Modelling the Impacts of Bathymetric Changes on Water Level in China’s Largest Freshwater Lake
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Collection
2.3. Model Description
2.4. Hydrodynamic Modelling
2.5. Estimate of the Lake’s Bathymetric Changes
3. Results
3.1. Calibration of the Hydrodynamic Model
3.2. Contributions of Bathymetric Changes to Water Level
3.3. Areal Influences of Bathymetric Changes on Water Level
3.4. Response of Water Velocity in Low Water Level Periods to Bathymetric Changes
4. Discussion
4.1. Comparison with the Effects of Bathymetric Changes in Previous Studies
4.2. Potential Influence of Water Level and Velocitiy Variations to Lake Poyang Ecosystem
4.3. Uncertainty in Hydrodynamic Modelling
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lai, X.J.; Shankman, D.; Huber, C.; Yesou, H.; Huang, Q.; Jiang, J.H. Sand mining and increasing Poyang Lake’s discharge ability: A reassessment of causes for lake decline in China. J. Hydrol. 2014, 519, 1698–1706. [Google Scholar] [CrossRef]
- Shankman, D.; Liang, Q.L. Landscape Changes and Increasing Flood Frequency in China’s Poyang Lake Region. Prof. Geogr. 2003, 55, 434–445. [Google Scholar] [CrossRef]
- Hu, Q.; Feng, S.; Guo, H.; Chen, G.Y.; Jiang, T. Interactions of the Yangtze river flow and hydrologic processes of the Poyang Lake, China. J. Hydrol. 2007, 347, 90–100. [Google Scholar] [CrossRef]
- Shankman, D.; Keim, B.D.; Song, J. Flood frequency in China’s Poyang Lake region: Trends and teleconnections. Int. J. Climatol. 2006, 26, 1255–1266. [Google Scholar] [CrossRef]
- Du, Y.L.; Zhou, H.D.; Peng, W.Q.; Liu, X.B.; Wang, S.Y.; Yin, S.H. Modeling the impacts of the change of river-lake relationship on the hydrodynamic and water quailty revolution in Poyang Lake. Acta Sci. Circumstantiae 2015, 35, 1274–1284. [Google Scholar]
- Wu, Z.S.; Cai, Y.J.; Liu, X.; Xu, C.P.; Chen, Y.W.; Zhang, L. Temporal and spatial variability of phytoplankton in Lake Poyang: The largest freshwater lake in China. J. Great Lakes Res. 2013, 39, 476–483. [Google Scholar] [CrossRef]
- Cao, J.; Chu, Z.; Du, Y.L.; Hou, Z.Y.; Wang, S.R. Phytoplankton dynamics and their relationship with environmental variables of Lake Poyang. Hydrol. Res. 2016, 47, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.L.; Yao, J.; Zhao, G.Z.; Zhang, Q. Evidences of hydraulic relationships between groundwater and lake water across the large floodplain wetland of Poyang Lake, China. Water Sci. Technol. 2018, 18, 698–712. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, X.C.; Werner, A.D.; Li, Y.L.; Yao, J.; Li, X.H.; Xu, C.Y. An investigation of enhanced recessions in Poyang Lake: Comparison of Yangtze River and local catchment impacts. J. Hydrol. 2014, 517, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Cui, T.; Xu, X.F.; Liu, L.; Fu, S.S. Variation characteristics of annual average runoff and evolution law of high and low in Poyang Lake Basin. Water Resour. Power 2014, 32, 22–25. [Google Scholar]
- Sun, X.S.; Tan, G.L.; Chen, F.C. Encyclopedia of Rivers and Lakes in Jiangxi; Changjiang Press: Hubei, China, 2009. [Google Scholar]
- Ye, X.C.; Zhang, Q.; Bai, L.; Hu, Q. A modeling study of catchment discharge to Poyang Lake under future climate in China. Quat. Int. 2011, 244, 221–229. [Google Scholar] [CrossRef]
