Improving Yield and Quality of Processing Tomato (Lycopersicon esculentum Miller) Using Alternate Partial Root-Zone Drip Irrigation in Arid Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Experimental Design
2.3. Sampling and Testing Measurements
2.3.1. Growth Indices
2.3.2. Physiological Parameters
2.3.3. Yield and Irrigation Water Use Efficiency
2.3.4. Fruit Quality and Shape Indicators
2.4. Statistical Analysis
3. Results
3.1. Effects of Different Irrigation Methods on Plant Height and Stem Diameter of the Processing Tomato
3.2. Effects of Different Irrigation Methods on Physiological Parameters of the Processing Tomato
3.3. Effects of Different Irrigation Methods on Fruit Quality of the Processing Tomato
3.4. Effects of Different Irrigation Methods on Yield Irrigation Water Use Efficiency of the Processing Tomato
4. Discussion
5. Conclusions
Abbreviations
APRI | Alternate partial root-zoon drip irrigation |
APRIH | Alternate partial root-zoon drip irrigation with high irrigation quota |
APRIM | Alternate partial root-zoon drip irrigation with medium irrigation quota |
APRIL | Alternate partial root-zoon drip irrigation with low irrigation quota |
FPRI | Fixed partial root-zoon drip irrigation |
CDI | Conventional drip irrigation |
Pn | Diurnal variation of leaf photosynthesis rate |
Tr | Transpiration rate |
gs | Stomatal conductance |
WUEins | Instantaneous water use efficiency at leaf scale |
WUEint | Intrinsic water use efficiency at leaf scale |
iWUE | Irrigation water utilization efficiency |
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, C. Analysis on the status quo and development prospect of processing tomato industry in Xinjiang. Mod. Food. 2018, 13, 4, 5, 9, (In Chinese with English abstract). [Google Scholar]
- Yang, S.; Tang, Y.; Yang, T.; Xu, J.; Li, N.; Pa, T.; Gao, J.; Yu, Q. Fruit characteristic and flesh tissue feature of special firmness type processing tomato cultivar. Chin. Soc. Agric. Eng. 2017, 33, 285–290, (In Chinese with English abstract). [Google Scholar]
- Ming, H.; Zhao, C.; Feng, G.; Yan, Y.; Yu, S. Evaluating the effects of mulch and irrigation amount on soil water distribution and root zone water balance using HYDRUS-2D. Water 2015, 7, 2622–2640. [Google Scholar]
- Kang, S.; Zhang, J.; Liang, Z.; Hu, X.; Cai, H. The controlled alternative irrigation: A new approach for water saving regulation in farmland. Agric. Res. Arid Areas. 1997, 15, 1–6. [Google Scholar]
- Wang, J.; Niu, W.; Zhang, M.; Li, Y. Effect of alternate partial root-zone drip irrigation on soil bacterial communities and tomato yield. Appl Soil. Ecol. 2017, 119, 250–259. [Google Scholar] [CrossRef]
- Tombesi, S.; Nardini, A.; Frioni, T.; Soccolini, M.; Zadra, C.; Farinelli, D.; Poni, S.; Palliotti, A. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci. Rep. 2015, 5, 12449. [Google Scholar] [CrossRef] [PubMed]
- Dodd, I.C. Abscisic acid and stomatal closure: A hydraulic conductance conundrum? New Phytol. 2012, 197, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.; William, J.; Drought, O. ABA and ethylene: new insights from cell to plant to community. Plant. Cell Env. 2010, 33, 510–525. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, J.; Li, F. Water use and yield responses of cotton to alternate partial root-zone drip irrigation in the arid area of north-west China. Irrig. Sci. 2008, 26, 147–159. [Google Scholar] [CrossRef]
