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Abstract: Most concrete dams have seepage problems to some degree, so it is a common strategy to
maintain ongoing monitoring and take timely repair measures. In order to grasp the real operation
state of dam seepage, it is vital to analyze the measured data of each monitoring indicator and
establish an appropriate prediction equation. However, dam seepage states under the load and
environmental influences are very complicated, involving various monitoring indicators and multiple
monitoring points of each indicator. For the purpose of maintaining the temporal continuity and
spatial correlation of monitoring objects, this paper used a multi-indicator grey clustering analysis
model to explore the grey correlation among various indicators, and realized a comprehensive
evaluation of a dam seepage state by computation of the clustering coefficient. The case study
shows that the proposed method can be successfully applied to the health monitoring of concrete
dam seepage.

Keywords: dam seepage; comprehensive indicator system; seepage monitoring model; grey
clustering analysis

1. Introduction

After a dam is completed and impounded, once the seepage factors (seepage head, seepage
gradient, etc.) exceed the allowable value, the dam will suffer from seepage damage. The related
statistic shows that dam failures caused by seepage problems account for 30% to 40% of the total
number of failures, second only to flood overtopping [1]. Therefore, it is extremely important to carry
out comprehensive monitoring of dam seepage, which is the most effective way to monitor operating
conditions, find unsafe factors, and prevent problems before accidents occur [2]. However, dam
seepage states are affected by many external factors, such as water level, rainfall, temperature of dam
concrete, and time effects [3], which makes comprehensive seepage evaluation very complicated. It is
essential to find the variation rules of load set with dam seepage, as well as exploring the relationship
between them. The reasonable analysis method is to select the factors and expressions of the seepage
monitoring variables by deterministic function [4] and statistical correlation [5] according to the
basic principle of seepage flow, and then calculate the coefficients of the model with mathematical
statistics [6] based on monitoring data. By using mathematical expressions between independent
variables and dependent variables, the monitoring data can be fitted and the variation law of seepage
in the near future can be predicted.
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To date, studies [7–9] on the evaluation of dam seepage state have been mainly aimed at a
single evaluation indicator, which can only reflect partial information of the dam’s seepage state
and will therefore lead to inaccuracy and incompleteness of the evaluation results. In practical
engineering, the seepage state of concrete dams should be reflected by several indicators (dam seepage
pressure, dam leakage, and seepage around dam) [10], and multiple monitoring points of each
indicator distributed at different elevations in different dam sections. It is difficult to evaluate dam
seepage states directly according to the information of the monitoring points, so it is impossible
to know whether there is an abnormal phenomenon of seepage during the operation of the dam.
In order to realize the comprehensive evaluation of dam seepage safety, it is necessary to fuse the
information of multiple indicators with multiple monitoring points and explore the correlations among
various indicators, which is the main purpose and novelty of this article. There are many uncertain
problems [11] in the process of multi-information fusion, including incomplete information, incomplete
data, incommensurability of multiple indicators, etc. The commonly used ladder fusion methods
mainly include the following: set pair analysis theory [12], neural network [13], risk reliability combined
theory [14], matter element extension model [9], cluster fusion diagnosis model [15], cloud model [16],
defuzzification method [17], etc. However, most concrete dams built many years ago have limitations
of monitoring conditions and the randomness of manual monitoring, resulting in the problem of short
monitoring data sequences and inaccurate data. As a method of dealing with uncertain systems, small
samples, and poor information, grey clustering analysis theory can extract valuable information by
generating and mining [18], which is relatively suitable for the comprehensive evaluation of dam
seepage safety. Combining this theory with a seepage monitoring model, a multi-indicator grey
clustering comprehensive analysis model of dam seepage has been constructed, which integrates
the monitoring data of each indicator according to defined categories, and generates a whitenization
weight function value [19] and comprehensive clustering coefficient. In this process, the model outputs
the grey correlation degree [20] between different indicators and analyzes the change tendency of the
seepage state, and then divides the seepage state into different grey classes according to the fluctuations
of the monitoring data. This can give the staff a degree of judgment on the seepage state and provide
beneficial reference values for dam maintenance, so that we can visually find the parts with abnormal
seepage flow to prevent the occurrence of dangerous accidents.

