Exploring Science–Policy Interactions in a Technical Policy Field: Climate Change and Flood Risk Management in Austria, Southern Germany, and Switzerland
Abstract
:1. Introduction
2. State of the Research and Own Conceptual Framework
- Dynamics of knowledge creation: The impact of climate change on flood risks became an important topic especially after the publication of the IPCC’s Second Assessment Report [37]. Subsequently, in many European countries, one c seen extensive efforts of knowledge creation and the related consolidation of expertise on flood risks and related management options [3,38]. At the same time, the state of knowledge is—as almost necessarily seen in any complex policy arena—still highly provisional, uncertain and incomplete [13,39,40]. Against this background, our case studies address the following questions: How did the state of knowledge in the field develop over time, and was there consensus on key insights or did experts disagree? What kind of policy recommendations, if any, did scholars provide?
- Institutionalization of the science–policy interface: The interaction between science and policy-making has often been conceptualized by means of a dichotomization between the two realms of knowledge production and knowledge use and, relatedly, the clear institutional separation of the two. Recently, this “two-communities” model has given place to a more differentiated picture: Science–policy studies indicate that sectoral arenas are frequently marked by a great variety of “knowledge actors”—beyond the simple binary classification between “scientist” and “policy-maker”; often with one and the same actors taking different roles depending on the context. This is also reflected in different models of organizational integration, where especially in neo-corporatist policy cultures, like the Netherlands or the German-speaking countries, one often finds “mixed” advisory bodies in which policy-makers, administrative officials, interest group representatives, and scientists sit side-by-side without a clear separation of roles [41,42]. Before this background, we ask the following questions: Who are the main “knowledge actors” in the policy domain of flood risk governance? How is the interface between science and policy-making organized?
- Influence of expertise on policy development: Flood risk management is seen as a highly technical field in which scientific expertise is expected to play an important role. As shown above, part of the management-oriented literature has been calling for a (more) evidence-based approach to address flood risks often building on an overly simplified linear “get-the-facts-then-act” model [43] (p. 406). In the light of recent scholarship, the naïve hopes of the cascade-like “scientification of the non-scientific world” [44] (p. 382) turned out to be untenable, both from a theoretical and an empirical perspective [26,45]. The critique goes in two directions: First, scholars point out that research findings are rarely directly employed in a specific policy, however, they can still exert a powerful influence over the terms used and the way issues are framed and understood (i.e., “conceptual use”, [46]). Second, authors highlight that political actors can use scientists, their expertise, but also their nimbus of objectivity, as an additional resource to increase their authority or legitimation. Advisors are selected not only for their knowledge but also for the legitimation that they provide for policies as well as for policy makers and interest groups involved in policy processes [41] (p. 31). Before this background, we ask the following questions: How evidence-based are flood risk policies? How much influence and authority did science hold and how much is accrued to other modes of knowing and deciding?
3. The Role of Climate Change in Flood Risk Management in Austria, Southern Germany and Switzerland
3.1. Austria: Flood Risk Adaption without Climate Change Allowances
3.1.1. Dynamics of Knowledge Creation
3.1.2. Institutionalization of the Science–Policy Interface
3.1.3. Influence of Expertise on Policy Development
3.2. Southern Germany: Early Awareness and Institutionalization of Climate Change Impacts
3.2.1. Dynamics of Knowledge Creation
3.2.2. Institutionalization of the Science–Policy Interface
3.2.3. Influence of Expertise on Policy Development
3.3. Switzerland: Integrating Climate Change Adaptation into Flood Risk Management
3.3.1. Dynamics of Knowledge Creation
3.3.2. Institutionalization of the Science–Policy Interface
3.3.3. Influence of Expertise on Policy Development
4. Cross-Case Comparison and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Code | Function | Date |
---|---|---|
AT01 | University of Natural Resources and Life Sciences, Vienna (BOKU); Institute of Meteorology | 28 June 2016 |
AT02 | Austrian Ministry for Sustainability and Tourism (BMNT); Federal Water Engineering Administration | 12 July 2016 |
AT03 | Austrian Conference on Spatial Planning (ÖROK) | 13 July 2016 |
AT04 | Austrian Institute of Economic Research (WIFO) | 15 July 2016 |
AT05 | University of Natural Resources and Life Sciences, Vienna (BOKU); Institute of Water Management, Hydrology and Hydraulic Engineering | 19 July 2016 |
AT06 | State Government of Vorarlberg; State Office for Spatial Planning | 22 September 2016 |
AT07 | State Government of Vorarlberg; State Office for Water Management | 22 September 2016 |
AT08 | State Government of Vorarlberg; State Office for Hydraulic Engineering | 23 September 2016 |
DE01 | LUBW, Baden-Württemberg Institute for the Environment, Survey and Nature Conservation | 24 May 2017 |