- Tan, G.L.; Guo, S.L.; Wang, J.; Lv, S.Y. Hydrology and Water Resources Research Evolution in Poyang Lake Ecological Economic Zone; China Water and Power Press: Beijing, China, 2012. [Google Scholar]
- Min, Q.; Zhan, L.S. Characteristics of low-water level changes in Lake Poyang during 1952–2011. J. Lake Sci. 2012, 24, 675–678. [Google Scholar]
- Lai, X.J.; Huang, Q.; Zhang, Y.H.; Jiang, J.H. Impact of lake inflow and the Yangtze River flow alterations on water levels in Poyang Lake, China. Lake Reserv. Manag. 2014, 30, 321–330. [Google Scholar] [CrossRef]
- Ye, X.C.; Zhang, Q.; Liu, J.; Li, X.H.; Xu, C.Y. Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake catchment, China. J. Hydrol. 2013, 494, 83–95. [Google Scholar] [CrossRef]
- Guo, H.; Hu, Q.; Hang, Q. Changes in Hydrological Interactions of the Yangtze River and the Poyang Lake in China during 1957–2008. Acta Geogr. Sin. 2011, 66, 609–618. [Google Scholar]
- Zhang, Z.X.; Chen, X.; Xu, C.Y.; Hong, Y.; Hardy, J.; Sun, Z.H. Examining the influence of river–lake interaction on the drought and water resources in the Poyang Lake basin. J. Hydrol. 2015, 522, 510–521. [Google Scholar] [CrossRef]
- Guo, H.; Hu, Q.; Zhang, Q. Effects of the three gorges dam on Yangtze river flow and river interaction with Poyang Lake, China: 2003–2008. J. Hydrol. 2012, 416, 19–27. [Google Scholar] [CrossRef]
- Jiang, F.; Qi, S.H.; Liao, F.Q.; Zhang, X.X.; Wang, D.; Zhu, J.X.; Xiong, M.Y. Hydrological and sediment effects from sand mining in Poyang Lake during. 2001–2010. Acta Geogr. Sin. 2015, 70, 837–845. [Google Scholar]
- Mei, X.; Dai, Z.; Du, J.; Chen, J. Linkage between Three Gorges Dam impacts and the dramatic recessions in China’s largest freshwater lake, Poyang Lake. Sci. Rep. 2015, 5, 18197. [Google Scholar] [CrossRef]
- Lai, G.Y.; Wang, P.; Huang, X.L.; Xiong, J.Q.; Liu, Y.; Zeng, F.H. A simulation research of impacts of the Lake Poyang hydraulic project on hydrology and hydrodynamics. J. Lake Sci. 2015, 27, 128–140. [Google Scholar] [Green Version]
- Wang, P.; Lai, G.Y.; Huang, X.L. Simulation of the impact of Lake Poyang Project on the dynamic of lake water level. J. Lake Sci. 2014, 26, 29–36. [Google Scholar]
- Lu, C.; Zhang, F.; Liu, Z.; Hao, S.; Wu, Z. Three-dimensional numerical simulation of sediment transport in Lake Tai based on EFDC model. J. Food Agric. Environ. 2013, 11, 1343–1348. [Google Scholar]
- Huang, J.C.; Zhang, Y.J.; Huang, Q.; Gao, J.F. When and where to reduce nutrient for controlling harmful algal blooms in large eutrophic lake Chaohu, China? Ecol. Indic. 2018, 89, 808–817. [Google Scholar] [CrossRef]
- Huang, J.C.; Qi, L.Y.; Gao, J.F.; Kim, D.K. Risk assessment of hazardous materials loading into four large lakes in China: A new hydrodynamic indicator based on EFDC. Ecol. Indic. 2017, 80, 23–30. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.Z.; Zou, R.; He, B.; Zhu, X.; Liu, Y.; Wang, J.S.; Zhu, Y.G. A three-dimensional water quality modeling approach for exploring the eutrophication responses to load reduction scenarios in Lake Yilong (China). Environ. Pollut. 2013, 177, 13–21. [Google Scholar] [CrossRef]
- Zou, R.; Zhang, X.L.; Liu, Y.; Zhao, L.; Zhu, X.; Yan, X.P.; Yang, P.J. A Linked EFDC-NN model for risk-based load reduction analysis of Lake Fuxian watershed. China Environ. Sci. 2013, 33, 1721–1727. [Google Scholar]
- Wu, G.; Xu, Z. Prediction of algal blooming using EFDC model: Case study in the Daoxiang Lake. Ecol. Model. 2011, 222, 1245–1252. [Google Scholar] [CrossRef]