This article is organized as follows. Section 2 introduces the seepage monitoring model of concrete
dams, which includes the establishment of a comprehensive indicator system of dam seepage state and
a statistical model, as well as the standard of grading. The grey clustering analysis theory is described
in Section 3.1, and a multi-indicator grey clustering comprehensive analysis model is established in
Section 3.2. The application of engineering cases is introduced in Section 4. Concluding remarks
complete the paper in Section 5.

2. Seepage Monitoring Model of Concrete Dams

2.1. The Comprehensive Indicator System of Dam Seepage State

The evaluation indicators of dam seepage state constitute a multi-level and multi-objective
comprehensive indicator system, which is mainly drawn from the following three aspects: (1) Dam
seepage pressure is composed of uplift pressure of the dam foundation and seepage pressure of the
dam body. Both are caused by seepage water and have certain influences on dam stability, deformation,
and stress; (2) Dam leakage causes the water to take the fine particles out of the dam body and form a
seepage passage, which endangers the stability of the dam; (3) Upstream impoundment can not only
seep through the dam body and foundation, but also seep downward around the bank slopes at both
ends of the dam. Considering the temporal continuity and spatial correlation [21] of the monitoring
points, each indicator is jointly monitored by several monitoring points for a long time series. With
reference to the monitoring data and the dam seepage monitoring research results [10,22,23], the
comprehensive indicator system of concrete dam seepage state is shown in Figure 1.
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2.2. Seepage Monitoring Model

According to dam safety monitoring theory [24,25], concrete dam seepage is composed of four
components: water level component yH, rainfall component yP, temperature component yT, and time
effect component yθ. It can be expressed as follows:

yt = yH + yP + yT + yθ = f (H, P, T,θ) (1)

The four components are described below.

2.2.1. Water Level Component yH

Through analysis of test data and seepage theory [4] to deduce the expression form of the water
pressure effect, there is a certain hysteresis and linear dependence between the change of upstream
water level with uplift pressure of dam foundation and seepage around dam, so the water level
component is usually expressed as follows:

yH =
5∑

i=1

ai(hi − h0i) (2)

where ai (i = 1–5) is the regression coefficient of the water level component; hi (i = 1–5) is the upstream
water level of the monitoring day, 1 day before the monitoring day, average upstream water level of 2
to 4 days before the monitoring day, 5 to 15 days before the monitoring day, and 16 to 30 days before
the monitoring day. h0i (i = 1–5) is the average upstream water level corresponding to each of the
above periods on the initial monitoring day.

The permeability coefficient of concrete is small, the aggregate gradation is different from the
particle material, and the permeability equation is complex. Therefore, besides the first power of
upstream water depth, the water level component may also be related to the higher power of upstream
water depth, so it is taken to the fourth power to simplify simulation of the influence of upstream
water level on the seepage pressure of the dam body, with reference to the literature [26]. The water
level component of the seepage pressure of the dam body is often expressed as follows:

yH =
4∑

i=1

ai
(
hu1

i
− hu0

i
)

(3)

where ai (i = 1–4) is the regression coefficient of the water level component; hu1 is the upstream water
depth of the monitoring day; and hu0 is the upstream water depth of the initial monitoring day.

Based on the derivation of seepage theory [26], the leakage of the bank slope and river bed dam
section is obtained. The dam leakage is related to the first and second power of upstream water depth.
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At the same time, the hysteretic effect of reservoir water level on the dam leakage is considered. The
water level component of dam leakage is often expressed as follows:

yH =
2∑

i=1

ai
(
hu1

i
− hu0

i
)
+

7∑
i=3

ai
(
hu(i−2) − hu0

)
(4)

where ai (i = 1–7) are the regression coefficients of the water level component; hu(i−2) are the upstream
water level of the monitoring day, 1 day before the monitoring day, average upstream water level of 2
to 4 days before the monitoring day, 5 to 15 days before the monitoring day, and 16 to 30 days before
the monitoring day.