DE02 | Technical University Stuttgart | 30 May 2017 |
DE03 | Karlsruhe Institute of Technology | 4 July 2017 |
DE04 | LUBW, Baden-Württemberg Institute for the Environment, Survey and Nature Conservation | 4 July 2017 |
DE05 | University of Stuttgart | 5 July 2017 |
DE06 | Baden-Württemberg Ministry for Environment | 12 July 2017 |
DE07 | LfU, Bavarian State Office for the Environment | 8 August 2017 |
DE08 | LfU, Bavarian State Office for the Environment | 4 September 2017 |
DE09 | LUBW, Baden-Württemberg Institute for the Environment, Survey and Nature Conservation | 10 April 2018 |
DE10 | Technical University of Munich | 15 June 2018 |
CH01 | Federal Office for the Environment, Flood Protection Section | 8 June 2017 |
CH02 | Federal Office for the Environment, Section Risk Management Section | 8 June 2017 |
CH03 | Federal Office for the Environment, Hydrology Division | 8 June 2017 |
CH04 | University Bern, Mobiliar Lab | 9 June 2017 |
CH05 | Consultant in Risk Management | 9 June 2017 |
CH06 | Consultant in Risk Management | 19 September 2017 |
References
- Kundzewicz, Z.W. Climate change track in river floods in Europe. Proc. Int. Assoc. Hydrol. Sci. 2015, 369, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Kundzewicz, Z.W.; Lugeri, N.; Dankers, R.; Hirabayashi, Y.; Döll, P.; Pińskwar, I.; Dysarz, T.; Hochrainer, S.; Matczak, P. Assessing river flood risk and adaptation in Europe—Review of projections for the future. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 641–656. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Krysanova, V.; Dankers, R.; Hirabayashi, Y.; Kanae, S.; Hattermann, F.F.; Huang, S.; Milly, P.C.D.; Stoffel, M.; Driessen, P.P.J.; et al. Differences in flood hazard projections in Europe—Their causes and consequences for decision making. Hydrol. Sci. J. 2017, 62, 1–14. [Google Scholar] [CrossRef]
- Morrison, A.; Westbrook, C.J.; Noble, B.F. A review of the flood risk management governance and resilience literature. J. Flood Risk Manag. 2018, 11, 291–304. [Google Scholar] [CrossRef]
- Tempels, B. Flood Resilience: A Co-Evolutionary Approach. Residents, Spatial Developments and Flood Risk Management in the Dender Basin; Ghent University: Ghent, Belgium, 2016. [Google Scholar]
- Mens, M.J.P.; Klijn, F.; de Bruijn, K.M.; van Beek, E. The meaning of system robustness for flood risk management. Environ. Sci. Policy 2011, 14, 1121–1131. [Google Scholar] [CrossRef]
- Restemeyer, B.; Brink, M.; van den Woltjer, J. Between adaptability and the urge to control: Making long-term water policies in the Netherlands. J. Environ. Plan. Manag. 2017, 60, 920–940. [Google Scholar] [CrossRef]
- STAR-FLOOD|Towards More Resilient Flood Risk Governance. Available online: http://www.starflood.eu/ (accessed on 9 August 2019).
- Wiering, M.; Kaufmann, M.; Mees, H.; Schellenberger, T.; Ganzevoort, W.; Hegger, D.L.T.; Larrue, C.; Matczak, P. Varieties of flood risk governance in Europe: How do countries respond to driving forces and what explains institutional change? Glob. Environ. Chang. 2017, 44, 15–26. [Google Scholar] [CrossRef]
- Alexander, M.; Priest, S.; Mees, H. A framework for evaluating flood risk governance. Environ. Sci. Policy 2016, 64, 38–47. [Google Scholar] [CrossRef]
- Matczak, J.; Lewandowski, J.; Chorynski, A.; Szwed, M.; Kundzewicz, Z.W. Analysing and Evaluating Flood Risk Governance in Poland: Looking for Strategic Planning in a Country in Transition; STAR-FLOOD Consortium: Poznan, Poland, 2016. [Google Scholar]
- Ek, K.; Goytia, S.; Pettersson, M.; Spegel, E. Analysing and Evaluating Flood Risk Governance in Sweden: Adaptation to Climate Change? STAR-FLOOD Consortium: Poznan, Poland, 2016. [Google Scholar]
- Kron, W.; Eichner, J.; Kundzewicz, Z.W. Reduction of flood risk in Europe—Reflections from a reinsurance perspective. J. Hydrol. 2019, 576, 197–209. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Aerts, J.C.J.H.; Van, B.; Bierkens, M.F.P.; Bouwman, A.; Jongman, B.; Kwadijk, J.C.J.; Ligtvoet, W.; Lucas, P.L.; Van, V.; et al. Global drivers of future river flood risk. Nat. Clim. Chang. 2016, 6, 381–385. [Google Scholar] [CrossRef]
- Alfieri, L.; Feyen, L.; Baldassarre, G.D. Increasing flood risk under climate change: A pan-European assessment of the benefits of four adaptation strategies. Clim. Chang. 2016, 136, 507–521. [Google Scholar] [CrossRef]
- Hogl, K.; Kvarda, E.; Nordbeck, R.; Pregernig, M. Legitimacy and effectiveness of environmental governance: Concepts and perspectives. In Environmental Governance: The Challenge of Legitimacy and Effectiveness; Hogl, K., Kvarda, E., Nordbeck, R., Pregernig, M., Eds.; Edward Elgar: Cheltenham, UK; Northampton, MA, USA, 2012; pp. 1–26. [Google Scholar]
- Liefferink, D.; Wiering, M.; Crabbé, A.; Hegger, D. Explaining stability and change. Comparing flood risk governance in Belgium, France, the Netherlands, and Poland. J. Flood Risk Manag. 2018, 11, 281–290. [Google Scholar] [CrossRef]
- Lange, H.; Garrelts, H. Risk Management at the Science–Policy Interface: Two Contrasting Cases in the Field of Flood Protection in Germany. J. Environ. Policy Plan. 2007, 9, 263–279. [Google Scholar] [CrossRef]
- Mostert, E.; Pahl–Wostl, C.; Rees, Y.; Searle, B.; Tàbara, D.; Tippett, J. Social learning in European river-basin management: Barriers and fostering mechanisms from 10 river basins. Ecol. Soc. 2007, 12, 19. [Google Scholar] [CrossRef]
- Bergsma, E. From Flood Safety to Spatial Management: Expert-Policy Interactions in Dutch and US Flood Governance; Springer: Berlin, Germany, 2018; ISBN 978-3-319-96716-5. [Google Scholar]