- Li, Y.P.; Wang, J.Y.; Hua, L. Response of algae growth to pollution reduction of drainage basin based on EFDC model for channel reservoirs: A case of Changtan Reservior, Guangdong Province. J. Lake Sci. 2015, 27, 811–818. [Google Scholar]
- Tang, T.J.; Yang, S.; Yin, K.H.; Zou, R. Simulation of eutrophication in Shenzhen Reservior based on EFDC model. J. Lake Sci. 2014, 26, 393–400. [Google Scholar]
- Ji, Z.J.; Morton, M.R.; Hamrick, J.M. Wetting and Drying Simulation of Estuarine Processes. Estuar. Coast. Shelf Sci. 2001, 53, 683–700. [Google Scholar] [CrossRef]
- Ji, Z.G.; Hamrick, J.H.; Pagenkopf, J. Sediment and Metals Modeling in Shallow River. J. Environ. Eng. 2002, 2, 105–119. [Google Scholar] [CrossRef]
- Ji, Z.G.; Hu, G.D.; Shen, J.; Wang, Y.S. Three-dimensional modeling of hydrodynamic processes in the St. Lucie Estuary. Estuar. Coast. Shelf Sci. 2007, 73, 188–200. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhang, Q.; Werner, A.D.; Yao, J. Investigation of Residence and Travel Times in a Large Floodplain Lake with Complex Lake–River Interactions: Poyang Lake (China). Water 2015, 7, 1991–2012. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhang, Q.; Werner, A.D.; Yao, J. Investigating a complex lake-catchment-river system using artificial neural networks: Poyang Lake (China). Hydrol. Res. 2015, 46, 912–928. [Google Scholar] [CrossRef]
- Zhang, Q.; Werner, A.D. Hysteretic relationships in inundation dynamics for a large lake–floodplain system. J. Hydrol. 2015, 527, 160–171. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, J.; Hao, J. Numerical Simulation of Hydrodynamic Characteristics and Water Quality in Yangchenghu Lake. In Advances in Water Resources and Hydraulic Engineering; Springer: Berlin/Heidelberg, Germany, 2009; pp. 710–715. [Google Scholar]
- Zacharias, I.; Dimitriou, E.; Koussouris, T. Integrated water management scenarios for wetland protection: Application in Trichonis Lake. Environ. Model. Softw. 2005, 20, 177–185. [Google Scholar] [CrossRef]
- Madsen, H. Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Adv. Water Resour. 2003, 26, 205–216. [Google Scholar] [CrossRef]
- Chen, C.F.; Meselhe, E.; Waldon, M. Assessment of mineral concentration impacts from pumped stormwater on an Everglades Wetland, Florida, USA—Using a spatially-explicit model. J. Hydrol. 2012, 452, 25–39. [Google Scholar] [CrossRef]
- Long, S.A.; Tachiev, G.I.; Fennema, A. Modeling the impact of restoration efforts on phosphorus loading and transport through Everglades National Park, FL, USA. Sci. Total Environ. 2015, 520, 81–95. [Google Scholar] [CrossRef]
- Rullyanto, A.; Jonasdottir, S.H.; Visser, A.W. Advective loss of overwintering Calanus finmarchicus from the Faroe–Shetland Channel. Deep-Sea Res. I 2015, 98, 76–82. [Google Scholar] [CrossRef]
- Andersen, J.; Refsgaard, J.C.; Jensen, K.H. Distributed hydrological modelling of the Senegal River Basin-model construction and validation. J. Hydrol. 2001, 247, 200–214. [Google Scholar] [CrossRef]
- Huang, J.C.; Gao, J.F.; Mooij, W.M.; Hörmann, G.; Fohrer, N. A Comparison of Three Approaches to Predict Phytoplankton Biomass in Gonghu Bay of Lake Taihu. J. Environ. Inform. 2014, 24, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Lai, X.J.; Jiang, J.H.; Huang, Q.; Xu, L.G. Two-dimensional numerical simulation of hydrodynamic and pollutant transport for Lake Poyang. J. Lake Sci. 2011, 23, 893–902. [Google Scholar] [Green Version]