2.2.2. Rainfall Component yP

The seepage pressure of the dam foundations and both sides of dam is affected by groundwater,
which is mainly caused by rainfall in addition to the reservoir water level. Rainfall can seep into the
dam body, foundation rock, and bank slope, which will influence the dam seepage. The relationship
between rainfall and groundwater level is complex, and is related to rainfall and rainfall pattern,
infiltration conditions, topography, and geological conditions, and there is a certain hysteresis. The
average rainfall was used as a factor to simplify the simulated rainfall component, as shown below:

yP =
4∑

i=1

bi(Pi − P0i) (5)

where Pi (i = 1–4) is the rainfall of the monitoring day, 1 day before the monitoring day, the average
rainfall of 2 to 4 days before the monitoring day, and 5 to 8 days before the monitoring day; P0i (i = 1–4)
is the average rainfall corresponding to each of the above periods on the initial monitoring day; and bi
(i = 1–4) is the regression coefficient of the rainfall component.

2.2.3. Temperature Component yT

The temperature component is the variation of seepage caused by the temperature change of
the dam concrete and foundation rock. Thermal expansion will decrease the crack gaps, enhance
the impermeability, and then relieve seepage, while cooling shrinkage will increase the crack gaps,
undermine the impermeability, and then intensify seepage. The temperature of the dam body and
foundation rock varies periodically with atmospheric temperature, which can be expressed with
a periodic function. Considering the linear relationship between seepage and temperature, the
multi-period harmonic was chosen as the factor to represent the temperature component:

yT =
2∑

i=1

[
c1i(sin

2πit
365
− sin

2πit0

365
) + c2i(cos

2πit
365
− cos

2πit0

365
)
]

(6)

where c1i and c2i (i = 1–2) are the regression coefficients, respectively; t is the cumulative number of
days from the monitoring day to the initial monitoring day; and t0 is the cumulative number of days
from the first monitoring day of the data sequence taken by the modeling to the initial monitoring day.

2.2.4. Time Effect Component yθ

The time effect component is the variation of seepage caused by the change of time. The main
factors affecting the time effect component are the viscous flow of the dam concrete, and creep of the
rock foundation, which are often slow and undetectable, but the accumulation of such slow deformation
causes the stress of the foundation to adjust with time and has a great impact on the distribution of
dam foundation cracks. The influence of these factors on seepage flow is a slow time effect process,
and it is difficult to obtain accurate expressions by theoretical analysis at present. Typically, variation
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of the time effect component usually changes sharply at the beginning, and gradually turns stable
during the later period. A formula with a combination of two empirical formulas (linear function and
logarithmic function) represents the mathematical model of the general variation law of the time effect
component, which can be expressed as follows:

yθ = d1(θ− θ0) + d2(lnθ− lnθ0) (7)

where d1 and d2 are regression coefficients; θ is the number of days from the initial monitoring day
divided by 100; and θ0 is the number of days from the first monitoring day of the data sequence
divided by 100, in other words, θ = 0.01t, θ0 = 0.01t0.

In summary, the seepage monitoring model can be expressed as follows:

ŷt = a0 +
5∑

i=1
ai(hi − h0i)or

4∑
i=1

ai
(
hu1

i
− hu0

i
)
or

[
2∑

i=1
ai
(
hu1

i
− hu0

i
)
+

7∑
i=3

ai
(
hu(i−2) − hu0

)]
+

4∑
i=1

bi(Pi − P0i)

+
2∑

i=1

[
c1i(sin 2πit

365 − sin 2πit0
365 ) + c2i(cos 2πit

365 − cos 2πit0
365 )

]
+d1(θ− θ0) + d2(lnθ− lnθ0)

(8)

where ŷt is the fitting value of the seepage monitoring data; and a0 is a constant.
Seepage monitoring values yt are variable, and the fitting values ŷt obtained by regression

analysis will deviate from the monitoring value to a certain extent. After establishment of the seepage
monitoring model, the accuracy of the regression fitting can be measured by residual standard deviation
(S) and the complex correlation coefficient (R).

S =

√∑n
t=1(yt − ŷt)

2

n− k− 1
(9)

R =

√√∑n
t=1(ŷt − yt)

2∑n
t=1(yt − yt)

2 (10)

where n is the number of monitoring data, k is the number of independent variables, and yt is the
average value of monitoring data.

2.3. Safety Class Division Standard

The working state of seepage can be graded with the Pauta criterion [27]. It is considered that
the fitting curve calculated by the model is a reasonable value, and the confidence interval class is
determined according to a certain probability. The data in this interval are considered to be a reasonable
fluctuation of seepage. Any error exceeding the range is not a random error but a gross error, and the
data containing this error are determined to be in an abnormal state. The interval distributions of three
safety classes of the dependent variables are shown in Figure 2.
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When
∣∣∣yt − ŷt

∣∣∣ ≤ 2S, it belongs to class I, indicating that the working state is normal;
When 2S <

∣∣∣yt − ŷt
∣∣∣ ≤ 3S, it belongs to class II, indicating that the working state is basically normal.