- Araral, E.; Wang, Y. Water Governance 2.0: A Review and Second Generation Research Agenda. Water Resour. Manag. 2013, 27, 3945–3957. [Google Scholar] [CrossRef] [Green Version]
- Hegger, D.L.T.; Driessen, P.P.J.; Dieperink, C.; Wiering, M.; Raadgever, G.T.T.; van Rijswick, H.F.M.W. Assessing Stability and Dynamics in Flood Risk Governance. Water Resour. Manag. 2014, 28, 4127–4142. [Google Scholar] [CrossRef]
- Timmerman, J.G.; Langaas, S. Water information: What is it good for? The use of information in transboundary water management. Reg. Environ. Chang. 2005, 5, 177–187. [Google Scholar] [CrossRef]
- Xu, Y.-P.; Tung, Y.-K. Decision-making in Water Management under Uncertainty. Water Resour. Manag. 2008, 22, 535–550. [Google Scholar] [CrossRef]
- Beck, S. Moving beyond the linear model of expertise? IPCC and the test of adaptation. Reg. Environ. Chang. 2011, 11, 297–306. [Google Scholar] [CrossRef]
- Pregernig, M. Framings of science-policy interactions and their discursive and institutional effects: Examples from conservation and environmental policy. Biodivers. Conserv. 2014, 23, 3615–3639. [Google Scholar] [CrossRef]
- Leskens, J.G.; Brugnach, M.; Hoekstra, A.Y.; Schuurmans, W. Why are decisions in flood disaster management so poorly supported by information from flood models? Environ. Model. Softw. 2014, 53, 53–61. [Google Scholar] [CrossRef]
- Höllermann, B.; Evers, M. Perception and handling of uncertainties in water management—A study of practitioners’ and scientists’ perspectives on uncertainty in their daily decision-making. Environ. Sci. Policy 2017, 71, 9–18. [Google Scholar] [CrossRef]
- Morss, R.E.; Wilhelmi, O.V.; Downton, M.W.; Gruntfest, E. Flood Risk, Uncertainty, and Scientific Information for Decision Making: Lessons from an Interdisciplinary Project. Bull. Am. Meteorol. Soc. 2005, 86, 1593–1602. [Google Scholar] [CrossRef]
- Frick, J.; Hegg, C. Can end-users’ flood management decision making be improved by information about forecast uncertainty? Atmos. Res. 2011, 100, 296–303. [Google Scholar] [CrossRef]
- Colosimo, M.F.; Kim, H. Incorporating innovative water management science and technology into water management policy. Energy Ecol. Environ. 2016, 1, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, H.; Black, J. Implicit and explicit knowledge in flood evacuations with a case study of Takamatsu, Japan. Int. J. Disaster Risk Reduct. 2018, 28, 788–797. [Google Scholar] [CrossRef]
- Newig, J.; Challies, E.; Jager, N.; Kochskämper, E. What Role for Public Participation in Implementing the EU Floods Directive? A Comparison with the Water Framework Directive, Early Evidence from Germany and a Research Agenda. Environ. Policy Gov. 2014, 24, 275–288. [Google Scholar] [CrossRef]
- Newig, J.; Kochskämper, E.; Challies, E.; Jager, N.W. Exploring governance learning: How policymakers draw on evidence, experience and intuition in designing participatory flood risk planning. Environ. Sci. Policy 2015, 55, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Fritsch, O. Integrated and adaptive water resources management: Exploring public participation in the UK. Reg. Environ. Chang. 2017, 17, 1933–1944. [Google Scholar] [CrossRef]
- Hedelin, B. The EU floods directive in Sweden: Opportunities for integrated and participatory flood risk planning. J. Flood Risk Manag. 2017, 10, 226–237. [Google Scholar] [CrossRef]
- IPCC Second Assessment. Climate Change 1995. A Report of the Intergovernmental Panel on Climate Change; IPCC (Ed.) Intergovernmental Panel on Climate Change: Geneva, Switzerland, 1996; ISBN 978-0-7881-3923-9. [Google Scholar]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef]
- Bäckstrand, K. Scientisation vs. Civic Expertise in Environmental Governance: Eco–feminist, Eco–modern and Post–modern Responses. Environ. Politics 2004, 13, 695–714. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Krysanova, V.; Benestad, R.E.; Hov, Ø.; Piniewski, M.; Otto, I.M. Uncertainty in climate change impacts on water resources. Environ. Sci. Policy 2018, 79, 1–8. [Google Scholar] [CrossRef]
- Pregernig, M.; Böcher, M. The role of expertise in environmental governance: Theoretical perspectives and empirical evidence. In Long-Term Governance for Social-Ecological Change; Siebenhüner, B., Arnold, M., Eisenack, K., Jacob, K., Eds.; Routledge: London, UK; New York, NY, USA, 2013; pp. 29–46. [Google Scholar]
- Hermann, A.T.; Hogl, K.; Pregernig, M. Science-policy interactions in Austrian, Dutch, and Swiss climate policy: A comparative account. J. Environ. Policy Plan. 2017, 19, 168–182. [Google Scholar] [CrossRef]
- Pielke, R.A. When scientists politicize science: Making sense of controversy over The Skeptical Environmentalist. Environ. Sci. Policy 2004, 7, 405–417. [Google Scholar] [CrossRef]
- Beck, U.; Bonß, W. Soziologie und Modernisierung. Zur Ortsbestimmung der Verwendungsforschung. Soz. Welt 1984, 35, 381–406. [Google Scholar]
- Grundmann, R. The role of expertise in governance processes. For. Policy Econ. 2009, 11, 398–403. [Google Scholar] [CrossRef] [Green Version]
- Weiss, C.H. Knowledge Creep and Decision Accretion. Knowl. Creat. Diffus. Util. 1980, 1, 381–404. [Google Scholar] [CrossRef]
- Fuchs, S.; Röthlisberger, V.; Thaler, T.; Zischg, A.; Keiler, M. Natural Hazard Management from a Coevolutionary Perspective: Exposure and Policy Response in the European Alps. Ann. Am. Assoc. Geogr. 2017, 107, 382–392. [Google Scholar] [CrossRef]
- Witt, H. Volume Strategies in Qualitative and Quantitative Research. Forum Qualitative Sozialforschung/Forum: Qualitative Social Research. 2001, Volume 2. Available online: http://www.qualitative-research.net/index.php/fqs/article/view/969 (accessed on 2 June 2019).