- Du, S.; Kang, S.; Li, F.; Du, T. Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China. Agric. Water Manag. 2017, 179, 184–192. [Google Scholar] [CrossRef]
- Du, S.; Ling, T.; Ding, R.; Kang, S.; Li, S.; Du, T.; Zhang, X. Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation. Agric. Water Manag. 2017, 190, 21–30. [Google Scholar] [CrossRef]
- Ma, Y.; Homstrm, C.; Webb, J.; Kjelleberg, S. Application of denaturing gradient gel electrophoresis (DGGE) in microbial ecology. Acta Ecol. Sin. 2003, 23, 1561–1569. [Google Scholar]
- Yang, Q.; Zhang, F.; Li, F.; Liu, X. Hydraulic conductivity and water-use efficiency of young pear tree under alternate drip irrigation. Agric. Water Manag. 2013, 119, 80–88. [Google Scholar] [CrossRef]
- Liang, H.; Li, F.; Nong, M. Effects of alternate partial root-zone irrigation on yield and water use of sticky maize with fertigation. Agric. Water Manag. 2013, 116, 242–247. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, F.; Kang, S.; Jensen, C.R. Alternate partial root-zone drying irrigation improves nitrogen nutrition in maize (Zea mays L.) leaves. Environ. Exp. Bot. 2012, 75, 36–40. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, J.; Li, F.; Yan, B. Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation. Agric. Water Manag. 2008, 95, 659–668. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.Z.; Yan, B.Y.; Zhang, J.H. Alternate furrow irrigation: A practical way to improve grape quality and water use efficiency in arid Northwest China. J. Integr. Agric. 2013, 12, 509–519. [Google Scholar] [CrossRef]
- Parvizi, H.; Sepaskhah, A.R.; Ahmadi, S.H. Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard. Agric. Water Manag. 2015, 156, 70–78. [Google Scholar] [CrossRef]
- Topak, R.; Acar, B.; Uyanoz, R.; Ceyhan, E. Performance of partial root-zone drip irrigation for sugar beet production in a semi-arid area. Agric. Water Manag. 2016, 176, 180–190. [Google Scholar] [CrossRef]
- Yactayo, W.; Ramirez, D.A.; Gutierrez, R.; Mares, V.; Posadas, A.; Quiroz, R. Effect of partial root-zone drying irrigation timing on potato tuber yield and water use efficiency. Agric. Water Manag. 2013, 123, 65–70. [Google Scholar] [CrossRef]
- Sun, Y.; Holm, P.E.; Liu, F. Alternate partial root-zone drying irrigation improves fruit quality in tomatoes. Hortic. Sci. 2018, 41, 185–191. [Google Scholar] [CrossRef]
- Wei, Z.; Du, T.; Zhang, J.; Xu, S.; Cambre, P.J.; Davies, W.J. Carbon isotope discrimination shows a higher water use efficiency under alternate partial root-zone irrigation of field-grown tomato. Agric. Water Manag. 2016, 165, 33–43. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Ryčkov, G.S. Analysis of sugars found in glycoproteins. Method. Enzymol. 1966, 8, 3–26. [Google Scholar]
- AOAC. Vitamin C (Ascorbic Acid) in Vitamin Preparations and Juices: 26-Dichloroindophenol Titrimetric Method; Association of Official Analytical Chemists: Washington, DC, USA, 1984; pp. 844–845. [Google Scholar]
