Hunan Agricultural University, Changsha, China, 2009. [Google Scholar]
- Turpin, N.; Bontems, P.; Rotillon, G.; Bärlund, I.; Kaljonen, M.; Tattari, S.; Feichtinger, F.; Strauss, P.; Haverkamp, R.; Garnier, M.; et al. AgriBMPWater: Systems approach to environmentally acceptable farming. Environ. Model. Softw. 2005, 20, 187–196. [Google Scholar] [CrossRef]
- Xue, L.; Yu, Y.; Yang, L. Maintaining yields and reducing nitrogen loss in rice–wheat rotation system in Taihu Lake region with proper fertilizer management. Environ. Res. Lett. 2014, 9, 115010. [Google Scholar] [CrossRef]
- Kizito, S.; Wu, S.; Kipkemoi, K.; Lei, M.; Lu, Q.; Bah, H.; Dong, R. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci. Total Environ. 2015, 505, 102–112. [Google Scholar] [CrossRef]
- Sarkhot, D.V.; Ghezzehei, T.A.; Berhe, A.A. Effectiveness of Biochar for Sorption of Ammonium and Phosphate from Dairy Effluent. J. Environ. Qual. 2013, 42, 1545. [Google Scholar] [CrossRef]
- Onar, A.N.; Ozturk, B. Adsorption of phosphate onto pumice powder. Environ. Technol. 1993, 14, 1081–1087. [Google Scholar] [CrossRef]
- Li, L.; Xu, C.H.E.N.; Dan, W.U. Adsorption of aqueous nitrate-N by immobilized modified biochar. J. Agro Environ. Sci. 2015, 34, 137–143. [Google Scholar]
- Kovacic, D.A.; David, M.B.; Gentry, L.E.; Starks, K.M.; Cooke, R.A. Effectiveness of Constructed Wetlands in Reducing Nitrogen and Phosphorus Export from Agricultural Tile Drainage. J. Environ. Qual. 2000, 29, 1262. [Google Scholar] [CrossRef]
- Leone, A.; Ripa, M.N.; Boccia, L.; Porto, A.L. Phosphorus export from agricultural land: A new simple quantitative methodology. Biosyst. Eng. 2008, 101, 270–280. [Google Scholar] [CrossRef]
5 June 2016 | 7 June 2016 | 24 June 2016 | 6 September 2017 | 12 September 2017 | 29 June 2018 | |
---|---|---|---|---|---|---|
Initial stage | 20 | 20 | 40 | 60 | 70 | 100 |
Middle stage | 120 | 140 | 260 | 220 | 260 | 240 |
End stage | 340 | 480 | 530 | 380 | 440 | 510 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Y.; Wang, S.; Guan, X.; Xu, D.; Chen, H.; Ji, M. Study on Characteristics of Nitrogen and Phosphorus Loss under an Improved Subsurface Drainage. Water 2019, 11, 1467. https://doi.org/10.3390/w11071467
Tao Y, Wang S, Guan X, Xu D, Chen H, Ji M. Study on Characteristics of Nitrogen and Phosphorus Loss under an Improved Subsurface Drainage. Water. 2019; 11(7):1467. https://doi.org/10.3390/w11071467
Chicago/Turabian StyleTao, Yuan, Shaoli Wang, Xiaoyan Guan, Di Xu, Haorui Chen, and Mengzhe Ji. 2019. "Study on Characteristics of Nitrogen and Phosphorus Loss under an Improved Subsurface Drainage" Water 11, no. 7: 1467. https://doi.org/10.3390/w11071467
APA StyleTao, Y., Wang, S., Guan, X., Xu, D., Chen, H., & Ji, M. (2019). Study on Characteristics of Nitrogen and Phosphorus Loss under an Improved Subsurface Drainage. Water, 11(7), 1467. https://doi.org/10.3390/w11071467