- Gläser, J.; Laudel, G. Experteninterviews und Qualitative Inhaltsanalyse: Als Instrumente Rekonstruierender Untersuchungen, 4th ed.; VS Verlag für Sozialwissenschaften: Wiesbaden, Germany, 2010; ISBN 978-3-531-17238-5. [Google Scholar]
- Hebenstreit, K. Auswirkungen von Klimaänderungen auf die Hydrologie Alpiner Einzugsgebiete. In Wiener Mitteilungen. Wasser, Abwassser, Gewässer; TU Wien/BOKU/ÖWAV: Wien, Austria, 2000; Volume 160. [Google Scholar]
- Nachtnebel, H.; Fuchs, M. Beurteilung der hydrologischen Veränderungen in Österreich infolge globaler Klimaänderungen. Österr. Wasser Abfallwirtsch. 2004, 7–8, 79–92. [Google Scholar]
- Godina, R. Veränderungen in hydrologischen Zeitreihen. In Auswirkungen des Klimawandels auf Hydrologie und Wasserwirtschaftin Österreich; ÖWAV, Ed.; Österreichischer Wasser-und Abfallwirtschaftsverband: Wien, Austria, 2010; pp. 35–49. [Google Scholar]
- Blöschl, G.; Merz, B. Bestimmung von Bemessungshochwässern gegebener Jährlichkeit—Aspekte einer zeitgemäßen Strategie. Wasserwirtschaft 2008, 11, 12–18. [Google Scholar]
- Blöschl, G.; Blaschke, A.P.; Haslinger, K.; Hofstätter, M.; Parajka, J.; Salinas, J.; Schöner, W. Auswirkungen der Klimaänderung auf Österreichs Wasserwirtschaft—Ein aktualisierter Statusbericht. Österr. Wasser Abfallwirtsch. 2018, 70, 462–473. [Google Scholar] [CrossRef]
- Formayer, H.; Kromp-Kolb, H. Hochwasser und Klimawandel. Auswirkungen des Klimawandels auf Hochwasserereignisse in Österreich (Endbericht WWF 2006). BOKU-Met. Report 7; University of Natural Resources and Life Sciences: Vienna, Austria, 2009. [Google Scholar]
- Formayer, H.; Kromp-Kolb, H.; Schwarzl, I. Auswirkungen des Klimawandels auf Hochwasserereignisse in Oberösterreich. BOKU-MET Report 14; Universität für Bodenkultur Wien: Wien, Austria, 2009. [Google Scholar]
- Blöschl, G.; Viglione, A.; Heindl, H. Dynamik von Hochwasserbemessungsgrößen und Konsequenzen—Klimawandel. FloodRisk II, Teilprojekt 6.2; Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft (BMLFUW): Wien, Austria, 2008. [Google Scholar]
- Nachtnebel, H. Auswirkungen von möglichen Klimaänderungen auf die Hydrologie und Wasserwirtschaft in einigen österreichischen Regionen. In Auswirkungen des Klimawandels auf Die Österreichische Wasserwirtschaft; BMLFUW, ÖWAV, Eds.; Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft: Wien, Austria, 2008. [Google Scholar]
- Holzmann, H.; Lehmann, T.; Formayer, H.; Haas, P. Auswirkungen möglicher Klimaänderungen auf Hochwasser und Wasserhaushaltskomponenten ausgewählter Einzugsgebiete in Österreich. Österr. Wasser Abfallwirtsch. 2010, 62, 7–14. [Google Scholar] [CrossRef]
- Nachtnebel, H.; Stanzel, P. Auswirkungen von möglichen Klimaänderungen auf den Wasserhaushalt und Extremwerte. In Auswirkungen des Klimawandels auf Hydrologie und Wasserwirtschaft in Österreich; ÖWAV, Ed.; Österreichischer Wasser- und Abfallwirtschaftsverband: Wien, Austria, 2010. [Google Scholar]
- Anpassungsstrategien an den Klimawandel für Österreichs Wasserwirtschaft; ZAMG/TU WIEN (Ed.) Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft: Wien, Austria, 2010. [Google Scholar]
- Blöschl, G.; Viglione, A.; Merz, R.; Parajka, J.; Salinas, J.L.; Schöner, W. Auswirkungen des Klimawandels auf Hochwasser und Niederwasser. Österr. Wasser Abfallwirtsch. 2011, 63, 21–30. [Google Scholar] [CrossRef]
- Auswirkungen des Klimawandels auf Hydrologie und Wasserwirtschaft in Österreich. Präsentation der aktuellen Studien; ÖWAV (Ed.) Österreichischer Wasser-und Abfallwirtschaftsverband: Wien, Austria, 2010. [Google Scholar]
- Klimawandelauswirkungen und Anpassungsstrategien in der Österreichischen Wasserwirtschaft. ÖWAV-ExpertInnenpapier; ÖWAV (Ed.) Österreichischer Wasser-und Abfallwirtschaftsverband: Wien, Austria, 2014. [Google Scholar]
- Hochwasserschutz in Österreich. Flood protection in Austria; BMLFUW (Ed.) Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft: Wien, Austria, 2006. [Google Scholar]
- The Austrian Strategy for Adaptation to Climate Change; BMLFUW (Ed.) Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft: Vienna, Austria, 2012. [Google Scholar]
- APCC. Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14); Austrian Panel on Climate Change; Verlag der Österreichischen Akademie der Wissenschaften: Wien, Austria, 2014; ISBN 978-3-7001-7699-2. [Google Scholar]
- Nationaler Hochwasserrisikomanagementplan 2015; BMLFUW (Ed.) Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft: Wien, Austria, 2016. [Google Scholar]
- Flood Risk Management in Austria. Objectives–Measures–Good Practice; BMNT (Ed.) Austrian Federal Ministry for Sustainability and Tourism: Vienna, Austria, 2018. [Google Scholar]
- Thieken, A.H.; Cammerer, H.; Dobler, C.; Lammel, J.; Schöberl, F. Estimating changes in flood risks and benefits of non-structural adaptation strategies—A case study from Tyrol, Austria. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 343–376. [Google Scholar] [CrossRef]