- Goodwin, T.W. Chemistry and Biochemistry of Plant Pigments; Academic Press: Cambridge, MA, USA, 1965. [Google Scholar]
- Sharma, S.K.; Maguer, M.L. Lycopene in tomatoes and tomato pulp fractions. Ital. J. Food Sci. 1996, 8, 107–113. [Google Scholar]
- Hu, X.; Kang, S.; Zhang, J.; Zhang, F.; Li, Z.; Zhou, L. Water-saving mechanism and efficiency of vertical partial-rootzone alternative controlled drip irrigation of tomato (Lycopersicon Esculentum). J. Agric. Eng. 2005, 21, 1–5, (In Chinese with English abstract). [Google Scholar]
- Lin, Y.; Zeng, Z.; Ren, C.; Yuegao, H.U. Water use efficiency and physiological responses of oat under alternate partial root-zone irrigation in the semiarid areas of Northeast China. Procedia Eng. 2012, 28, 33–42. [Google Scholar]
- Baselga, Y.J.J.; Prieto, L.M.H.; Rodriguez, D.R.A. Response of processing tomato to three different levels of water and nitrogen applications. Int. Symp. Irrig. Hortic. Crop. 1992, 335, 149–156. [Google Scholar]
- Mitchell, J.P.; Shennan, C.; Grattan, S.R.; May, D.M. Tomato fruit yields and quality under water deficit and salinity. J. Am. Soc. Hortic. Sci. 1991, 116, 215–221. [Google Scholar] [CrossRef]
- Payero, J.O.; Melvin, S.R.; Irmak, S.; Tarkalson, D. Yield response of corn to deficit irrigation in a semiarid climate. Agric. Water Manag. 2006, 84, 101–112. [Google Scholar] [Green Version]
- Zhang, Q.; Wu, S.; Chen, C.; Shu, L.Z.; Zhou, X.J.; Zhu, S.N. Regulation of nitrogen forms on growth of eggplant under partial root-zone irrigation. Agric. Water Manag. 2014, 142, 56–65. [Google Scholar] [CrossRef]
- Aujla, M.S.; Thind, H.S.; Buttar, G.S. Fruit yield and water use efficiency of eggplant as influenced by different quantities of nitrogen and water applied through drip and furrow irrigation. Sci. Hortic. 2007, 112, 142–148. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, L.; Zhang, L.; Wang, S.; Sui, X.; Zhang, Z. Alternate furrow irrigation and nitrogen level effects on migration of water and nitrate-nitrogen in soil and root growth of cucumber in solar-greenhouse. Sci. Hortic. 2004, 99, 43–49. [Google Scholar] [CrossRef]
- Gargallogarriga, A.; Sardans, J.; Rivasubach, A.; Oravec, M.; Vecerova, K.; Urban, O.; Jentsch, A.; Kreyling, J.; Beierkuhnlein, C.; Parella, T. Opposite metabolic responses of shoots and roots to drought. Sci. Rep. 2014, 4, 6829. [Google Scholar] [CrossRef] [Green Version]
- Giorio, P.; Sorrentino, G.; Andria, R.D. Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit. Environ. Exp. Bot. 1999, 42, 95–104. [Google Scholar] [CrossRef]
- Pospíšilová, J. Interaction of cytokinins and abscisic acid during regulation of stomatal opening in bean leaves. Photosynthetica 2003, 41, 49–56. [Google Scholar] [CrossRef]
- Tardieu, F.J.; Zhang, J.T.; Gowing, D.J.G. Stomatal control by both [ABA] in the xylem sap and leaf water status: A test of a model for droughted or ABA-fed field-grown maize. Plant. Cell Environ. Behav. 2010, 16, 413–420. [Google Scholar] [CrossRef]
- Davies, W.; Zhang, J. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant. Biol. 1991, 42, 55–76. [Google Scholar] [CrossRef]