- Lai, X.J.; Liang, Q.H.; Jiang, J.H. Impoundment Effects of the Three-Gorges-Dam on Flow Regimes in Two China’s Largest Freshwater Lakes. Water Resour. Manag. 2014, 28, 5111–5124. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, Q.; Li, Y.; Li, M. Hydrological evidence and causes of seasonal low water levels in a large river-lake system: Poyang Lake, China. Hydrol. Res. 2016, 47, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Wan, R.R.; Yang, G.S.; Wang, X.L. Temporal variation of hydrological rhythm in Poyang Lake and the associated water exchange with the Changjiang River. Sci. Geogr. Sin. 2014, 34, 1488–1496. [Google Scholar]
- Gao, J.F. Conservation and Development of China’s Five Largest Freshwater Lakes; Science Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Qi, L.Y.; Huang, J.C.; Yan, R.H.; Gao, J.F.; Wang, S.G.; Guo, Y.Y. Modeling the effects of the streamflow changes of Xinjiang Basin in future climate scenarios on the hydrodynamic conditions in Lake Poyang, China. Limnology 2016, 18, 175–194. [Google Scholar] [CrossRef]
- Huang, J.C.; Gao, J.F.; Xu, Y.; Liu, J. Towards better environmental software for spatio-temporal ecological models: Lessons from developing an intelligent system supporting phytoplankton prediction in lakes. Ecol. Inform. 2015, 25, 49–56. [Google Scholar] [CrossRef]
- Leeuw, J.D.; Shankman, D.; Wu, G.F.; de Boer, W.F.; Burnham, J.; He, Q.; Yesou, H.; Xiao, J. Strategic assessment of the magnitude and impacts of sand mining in Poyang Lake, China. Reg. Environ. Chang. 2009, 10, 95–102. [Google Scholar] [CrossRef]
- Qi, L.Y.; Huang, J.C.; Gao, J.F.; Guo, Y.Y. Temporal and spatial simulation of water level and velocity during low water level statistical year in Lake Poyang. Resour. Environ. Yangtze Basin 2017, 26, 572–584. [Google Scholar]
- Barman, B.; Kumar, B.; Sarma, A.K. Dynamic characterization of the migration of a mining pit in an alluvial channel. Int. J. Sediment Res. 2019, 34, 155–165. [Google Scholar] [CrossRef]
- Barman, B.; Kumar, B.; Sarma, A.K. Impact of sand mining on alluvial channel flow characteristics. Ecol. Eng. 2019, 135, 36–44. [Google Scholar] [CrossRef]
- Tang, M.Q.; Zhang, Z.Q.; Xing, Y.Q. Environment monitoring of offshore sand mining in Peral River Estuary. Procedia Environ. Sci. 2011, 10, 1410–1415. [Google Scholar] [CrossRef]
- Qi, L.Y.; Huang, J.C.; Huang, Q.; Gao, J.F.; Wang, S.G.; Guo, Y.Y. Assessing aquatic ecological integrity for Lake Poyang, China: Part I Index development. Water 2018, 10, 943. [Google Scholar] [CrossRef]
- Haghighi, A.T.; Fazel, N.; Hekmatzadeh, A.A.; Kløve, B. Analysis of Effective Environmental Flow Release Strategies for Lake Urmia Restoration. Water Resour. Manag. 2018, 32, 3595–3609. [Google Scholar] [CrossRef] [Green Version]
- Haghighi, A.T.; Kløve, B. A sensitivity analysis of lake water level response to changes in climate and river regimes. Limnologica 2015, 51, 118–130. [Google Scholar] [CrossRef]
- Haghighi, A.T.; Menberu, M.W.; Aminnezhad, M.; Marttila, H.; Kløve, B. Can lake sensitivity to desiccation be predicted from lake geometry? J. Hydrol. 2016, 539, 599–610. [Google Scholar] [CrossRef] [Green Version]
Item. | Data Source | Spatial Resolution | Temporal Resolution | Variable | Unit |
---|---|---|---|---|---|