- Löschner, L.; Herrnegger, M.; Apperl, B.; Senoner, T.; Seher, W.; Nachtnebel, H.P. Flood risk, climate change and settlement development: A micro-scale assessment of Austrian municipalities. Reg. Environ. Chang. 2017, 17, 311–322. [Google Scholar] [CrossRef]
- Bárdossy, A.; Caspary, H.J. Detection of climate change in Europe by analyzing European atmospheric circulation patterns from 1881 to 1989. Theor. Appl. Climatol. 1990, 42, 155–167. [Google Scholar] [CrossRef]
- Caspary, H.J.; Bárdossy, A. Markieren die Winterhochwasser 1990 und 1993 das Ende der Stationarität in der Hochwasserhydrologie infolge von Klimaänderungen? Wasser Boden 1995, 47, 18–24. [Google Scholar]
- KLIWA. 2. KLIWA-Symposium: Am 03. und 04.05.2004 in Würzburg: Fachvorträge Klimaveränderung und Konsequenzen für Die Wasserwirtschaft; Klimaveränderung und Wasserwirtschaft: München, Germany, 2004; p. 249. [Google Scholar]
- Dankers, R.; Feyen, L. Climate change impact on flood hazard in Europe: An assessment based on high-resolution climate simulations. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Madsen, H.; Lawrence, D.; Lang, M.; Martinkova, M.; Kjeldsen, T.R. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J. Hydrol. 2014, 519, 3634–3650. [Google Scholar] [CrossRef] [Green Version]
- Bronstert, A.; Bormann, H.; Bürger, G.; Haberlandt, U.; Hattermann, F.; Heistermann, M.; Huang, S.; Kolokotronis, V.; Kundzewicz, Z.; Menzel, L.; et al. Hochwasser und Sturzfluten an Flüssen in Deutschland. In Klimawandel in Deutschland: Entwicklung, Folgen, Risiken und Perspektiven; Brasseur, G., Jacob, D., Schuck-Zöller, S., Eds.; Springer Spektrum: Berlin, Germany, 2017; pp. 87–102. ISBN 978-3-662-50396-6. [Google Scholar]
- Bayerisches Landesamt für Umwelt; KLIWA. Kurzbericht “Der Klimawandel in Bayern für den Zeitraum 2021–2050” (Kenntnisstand Januar 2005); KLIWA: Münster, Germany, 2005; p. 14. [Google Scholar]
- KLIWA. Regionale Klimaszenarien für Süddeutschland: Abschätzung der Auswirkungen auf den Wasserhaushalt; KLIWA: München, Germany, 2006; p. 93. [Google Scholar]
- Hennegriff, W.; Kolokotronis, V. Methodik zur Ableitung von Klimaänderungsfaktoren für Hochwasserkennwerte in Baden-Württemberg. WasserWirtschaft 2007, 9, 31–35. [Google Scholar]
- KLIWA. 4. KLIWA-Symposium am 3. und 4. Dezember 2009 in Mainz. Fachvorträge Klimaveränderung und Konsequenzen für Die Wasserwirtschaft; Klimaveränderung und Wasserwirtschaft: Karlsruhe, Germany, 2010. [Google Scholar]
- KLIWA. 5. KLIWA-Symposium am 6. und 7. Dezember 2012 in Würzburg. Fachvorträge Klimaveränderung und Konsequenzen für Die Wasserwirtschaft; KLIWA: Kasendorf, Germany, 2013; p. 258. [Google Scholar]
- KLIWA. 6. KLIWA-Symposium am 22. und 23. Mai 2017 in Baden-Baden. Fachvorträge Risiko Klima—Herausforderungen Managen; Klimaveränderung und Wasserwirtschaft: Baden-Baden, Germany, 2018; p. 278. [Google Scholar]
- KLIWA. Klimawandel in Süddeutschland. Veränderung der Kenngrößen Lufttemperatur, Niederschlag und Hochwasserabfluss, Klimamonitoring im Rahmen des Kooperationsvorhabens KLIWA. Monitoringbericht 2008; KLIWA: Münster, Germany, 2008; p. 24. [Google Scholar]
- KLIWA. Klimawandel in Süddeutschland, Veränderungen von Meteorologischen und Hydrologischen Kenngrößen, Klimamonitoring im Rahmen des Kooperationsvorhabens KLIWA. Monitoringbericht 2011; KLIWA: Münster, Germany, 2012; p. 40. [Google Scholar]
- KLIWA. Klimawandel in Süddeutschland Veränderungen von Meteorologischen und Hydrologischen Kenngrößen. Klimamonitoring im Rahmen der Kooperation KLIWA. Monitoringbericht 2016; KLIWA: Münster, Germany, 2017; p. 60. [Google Scholar]
- Magel, H.; Franke, S. Zukunftsstrategien im Ländlichen Raum für die Bayerische Wasserwirtschaftsverwaltung im Lichte von Good Governance; Technische Universität München: München, Germany, 2008; p. 205. [Google Scholar]
- Hattermann, F.F.; Huang, S.; Burghoff, O.; Willems, W.; Österle, H.; Büchner, M.; Kundzewicz, Z. Modelling flood damages under climate change conditions—A case study for Germany. Nat. Hazards Earth Syst. Sci. 2014, 14, 3151–3168. [Google Scholar] [CrossRef]
- Koch, M.; Hennegriff, W.; Moser, M.; Groteklaes, M.; Krause, L.; Röder, S.; Gosch, L.; Weinbrenner, D.; Cassel, M.; Wilkinson, K.; et al. Leitfaden Kommunales Starkregenrisikomanagement in Baden-Württemberg; LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Ed.; LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg: Karlsruhe, Germany, 2016; ISBN 978-3-88251-391-2. [Google Scholar]
- KLIWA. KLIWA-Symposium vom 29. und 30.11.2000 in Karlsruhe; KLIWA: Münster, Germany, 2000; p. 276. [Google Scholar]
- KLIWA. Über KLIWA. Available online: https://www.kliwa.de/kliwa.htm (accessed on 2 June 2019).