If there is an obvious tendency variation, it indicates that the working state is abnormal;
When

∣∣∣yt − ŷt
∣∣∣ > 3S, it belongs to class III, indicating that the working state is dangerous.

The tendency variation is mainly reflected in the change of the time effect component. Positive
and negative values of dyθ/dt indicate the increase and decrease of the time effect component, and the
size of d2yθ/dt2 indicates the rate of increase and decrease of the time effect component; dyθ/dt and
d2yθ/dt2 can be used to achieve judgment of the variation tendency [28].

3. Multi-Indicator Grey Clustering Comprehensive Analysis

To deal with uncertainty problems during comprehensive evaluation with multi-indicators, grey
system theory is often adopted, which is used to solve the problem of uncertain systems, small samples,
and poor information [29]. The grey system studies the structure and function of a “black-grey-white”
box [30] through the organic relations and change rules among the object, element, and environment,
as shown in Figure 3.
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3.1. Grey Clustering Analysis Theory

Grey clustering is a method of dividing monitoring indicators or monitoring objects into several
definable categories according to the grey correlation matrix or the grey whitenization weight function.
A cluster can be seen as a collection of monitoring objects belonging to the same class. This theory
extracts valuable information by generating and mining some known information to calculate the grey
correlation between different indicators and simplify complex systems [31].

3.1.1. Basic Model

Suppose that xi j (i = 1, 2, · · · , n; j = 1,2, · · · , m) is the monitoring value of object i about indicator j,
and f k

j (·) (j = 1, 2, · · · , m; k = 1, 2, · · · , s) is the definite weighted function of the class k about indicator j.
The grey clustering coefficient of the object i belonging to the grey class k is:

σk
i =

m∑
j=1

f k
j

(
xi j

)
·η j (11)

where η j is the weight of grey class k about indicator j.

3.1.2. Modeling Steps

(1) According to the evaluation requirements, the indicator j is divided into s grey classes, and the
range of values of each indicator is also divided into s grey classes. For example, the value range [a1,
as+1] of the indicator j is divided into s small intervals:

[a1, a2], [a2, a3], · · · , [as−1, as], [as, as+1]
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(2) Calculation of the geometric midpoint between each small interval, λk = (ak + ak+1)/2, k = 1, 2,
· · · , s;

(3) Assume that the whitenization weight function value of λk belonging to the grey class k is
1. Connect the point (λk, 1) and the geometric midpoint (λk−1, 0) of the grey class k − 1 to obtain
the triangular definite weighted functions f k

j (·), j = 1, 2, · · · , m; k = 1, 2, · · · , s. For f 1
j (·) and f s

j (·), the
indicator j can be extended to the left and right to a0, as+2 respectively. For a monitoring value x of the
indicator j, it can be obtained as follows:

f k
j (x) =


0, x < [ak−1, ak+2]

x−ak−1
λk−ak−1

, x ∈ [ak−1,λk]
ak+2−x

ak+2−λk
, x ∈ [λk, ak+2]

(12)

The membership degree f k
j (x) of the grey class k (k = 1, 2, · · · , s) is calculated, as shown in Figure 4

(The letters in the figure are consistent with the previous variables).
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(4) In the process of multi-indicator grey clustering comprehensive analysis, machine learning is
used without human intervention. Therefore, the objective weighting method is used to determine the
weights of indicators. Entropy weight method is a method of calculating indicator weight based on
comprehensive consideration of the information provided by various factors [32]. It calculates the
information entropy of each indicator to determine its difference, and then determines the importance
of the indicator in the comprehensive evaluation.

If there are n objects and m indicators, the prototype monitoring indicator values are normalized
to obtain the matrix Si j = [si j], and si j is the normalized value of the indicator j of the object i. According
to the information entropy definition, the information entropy of the indicator j is:

P j = −q
n∑

i=1

si jlnsi j (q =
1

lnn
j = 1, · · · , m) (13)

The entropy weight of indicator j is:

e j =
1− Pi

m−
∑m

j=1 Pi
(0 ≤ e j ≤ 1,

m∑
j=1

e j = 1) (14)

An indicator weight matrix A = (e1, e2, · · · , ej) of the dam safety comprehensive early warning
system based on the entropy weight method is constructed.