- Zhang, J.; Davies, W.J. Sequential response of whole plant water relations to prolonged soil drying and the involvement of xylem sap ABA in the regulation of stomatal behavior of sunflower plants. New Phytol. 1989, 113, 167–174. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, L.U.; Xiaotao, H.U.; Zhijun, L.I.; Jerie, P. An improved water use efficiency for hot pepper grown under controlled alternate drip irrigation on partial roots. Sci. Hortic. 2001, 89, 257–267. [Google Scholar] [CrossRef]
- Aganchich, B.; Wahbi, S.; Loreto, F.; Centritto, M. Partial root zone drying: Regulation of photosynthetic limitations and antioxidant enzymatic activities in young olive (Olea europaea) saplings. Tree Physiol. 2009, 29, 685–696. [Google Scholar] [CrossRef]
- Li, F.; Liang, J.; Kang, S.; Zhang, J. Benefits of alternate partial root-zone irrigation on growth, water and nitrogen use efficiencies modified by fertilization and soil water status in maize. Plant Soil 2007, 295, 279–291. [Google Scholar] [CrossRef]
Year | pH | Soil Type | Unit Weight (g m−3) | Organic Matter (g kg−1) | Total N (g kg−1) | Available N (mg kg−1) | Available P (mg kg−1) | Available K (mg kg−1) |
---|---|---|---|---|---|---|---|---|
2017 | 7.5 | middle loam | 1.42 | 17.88 | 1.32 | 52.44 | 24.66 | 187.33 |
2018 | 7.3 | middle loam | 1.43 | 16.54 | 1.21 | 51.32 | 23.68 | 179.65 |
Year | Growth Stage | Period | Irrigation Treatment/mm | Irrigation Times | Fertilization Times | ||||
---|---|---|---|---|---|---|---|---|---|
APRIH | APRIM | APRIL | FPRI | CDI | |||||
2017 | Seeding | 05/01~05/20 | 67.5 | 51.6 | 43.7 | 67.5 | 67.5 | 1 | 1 |
Flowering and fruiting | 05/21~06/15 | 202.5 | 154.8 | 131.1 | 202.5 | 202.5 | 3 | 3 | |
Fruit expanding | 06/16~07/23 | 337.5 | 258.0 | 218.5 | 337.5 | 337.5 | 5 | 5 | |
Harvesting | 07/24~08/12 | 67.5 | 51.6 | 43.7 | 67.5 | 67.5 | 1 | 0 | |
Total | 05/01~08/12 | 675.0 | 516.0 | 437 | 675.0 | 675.0 | 10 | 9 | |
2018 | Seeding | 05/01~05/22 | 67.5 | 51.6 | 43.7 | 67.5 | 67.5 | 1 | 1 |
Flowering and fruiting | 05/23~06/18 | 202.5 | 154.8 | 131.1 | 202.5 | 202.5 | 3 | 3 | |
Fruit expanding | 06/19~07/21 | 405.0 | 309.6 | 262.2 | 405.0 | 405.0 | 6 | 6 | |
Harvesting | 07/22~08/15 | 67.5 | 51.6 | 43.7 | 67.5 | 67.5 | 1 | 0 | |
Total | 05/01~08/15 | 742.5 | 567.6 | 480.7 | 742.5 | 742.5 | 11 | 10 |
Year | Treatment | Pn/(μmol m−2 s−1) | Tr/(mmol m−2 s−1) | gs/(mol m−2 s−1) | WUEins/(μmol mmol−1) | WUEint/(μmol mmol−1) |
---|---|---|---|---|---|---|
2017 | APRIH | 14.3 ± 0.6a | 2.31 ± 0.19ab | 0.48 ± 0.03bc | 6.2 ± 0.4b | 29.8 ± 3.2a |
APRIM | 14.0 ± 0.7a | 1.95 ± 0.22c | 0.52 ± 0.02b | 7.2 ± 0.3a | 26.9 ± 0.3a | |
APRIL | 12.1 ± 0.7b | 2.15 ± 0.29b | 0.47 ± 0.03bc | 5.7 ± 0.4bc | 25.9 ± 3.2bc | |
FPRI | 11.8 ± 0.6b | 2.44 ± 0.26a | 0.44 ± 0.02c | 4.9 ± 0.2d | 26.9 ± 0.2a | |
CDI | 13.1 ± 0.7b | 2.38 ± 0.24ab | 0.60 ± 0.03a | 5.5 ± 0.4c | 21.9 ± 2.3c | |
2018 | APRIH | 13.7 ± 0.7a | 2.44 ± 0.34b | 0.45 ± 0.02bc | 5.6 ± 0.1b | 30.4 ± 0.1a |
APRIM | 12.9 ± 0.7ab | 2.11 ± 0.31d | 0.46 ± 0.03b | 6.1 ± 0.2a | 28.1 ± 0.1bc | |
APRIL | 11.5 ± 0.5cd | 2.31 ± 0.26c | 0.41 ± 0.02cd | 5.0 ± 0.3c | 28.0 ± 2.7bc | |