- Landesanstalt für Umwelt Messungen und Naturschutz Baden-Württemberg. Climate Change in Southern Germany. Challenges—Adaptation. Consequences for Water Management; Klimaveränderung und Wasserwirtschaft: Karlsruhe, Germany, 2017; p. 12. [Google Scholar]
- Landesanstalt für Umweltschutz Baden-Württemberg. Festlegung des Bemessungshochwassers für Anlagen des technischen Hochwasserschutzes—Leitfaden; 1; Landesanstalt für Umweltschutz Baden-Württemberg: Mannheim, Germany, 2005; ISBN 3-88251-288-1. [Google Scholar]
- Bayerisches Staatsministerium für Umwelt und Gesundheit. Berücksichtigung von Klimaänderungen; Bemessung von Hochwasserschutzeinrichtungen; Gesetz Nr. 7535-UG.; StMUV: Munich, Germany, 2009. [Google Scholar]
- Rutschmann, P.; Asenkerschbaumer, M.; Skublics, D. Verzögerung und Abschätzung von Hochwasserwellen entlang der bayerischen Donau. Abschlussbericht 2012; Technische Universität München: München, Germany, 2012; p. 166. [Google Scholar]
- Rutschmann, P.; Giehl, S.; Skublics, D.; Scandroglio, R. Vertiefte Wirkungsanalyse zu: “Verzögerung und Abschätzung von Hochwasserwellen Entlang der Bayerischen Donau”. Schlussbericht Teil I; Technische Universität München: München, Germany, 2017; p. 195. [Google Scholar]
- Rutschmann, P.; Skublics, D.; Giehl, S. Vertiefte Wirkungsanalyse zu: “Verzögerung und Abschätzung von Hochwasserwellen Entlang der bayerischen Donau”. Zwischenbericht; Technische Universität München: München, Germany, 2014; p. 81. [Google Scholar]
- Pfister, C. Die “Katastrophenlücke” des 20. Jahrhunderts und der Verlust traditionalen Risikobewusstseins. GAIA—Ecol. Perspect. Sci. Soc. 2009, 18, 239–246. [Google Scholar]
- Andres, A.; Badoux, A. The Swiss flood and landslide damage database: Normalisation and trends. J. Flood Risk Manag. 2018. [Google Scholar] [CrossRef]
- Spreafico, M.; Stadler, K. Hochwasserabflüsse in Schweizerischen Gewässern. Landeshydrologie und-geologie 1988, 7, 17–25. [Google Scholar]
- Frei, C.; Davies, H.C.; Gurtz, J.; Schär, C. Climate dynamics and extreme precipitation and flood events in Central Europe. Integr. Assess. 2000, 1, 281–300. [Google Scholar] [CrossRef]
- Extreme Events and Climate Change; OcCC (Ed.) Organe Consultatif sur les Changements Climatiques: Berne, Switzerland, 2003. [Google Scholar]
- Climate Change and Switzerland 2050. Expected Impacts on Environment, Society and Economy; OcCC; ProClim (Eds.) OcCC/ProClim: Bern, Switzerland, 2007. [Google Scholar]
- Schmocker-Fackel, P.; Naef, F. More frequent flooding? Changes in flood frequency in Switzerland since 1850. J. Hydrol. 2010, 381, 1–8. [Google Scholar] [CrossRef]
- Schmocker-Fackel, P.; Naef, F. Changes in flood frequencies in Switzerland since 1500. Hydrol. Earth Syst. Sci. 2010, 14, 1581–1594. [Google Scholar] [CrossRef] [Green Version]
- CH2011; C2SM; MeteoSwiss; ETH; NCCR Climate; OcCC (Eds.) Swiss Climate Change Scenarios CH2011: Zurich, Switzerland, 2011. [Google Scholar]
- CH2014-Impacts. Toward Quantitative Scenarios of Climate Change Impacts in Switzerland; OCCR, BAFU, MeteoSwiss, C2SM, Agroscope, ProClim: Bern, Switzerland, 2014.
- Köplin, N.; Schädler, B.; Viviroli, D.; Weingartner, R. Seasonality and magnitude of floods in Switzerland under future climate change. Hydrol. Process. 2014, 28, 2567–2578. [Google Scholar] [CrossRef]
- Beniston, M.; Stoffel, M. Rain-on-snow events, floods and climate change in the Alps: Events may increase with warming up to 4 °C and decrease thereafter. Sci. Total Environ. 2016, 571, 228–236. [Google Scholar] [CrossRef]
- Brennpunkt Klima Schweiz Grundlagen, Folgen und Perspektiven; Akademien der Wissenschaften Schweiz (Ed.) Akademien der Wissenschaften Schweiz: Bern, Switzerland, 2016. [Google Scholar]
- CH2018—Climate Scenarios for Switzerland. Technical Report; National Centre for Climate Services: Zurich, Switzerland, 2018.