(5) The comprehensive clustering coefficients of the object i (i = 1, 2, · · · , n) about the grey class k
(k = 1, 2, · · · , s) are calculated, as shown in Equation (11).

(6) From max
1≤k≤s

{
σk

i

}
= σk∗

i , judge that object i belongs to grey class k∗; when there are multiple objects

belonging to the grey class k∗, the superiority or inferiority of the objects belonging to the grey class k∗

can be further determined according to the size of the comprehensive clustering coefficient.



Water 2019, 11, 1499 8 of 16

3.2. Multi-Indicator Grey Clustering Comprehensive Analysis of Concrete Dam Seepage

The multi-indicator grey clustering comprehensive analysis model is here combined with the
seepage monitoring model and grey cluster analysis theory, which can realize a comprehensive
evaluation of seepage state. The first step of the model is to check the data of the monitoring indicators
and environmental variables, which are collected by the dam seepage monitoring system. The seepage
monitoring model is used to analyze and fit the monitoring data of each indicator, and the trend of
each indicator is then predicted through mathematical expression of the model. Finally, grey clustering
analysis theory is used to centralize multiple indicators and realize the comprehensive evaluation of
seepage state. The overall framework of steps is shown in Figure 5.Water 2019, 11, x FOR PEER REVIEW 8 of 16 
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4. Case Study

The Cotton Beach Waterpower Project is located in Fujian Province, China. The project belongs
to class I. It is a large, multi-purpose project with the main purpose of power generation, and other
functions including flood control, navigation, and aquaculture. The maximum dam height is 111.0 m,
the dam crest elevation is 179.0 m, and the total length of the dam crest is 308.5 m. The normal water
level of the reservoir is 173 m, and the storage capacity is 1.122 billion m3. The check flood level is
177.80 m, and the total storage capacity is 2.035 billion m3. The dead water level is 146 m. The dam has
seven dam sections: the first and second dam sections are left bank retaining dam sections, the third
and fourth dam sections are overflow dam sections, and the fifth, sixth, and seventh dam sections are
right bank retaining dam sections. The installed capacity is 600,000 kW. In order to ensure the seepage
state of the dam, a comprehensive monitoring project is arranged inside of the main buildings. The
information of monitoring points is shown in Table 1, and the location distribution of the monitoring
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points is shown in Figure 6. The monitoring points of seepage around the dam are arranged in the
seepage observation holes on both sides of the rock mass, and there are four monitoring points on both
the left and right sides of the dam (L1, R1 are in front of the dam curtain and the others are behind the
dam curtain).

Table 1. The information of monitoring points.

Monitoring Object Number of Monitoring Points Monitoring Instrument

Dam seepage pressure UP1, UP3, UP5, UP7, UP9, UP11, UP13,
UP15, UP16

Pressure measuring
tube/osmometer

Dam leakage WE1, WE2, WE3, WE4, WE7, WE10 Measuring weir/osmometer
Seepage around dam L1, L3, L5, L7, R1, R3, R5, R6 Measuring weir/osmometer
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Figure 6. Location distribution map of the dam seepage monitoring points.

4.1. Calculation of Seepage Monitoring Model

Step 1: Collection of data from monitoring indicators and environmental factors from January 1,
2004 to October 31, 2008 through the dam seepage monitoring system.

Step 2: Substitution of these data into Equation (8) of the seepage monitoring model. By
stepwise regression analysis, the regression coefficients were solved, and the expression of the seepage
monitoring model was obtained.

Step 3: The data of environmental factors from November 1, 2008 to December 31, 2008 were
substituted into the calculated seepage monitoring model, and the model output value of the monitoring
points was predicted. Figure 7 shows the variation curves between the monitoring values and the
model output values of the monitoring points.