Meteorological Data | China Meteorological Data Sharing Service System | Boyang and Nanchang meteorological stations | Daily (2000, 2004, 2010) | PR | mm |
EVP | mm | ||||
PATM | hPa | ||||
T | °C | ||||
HR | % | ||||
SOLSWR | MJ/m2 | ||||
WS | m/s | ||||
WD | ° | ||||
Hydrological Data | Poyang Lake Hydrology Bureau of Jiangxi Province | Hydrological stations in inflows | Daily (2000, 2004, 2010) | Q | m3/s |
Hukou hydrological station | WL | m | |||
Bathymetry | Water Resources Department of Jiangxi Province | 5 × 5 m | 2010 | DEM | m |
Typical Moderate Hydrological Year (2000) | Typical Dry Hydrological Year (2004) | Typical Wet Hydrological Year (2010) | |
---|---|---|---|
No bathymetric change | Baseline 1: present hydrodynamic process in typical moderate hydrological year | Baseline 2: present hydrodynamic process in typical dry hydrological year | Baseline 3: present hydrodynamic process in typical wet hydrological year |
CCS_1: channel change by 59 cm | Scenario 1–1: responses of hydrodynamics during typical moderate hydrological year to average annual channel change | Scenario 2–1: responses of hydrodynamics during typical dry hydrological year to average annual channel change | Scenario 3–1: responses of hydrodynamics during typical wet hydrological year to average annual channel change |
CCS_2: channel change by 295 cm | Scenario 1–2: responses of hydrodynamics during typical moderate hydrological year to probable high channel change after five years | Scenario 2–2: responses of hydrodynamics during typical dry hydrological year to probable high channel change after five years | Scenario 3–2: responses of hydrodynamics during typical wet hydrological year to probable high channel change after five years |
Error Indicator | Description | Unit | Equation | Range | Year | Xingzi | Duchang | Tangyin | Kangshan |
---|---|---|---|---|---|---|---|---|---|
MAE ↓ | Mean Absole Error | m | [0, +∞) | 2000 | 0.19 | 0.33 | 0.46 | 0.46 | |
2004 | 0.26 | 0.35 | 0.42 | 0.33 | |||||
2010 | 0.44 | 0.92 | 0.40 | 0.53 | |||||
RMSE ↓ | Root Mean Square Error | m | [0, +∞) | 2000 | 0.27 | 0.41 | 0.61 | 0.55 | |
2004 | 0.36 | 0.44 | 0.56 | 0.44 | |||||
2010 | 0.57 | 1.00 | 0.48 | 0.66 | |||||
R² ↑ | Coefficient of determination | / | [0.0, 1.0] | 2000 | 0.99 | 0.98 | 0.94 | 0.96 | |
2004 | 0.99 | 0.98 | 0.95 | 0.96 | |||||
2010 | 0.99 | 0.96 | 0.99 | 0.97 | |||||
MRE ↓ | Mean Relative Error | % | [0, +∞) | 2000 | 0.02 | 0.03 | 0.04 | 0.04 | |
2004 | 0.02 | 0.03 | 0.03 | 0.03 | |||||
2010 | 0.03 | 0.07 | 0.03 | 0.04 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, L.; Huang, J.; Gao, J.; Cui, Z. Modelling the Impacts of Bathymetric Changes on Water Level in China’s Largest Freshwater Lake. Water 2019, 11, 1469. https://doi.org/10.3390/w11071469
Qi L, Huang J, Gao J, Cui Z. Modelling the Impacts of Bathymetric Changes on Water Level in China’s Largest Freshwater Lake. Water. 2019; 11(7):1469. https://doi.org/10.3390/w11071469
Chicago/Turabian StyleQi, Lingyan, Jiacong Huang, Junfeng Gao, and Zhen Cui. 2019. "Modelling the Impacts of Bathymetric Changes on Water Level in China’s Largest Freshwater Lake" Water 11, no. 7: 1469. https://doi.org/10.3390/w11071469
APA StyleQi, L., Huang, J., Gao, J., & Cui, Z. (2019). Modelling the Impacts of Bathymetric Changes on Water Level in China’s Largest Freshwater Lake. Water, 11(7), 1469. https://doi.org/10.3390/w11071469