- Summermatter, S. Die instrumentalisierte Katastrophe: Die Schweizer Wasserbaupolitik vor und nach den Überschwemmungen von 1868. Hist. Soc. Res. 2007, 32, 200–214. [Google Scholar]
- Hochwasser 2005 in der Schweiz. Synthesebericht zur Ereignisanalyse; BAFU (Ed.) Bundesamt für Umwelt BAFU: Bern, Switzerland, 2008. [Google Scholar]
- Boosting Disaster Prevention through Innovative Risk Governance. Insights from Austria, France and Switzerland; OECD (Ed.) OECD Publishing: Paris, France, 2017. [Google Scholar]
- FAN. Fachleute Naturgefahren Schweiz. Available online: http://www.fan-info.ch/ (accessed on 9 May 2019).
- Von der Gefahrenabwehr zur Risikokultur; PLANAT (Ed.) National Platform for Natural Hazards (PLANAT), Bundesamt für Umwelt (BAFU), Bundesamt für Raumplanung (ARE): Berne, Switzerland, 1998. [Google Scholar]
- PLANAT. Sicherheit vor Naturgefahren. Vision und Strategie; PLANAT Reihe 1/2004; Nationale Plattform Naturgefahren PLANAT: Biel, Switzerland, 2004. [Google Scholar]
- PLANAT. Management of Risks from Natural Hazards. Strategy 2018; Platform on Natural Hazards of the Alpine Convention PLANALP: Biel, Switzerland, 2018. [Google Scholar]
- Risikobasierte Raumplanung: Synthesebericht zu zwei Testplanungen auf Stufe Kommunaler Nutzungsplanung; PLANAT, ARE, BAFU: Berne, Switzerland, 2014.
- FOWG. Flood Control at Rivers and Streams. Guidelines of the FOWG; Federal Office for Water and Geology: Berne, Switzerland, 2001. [Google Scholar]
- Umgang mit Naturgefahren in der Schweiz. Bericht des Bundesrats in Erfüllung des Postulats 12.4271 Darbellay vom 14.12.2012; BAFU (Ed.) Bundesamt für Umwelt BAFU: Bern, Switzerland, 2016. [Google Scholar]
- Anpassung an den Klimawandel in der Schweiz. Ziele, Herausforderungen und Handlungsfelder. Erster Teil der Strategie des Bundesrates vom 2. März 2012; BAFU (Ed.) Bundesamt für Umwelt BAFU: Bern, Switzerland, 2012. [Google Scholar]
- Klimabedingte Risiken und Chancen. Eine schweizweite Synthese; BAFU (Ed.) Bundesamt für Umwelt BAFU: Bern, Switzerland, 2017. [Google Scholar]
- PLANAT. Strategie 2018 “Umgang mit Risiken aus Naturgefahren”; Platform on Natural Hazards of the Alpine Convention PLANALP: Biel, Switzerland, 2018. [Google Scholar]
- OECD. Financial Management of Flood Risk; OECD Publishing: Paris, France, 2016. [Google Scholar]
- Zaugg, M. Philosophiewandel im Schweizerischen Wasserbau: Zur Vollzugspraxis des Nachhaltigen Hochwasserschutzes. Ph.D. Thesis, Universität Zürich, Zürich, Switzerland, 2006. [Google Scholar]
- Leitsätze zum Hochwasserschutz und zur Revitalisierung an Fliessgewässern; BAFU (Ed.) Bundesamt für Umwelt BAFU: Bern, Switzerland, 2015. [Google Scholar]
- Living with Natural Hazards. Objectives and Priorities for Action of the Federal Office for the Environment (FOEN) in Dealing with Natural Hazards; BAFU (Ed.) Federal Office for the Environment: Berne, Switzerland, 2011. [Google Scholar]
- Impulse für eine klimaangepasste Schweiz. Erkenntnisse aus 31 Pilotprojekten zur Anpassung an den Klimawandel; BAFU (Ed.) Bundesamt für Umwelt BAFU: Bern, Switzerland, 2017. [Google Scholar]
- Widmer, A. Mainstreaming climate adaptation in Switzerland: How the national adaptation strategy is implemented differently across sectors. Environ. Sci. Policy 2018, 82, 71–78. [Google Scholar] [CrossRef]
- Strassheim, H.; Kettunen, P. When does evidence-based policy turn into policy-based evidence? Configurations, contexts and mechanisms. Evid. Policy 2014, 10, 259–277. [Google Scholar] [CrossRef]
- Van Enst, W.I.; Driessen, P.P.J.; Runhaar, H.A.C. Towards productive science-policy interfaces: A research agenda. J. Environ. Assmt. Policy Manag. 2014, 16, 1450007. [Google Scholar] [CrossRef]
- Halffman, W.; Hoppe, R. Science/Policy Boundaries: A Changing Division of Labour in Dutch Expert Policy Advice. In Democratization of Expertise? Exploring Novel Forms of Scientific Advice in Political Decision–Making; Maasen, S., Weingart, P., Eds.; Sociology of the Science Yearbook—Vol. 24; Springer: Dordrecht, The Netherlands, 2005; pp. 135–151. [Google Scholar]
- Brand, U.; Pawloff, A. Selectivities at Work: Climate Concerns in the Midst of Corporatist Interests. The Case of Austria. J. Environ. Prot. 2014, 5, 780–795. [Google Scholar] [CrossRef] [Green Version]
- Hermann, A.T.; Pregernig, M.; Hogl, K.; Bauer, A. Cultural Imprints on Scientific Policy Advice: Climate science–policy interactions within Austrian neo-corporatism. Environ. Policy Gov. 2015, 25, 343–355. [Google Scholar] [CrossRef]
- Protection against Natural Hazards. Vision and Strategy (Englisch Summary); Nationale Plattform Naturgefahren PLANAT: Biel, Switzerland, 2004.