From the variation curves and the multiple correlation coefficients of the monitoring values
and the model output values, it can be seen that the seepage monitoring model fit the monitoring
sequence well, the trends were consistent, and the values were similar. The model values can be used
as reasonable values of the monitoring sequence to discriminate the existence of the abnormal values
of the large offset data in the monitoring sequence, so as to realize class division of the working states
of the seepage indicators, according to the differences of the confidence probability. And the weight of
each monitoring point is calculated with the entropy weight method. The classification and weight of
each indicator are shown in Tables 2–4.
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Figure 7. The variation curves between the monitoring values and the mode output values.
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Table 2. The classification results and weights of dam seepage pressure.

Class UP1 UP3 UP5 UP7 UP9 UP11 UP13 UP15 UP16

Class I [0, 1.08] [0, 0.63] [0, 0.15] [0, 2.76] [0, 2.19] [0, 3.03] [0, 0.97] [0, 3.54] [0, 0.23]
Class II (1.08, 1.62] (0.63, 0.94] (0.15, 0.22] (2.76, 4.14] (2.19, 3.29] (3.03, 4.54] (0.97, 1.46] (3.54, 5.32] (0.23, 0.34]
Class III (1.62, +∞) (0.94, +∞) (0.22, +∞) (4.14, +∞) (3.29, +∞) (4.54, +∞) (1.46, +∞) (5.32, +∞) (0.34, +∞)

Information entropy 61.902 60.892 66.481 60.338 57.992 54.404 36.561 9.097 9.094
Weight 0.071 0.069 0.076 0.069 0.066 0.062 0.041 0.009 0.009

Table 3. The classification results and weights of dam leakage.

Class WE1 WE2 WE3 WE4 WE7 WE10

Class I [0, 0.49] [0, 0.13] [0, 0.15] [0, 0.75] [0, 0.22] [0, 0.40]
Class II (0.49, 0.74] (0.13, 0.19] (0.15, 0.23] (0.75, 1.13] (0.22, 0.33] (0.40, 0.60]
Class III (0.74, +∞) (0.19, +∞) (0.23, +∞) (1.13, +∞) (0.33, +∞) (0.60, +∞)

Information entropy 8.464 12.763 4.495 9.217 12.511 10.045
Weight 0.009 0.014 0.005 0.010 0.013 0.010

Table 4. The classification results and weights of seepage around dam.

Class L1 L3 L5 L7 R1 R3 R5 R6

Class I [0, 4.97] [0, 4.65] [0, 0.18] [0, 0.91] [0, 5.85] [0, 5.39] [0, 4.65] [0, 5.80]
Class II (4.97, 7.46] (4.65, 6.97] (0.18, 0.26] (0.91, 1.36] (5.85, 8.77] (5.39, 8.09] (4.65, 6.98] (5.80, 8.70]
Class III (7.46, +∞) (6.97, +∞) (0.26, +∞) (1.36, +∞) (8.77, +∞) (8.09, +∞) (6.98, +∞) (8.70, +∞)

Information entropy 42.261 36.613 59.311 66.776 46.283 45.546 74.592 39.119
Weight 0.048 0.041 0.068 0.076 0.053 0.052 0.085 0.044
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4.2. Comprehensive Clustering Calculation of Multiple Dependent Variables

The whitenization weight function is the basis of grey clustering. The membership function of
fuzzy evaluation can reflect the relationships between clustering indicators and grey classes. Since the
evaluation factors of monitoring sequence indicators have a lower limit and no upper limit, the upper
and lower limit whitenization weight function was used, as shown in Figure 8.
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Figure 8. Schematic diagram of the definite weighted function.

The multi-indicator grey clustering comprehensive analysis model was used on the period from
November 1, 2008 to December 31, 2008 to forecast the change trend of seepage, combining the
monitoring data to calculate the

∣∣∣yt − ŷt
∣∣∣/S of each monitoring points and the clustering coefficients of

each seepage indicator, as shown in Figure 9.

4.3. Results and Discussion

Each indicator has three grey class clustering coefficients; the bigger the clustering coefficient of
the grey class, the more likely the working state of the indicator will be in that grey class. The larger
the clustering coefficient of grey class I is, the better the seepage state will be. On the contrary, the
larger the clustering coefficient of grey class III is, the worse the seepage state will be. The sum of the
three grey classes at any time is 1.

From Figure 9, it can be seen that the state of dam seepage pressure was basically in the stage of
normal operation of grey class I across these two months, which were both greater than 0.75. After
December, the proportion of grey class II increased, reaching a maximum of 0.25, and dangerous
conditions of grey class III began to emerge, indicating that the state of dam seepage pressure tends to
develop towards the abnormal, which was mainly attributed to the large offset anomaly of monitoring
points UP9 and UP11.