FPRI | 10.7 ± 0.6d | 2.65 ± 0.36a | 0.37 ± 0.02d | 4.0 ± 0.2d | 28.9 ± 0.1ab | |
CDI | 12.4 ± 0.6bc | 2.59 ± 0.24a | 0.58 ± 0.02a | 4.8 ± 0.1c | 21.4 ± 0.2d |
Year | Treatment | Fruit Shape Index | Water Content/(g) | Sugar-Acid Ratio/(%) | Soluble Solid/(%) | Vc/(mg 1000 g) | Lycopene/(μg g−1) |
---|---|---|---|---|---|---|---|
2017 | APRIH | 0.748 ± 0.002b | 95.65 ± 2.11a | 5.92 ± 0.16bc | 6.23 ± 0.64a | 20.33 ± 0.54b | 72.31 ± 2.06b |
APRIM | 0.774 ± 0.002a | 85.62 ± 2.41b | 6.32 ± 0.08a | 6.59 ± 0.28a | 22.63 ± 1.49a | 75.26 ± 0.95a | |
APRIL | 0.741 ± 0.005d | 80.22 ± 1.63c | 6.06 ± 0.19ab | 5.88 ± 0.14b | 15.62 ± 0.51c | 65.21 ± 1.63d | |
FPRI | 0.738 ± 0.003d | 78.36 ± 1.85c | 5.51 ± 0.12d | 5.32 ± 0.27b | 14.27 ± 0.73c | 62.32 ± 1.73e | |
CDI | 0.743 ± 0.006bc | 98.26 ± 1.75a | 5.74 ± 0.23cd | 6.49 ± 0.38a | 18.56 ± 1.30b | 68.22 ± 1.24c | |
2018 | APRIH | 0.740 ± 0.001b | 96.22 ± 1.97a | 5.34 ± 0.14b | 5.88 ± 0.14b | 18.55 ± 0.10b | 69.88 ± 2.47a |
APRIM | 0.755 ± 0.001a | 87.45 ± 2.04b | 5.94 ± 0.10a | 6.35 ± 0.19a | 20.37 ± 1.17a | 72.63 ± 0.91a | |
APRIL | 0.730 ± 0.001c | 81.36 ± 1.89c | 5.72 ± 0.11a | 5.41 ± 0.18c | 13.25 ± 0.59d | 62.44 ± 2.19b | |
FPRI | 0.722 ± 0.002d | 79.67 ± 1.92c | 5.04 ± 0.15c | 5.04 ± 0.20d | 12.36 ± 0.48d | 58.65 ± 1.67c | |
CDI | 0.732 ± 0.002c | 99.87 ± 2.77a | 5.22 ± 0.19bc | 6.12 ± 0.11ab | 16.38 ± 0.96c | 64.59 ± 2.28b |
Year | Treatment | Irrigation Amount/(mm) | Yield/(g plant−1) | iWUE/(g (mm plant)−1) |
---|---|---|---|---|
2017 | APRIH | 675.0 | 1958.36 ± 25.80a | 2.90 ± 0.04b |
APRIM | 516.0 | 1802.69 ± 46.93b | 3.49 ± 0.094a | |
APRIL | 437.0 | 1252.48 ± 27.52c | 2.87 ± 0.064b | |
FPRI | 675.0 | 1266.35 ± 21.34c | 1.88 ± 0.034d | |
CDI | 675.0 | 1775.26 ± 20.94b | 2.63 ± 0.03c | |
2018 | APRIH | 742.5 | 1804.58 ± 40.68a | 2.678 ± 0.06b |
APRIM | 567.6 | 1754.82 ± 29.50ab | 3.40 ± 0.06a | |
APRIL | 480.7 | 1115.36 ± 20.85c | 2.55 ± 0.05c | |
FPRI | 742.5 | 1135.62 ± 28.90c | 1.68 ± 0.04d | |
CDI | 742.5 | 1743.22 ± 26.65b | 2.58 ± 0.04bc |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Wang, Z.; Zhang, J.; Li, W.; Zhou, B. Improving Yield and Quality of Processing Tomato (Lycopersicon esculentum Miller) Using Alternate Partial Root-Zone Drip Irrigation in Arid Northwest China. Water 2019, 11, 1503. https://doi.org/10.3390/w11071503
Zhao D, Wang Z, Zhang J, Li W, Zhou B. Improving Yield and Quality of Processing Tomato (Lycopersicon esculentum Miller) Using Alternate Partial Root-Zone Drip Irrigation in Arid Northwest China. Water. 2019; 11(7):1503. https://doi.org/10.3390/w11071503
Chicago/Turabian StyleZhao, Di, Zhenhua Wang, Jinzhu Zhang, Wenhao Li, and Bo Zhou. 2019. "Improving Yield and Quality of Processing Tomato (Lycopersicon esculentum Miller) Using Alternate Partial Root-Zone Drip Irrigation in Arid Northwest China" Water 11, no. 7: 1503. https://doi.org/10.3390/w11071503
APA StyleZhao, D., Wang, Z., Zhang, J., Li, W., & Zhou, B. (2019). Improving Yield and Quality of Processing Tomato (Lycopersicon esculentum Miller) Using Alternate Partial Root-Zone Drip Irrigation in Arid Northwest China. Water, 11(7), 1503. https://doi.org/10.3390/w11071503