Austria | Southern Germany (BW, BY) | Switzerland | ||
---|---|---|---|---|
Dynamics of knowledge creation | Development of state of knowledge over time | Early/mid-2000s: high epistemic uncertainties; studies based on individual catchments; some disagreement between meteorological and hydrology communities Early 2010s: growing consensus about impact of climate change on flood frequencies, seasonal shifts, and pluvial floods Future projections (time horizon 2021–2050): regionally different changes in flood discharge ranging from −4 to +10% | Early 1990s: first studies trigger contentious debate on link between climate change and flooding patterns Late 1990s: concerted efforts to systematically study climate signals at regional level (as part of KLIWA) Early 2000s: historic studies show no clear signals; future projections show some increased trends especially for winter half year 2010s: increased climate signals, but still high degree of variability and uncertainty | Since early 2000s: growing interest to investigate climate-related changes in flooding Long-term studies provide indications but no evidence of climate-related influences on flood frequencies/intensities Since mid-2010s: increasingly clear signals that climate-related changes in the hydrological cycle will result in more intense rainfall events and flooding |
Expert-driven policy recommendations | Explicit recommendation: no need to introduce a general climate surcharge for design values | Early 2000s: explicit expert recommendation to implement Climate Change Factors (CCF) 2010s: more cautious expert recommendations, e.g., in the form of guidelines | In general, rather cautious policy recommendations, e.g., … policy makers should account for cyclical variability of flooding … risk reduction efforts should be pursued irrespective of clear climate change signal | |
Institutionalization of the science–policy interface | Main knowledge actors | Scientists (meteorology, hydrologists etc.) assess historical trends and model future trends Policy-makers and administrative officials build up practical knowledge based on the assessment and experience from past flood events | Hydrologists, meteorologists, climatologists, hydraulic engineers assess past trends and model future trends Experts from environmental agencies, and the German Meteorological Service, policy makers | Scientists (climatology, meteorology, hydrologists etc.) assess past and model future flood-related trends Sectoral authorities (flood protection, risk management, spatial planning) are involved in the monitoring and assessment of climate change |
Organization of science–policy interface | Strong cooperation between policy-makers and science since flood events of 2002 Various organizations at the interface between science and policy-making: …multi-year transdisciplinary research programs on flood risk (FloodRisk) …well established platform for knowledge transfer and exchange among politicians, administrative officials, practitioners and scientists (ÖWAV) …regular reports on the impact of climate change on the water sector since 2011 | Traditionally strong cooperation between policy-makers and scientists Flagship research cooperation project “Climate Change and Consequences for Water Management” (KLIWA) since 1999 Ad hoc commissioning of research projects to universities, engineering companies, etc. Regular KLIWA monitoring reports, and exchange/communication symposiums and events | Institutional ties between administrative authorities and scientific organisations Various well-established knowledge-sharing platforms for science, policy and practice PLANAT provides an overarching framework to coordinate efforts in climate-adapted risk management | |
Influence of expertise on policy development | Evidence base of policies | Overall, flood policy is strongly evidence-based, while still being driven by extreme flood events as well Risk management is more influenced by state and local policy-makers as well as professionals based on pragmatism and knowledge about practical solutions | Flood and climate change policies explicitly refer to studies and evidence generated through KLIWA | Spatial planning and flood protection experts develop climate adaptation strategies based on scientific assessments and past flooding experiences Policies are aligned with the priorities defined in the climate change adaptation strategy |
Strategic considerations—beyond science | Scientific studies provide legitimacy for the flood risk governance approach | Reference to scientific studies serves policy-makers to justify the precautionary principle as overarching paradigm of the sector. Formats like KLIWA help scientific expertise to “seep into” policies | Flood policy adopted a proactive stance on climate change, before climate scientists provided the evidence-base for Switzerland Experimental design of pilot actions in climate change adaptation to support climate-adapted flood policies Functional approach by integrating climate change adaptation into flood risk management |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nordbeck, R.; Löschner, L.; Pelaez Jara, M.; Pregernig, M. Exploring Science–Policy Interactions in a Technical Policy Field: Climate Change and Flood Risk Management in Austria, Southern Germany, and Switzerland. Water 2019, 11, 1675. https://doi.org/10.3390/w11081675
Nordbeck R, Löschner L, Pelaez Jara M, Pregernig M. Exploring Science–Policy Interactions in a Technical Policy Field: Climate Change and Flood Risk Management in Austria, Southern Germany, and Switzerland. Water. 2019; 11(8):1675. https://doi.org/10.3390/w11081675
Chicago/Turabian StyleNordbeck, Ralf, Lukas Löschner, Melani Pelaez Jara, and Michael Pregernig. 2019. "Exploring Science–Policy Interactions in a Technical Policy Field: Climate Change and Flood Risk Management in Austria, Southern Germany, and Switzerland" Water 11, no. 8: 1675. https://doi.org/10.3390/w11081675
APA StyleNordbeck, R., Löschner, L., Pelaez Jara, M., & Pregernig, M. (2019). Exploring Science–Policy Interactions in a Technical Policy Field: Climate Change and Flood Risk Management in Austria, Southern Germany, and Switzerland. Water, 11(8), 1675. https://doi.org/10.3390/w11081675