The dam leakage is monitored manually, and only once a week, so the monitoring sequence is less
than automatic monitoring. It can be seen that the grey class I of dam leakage was basically greater
than 0.75, which would indicate normal operation. However, grey class II had an upward trend, and
gradually changed to grey class III, with a maximum of 0.23, indicating that the state of dam leakage
had a trend of dangerous development, which was mainly attributed to the large offset anomaly of
monitoring points WE4 and WE3.

The grey class I of seepage around the dam was generally higher than 0.9, the maximum grey
class II reached 0.1, and only monitoring point L3 had a small offset anomaly, indicating that seepage
around dam was in normal condition during these two months.

Figure 10 is a comprehensive clustering coefficient histogram of seepage, which takes into account
the above three indicators. It shows that the dam seepage was generally in the stage of grey class
I during this period, and there was an upward trend of grey class II after December, reaching a
maximum of 0.13, indicating that the seepage was in a good state of operation, but there was a small
offset anomaly.
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In summary, although dam seepage was overall in normal operation, some abnormal conditions
were discovered through the multi-indicator grey clustering comprehensive analysis model. The data
of some monitoring points had obvious deviations from the model output values, such as UP9, UP11,
WE3, and WE4, which were distributed in sections 3# and 4# of the overflow dam section, indicating
that the overflow dam section is the main section where seepage anomaly occurs. Because the overflow
dam section sometimes needs continuous drainage, it is easy for water flow to scour the dam and
negative pressure to appear on overflow surface, resulting in leakage and intestinal retention of fluid.
In order to ensure the normal operation of dam seepage, it is necessary to monitor abnormal parts
moving forward to prevent the occurrence of dangerous accidents.

5. Conclusions

The purpose of this paper was to construct a multi-indicator grey clustering comprehensive
analysis model for seepage safety monitoring of concrete dams, using the seepage monitoring model
to predict the change tendency of monitoring points, combined with grey cluster analysis theory to
fuse the multiple indicators, so as to realize a comprehensive evaluation of the dam seepage state. The
following conclusions can be obtained:

The seepage indicator system is complete and representative, and takes into account the main
factors affecting the seepage state of the dam, and each factor includes multiple monitoring points of
the whole dam section. The seepage monitoring model adopts different mathematical expressions
for different indicators according to the correlation between water level component and indicators.
Stepwise regression method is used to retain the environmental factors with high correlation and
eliminate the environmental factors with poor correlation, which makes the model fit the monitoring
data better. By using the Pauta criterion to classify the indicators according to a certain probability, the
problem of random errors in actual monitoring and statistics was eliminated.

Grey clustering analysis theory combined with the seepage monitoring model was applied to the
integration of multi-source information monitoring data of dam seepage, which is an interdisciplinary
practice. The evaluation results reflect the trend of dam seepage through the continuous change of
grey class with time series, which is a major improvement from static state to dynamic state evaluation.
There are many uncertainties in the fusion of multi-index and multi-information; grey clustering
analysis theory can find the grey correlations among the indicators, mine useful information from
limited data, and divide observation objects into several definable categories with a whitenization
weight function. This combination of different factors can simplify the complex system and is very
suitable for comprehensive evaluation of dam seepage. Through the calculation of an engineering case,
the validity and availability of the method was verified. In practical engineering applications, when
the calculation results are generally shown as grey class I, it indicated that the dam seepage was in the
normal operation stage. However, attention should be paid to the changing trends of the other grey
classes. If there is a tendency variation of offset anomaly, it indicates that the dam seepage state is
deteriorating gradually. When the calculation results reach grey class II, preventive measures must be
taken for abnormal parts, such as drainage decompression, curtain grouting, concrete filling, etc. The
seepage state of the dam is expressed quantitatively, which is convenient for the daily maintenance
of the dam and the early warning of the dangerous situation. This method can also be applied to
other engineering fields. As long as data with multiple evaluation indicators are available, valuable
information can be extracted through the multi-indicator grey clustering comprehensive analysis
model, and grey classification can then be carried out to achieve comprehensive evaluation of the
target object, which makes the evaluation work more quantitative and intuitive.
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