Application of Stable Isotopes of Water to Study Coupled Submarine Groundwater Discharge and Nutrient Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Campaigns
2.3. Measurement of Fluxes
2.4. Wells
2.5. Hydrochemistry Sampling and Chemical Analysis
2.6. Hydraulic Properties
3. Results
3.1. Physical Tracers of Flow (EC, Stable Isotopes of Water and Groundwater Seepage)
3.2. Hydrochemistry of Groundwater
4. Discussion
4.1. Salinity and Drivers of Fluxes
4.2. Stable Isotopes of Water
4.3. Nutrients
- (1)
- Sediment composition differences. The horizontal layering of the changes observed in groundwater is concordant with the deposition of sediments. The reason that the most surficial sediments have a higher content of PO4 would be associated with the changes that have taken place in Denmark for the last century. The increase in the use of fertilizers and the sediment transport by the Skjern River that drains an agricultural catchment support the development of recent layers of sediments enriched in PO4. This interpretation supports the observed changes in PO4 in the top 1 m of the aquifer. Additionally, the hydraulic tests indicate a change in the characteristics of the sediments between 1–2 m depths (Figure 8). Nevertheless, this difference was not observed in the freshwater zone. Additional data about PO4 sediment composition is required to confirm this hypothesis.
- (2)
- Hydrodynamics of the coastal zone observed from the isotopic signature. In this case, the groundwater flow paths and the mixing of water with different properties would be responsible for the PO4 distribution. The freshwater zone would be characterized by groundwater oxic conditions that do not enhance the mobility of PO4 [24,25]. The shallow saline zone would be dominated by exchange processes where lagoon water with variable salinity, oxygen conditions, and organic matter generated by primary production would mix with saline, reducing groundwater. These processes can generate the microbial remineralization of organic matter [62]. The increase of PO4 due to a high exchange of water has been documented in sand flats [63]. The agreement between PO4 distribution and groundwater characteristics based on δ18O and deuterium, as well as the measured seepage and the salinity changes, makes this possibility more feasible than sedimentological changes (Hypothesis 1). Groundwater hydrodynamics would control the hydrochemical distribution, rather than the sediment composition changes. The changes in hydraulic conductivity from the first meter to deeper zones can favor the sharp transition in isotopic signal associated to different hydrogeological processes.
- (3)
- Diffusive and biological processes in the lagoon bed. A well-documented source of PO4 is the release from sediments by diffusion [64]. Nevertheless, this has been highlighted as a process that only takes place in the top 20 cm [64], while here, the changes were observed further than 1-m depth. Another alternative is associated with the higher temperature due to the season (summer) when it was measured. In the lagoon bed, the high temperature would increase the biological activity, and the releasing of PO4, as has been documented in lakes [65,66].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Michael, H.A.; Post, V.E.A.; Wilson, A.M.; Werner, A.D. Science, society, and the coastal groundwater squeeze. Water Resour. Res. 2017, 53, 2610–2617. [Google Scholar] [CrossRef]
- Valiela, I.; Foreman, K.; Lamontagne, M.; Hersh, D.; Costa, J.; Peckol, P.; DeMeo-Andreson, B.; Babione, M.; Sham, C.-H.; Brawley, J.; et al. Couplings of Watersheds and Coastal Waters: Sources and Consequences of Nutrient Enrichment in Waquoit Bay, Massachusetts. Estuaries 1992, 15, 443. [Google Scholar] [CrossRef]
- Lee, V.; Olsen, S. Eutrophication and Management Initiatives for the Control of Nutrient Inputs to Rhode Island Coastal Lagoons. Estuaries 1985, 8, 191. [Google Scholar] [CrossRef]
- Sinha, E.; Michalak, A.M.; Calvin, K.V.; Lawrence, P.J. Societal decisions about climate mitigation will have dramatic impacts on eutrophication in the 21st century. Nat. Commun. 2019, 10, 939. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Agriculture. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef]
- Hallegraeff, G.M.; Hallegraeff, G. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.M.; Glibert, P.M.; Burkholder, J.M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 2002, 25, 704–726. [Google Scholar] [CrossRef]
- Lotze, H.K.; Milewski, I. Two centuries of multiple human impacts and successive changes in a north atlantic food web. Ecol. Appl. 2004, 14, 1428–1447. [Google Scholar] [CrossRef]
- Niencheski, L.F.H.; Windom, H.L.; Moore, W.S.; Jahnke, R.A. Submarine groundwater discharge of nutrients to the ocean along a coastal lagoon barrier, Southern Brazil. Mar. Chem. 2007, 106, 546–561. [Google Scholar] [CrossRef]
- Zimmermann, C.F.; Montgomery, J.R.; Carlson, P.R. Variability of Dissolved Reactive Phosphate Flux Rates in Nearshore Estuarine Sediments: Effects of Groundwater Flow. Estuaries 1985, 8, 228. [Google Scholar] [CrossRef]
- Whiting, G.J.; Childers, D.L. Subtidal advective water flux as a potentially important nutrient input to southeastern U.S.A. Saltmarsh estuaries. Estuar. Coast. Shelf Sci. 1989, 28, 417–431. [Google Scholar] [CrossRef]
- Valiela, I.; Costa, J.E. Eutrophication of Buttermilk Bay, a cape cod coastal embayment: Concentrations of nutrients and watershed nutrient budgets. Environ. Manag. 1988, 12, 539–553. [Google Scholar] [CrossRef]
- Burnett, W.; Aggarwal, P.; Aureli, A.; Bokuniewicz, H.; Cable, J.; Charette, M.; Kontar, E.; Krupa, S.; Kulkarni, K.; Loveless, A.; et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ. 2006, 367, 498–543. [Google Scholar] [CrossRef] [PubMed]
- Michael, H.A.; Mulligan, A.E.; Harvey, C.F. Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 2005, 436, 1145–1148. [Google Scholar] [CrossRef] [PubMed]
- Moore, W.S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 1996, 380, 612–614. [Google Scholar] [CrossRef]
- Andersen, M.S.; Baron, L.; Gudbjerg, J.; Gregersen, J.; Chapellier, D.; Jakobsen, R.; Postma, D. Discharge of nitrate-containing groundwater into a coastal marine environment. J. Hydrol. 2007, 336, 98–114. [Google Scholar] [CrossRef]
- Bratton, J.F.; Böhlke, J.K.; Manheim, F.T.; Krantz, D.E. Ground Water beneath Coastal Bays of the Delmarva Peninsula: Ages and Nutrients. Ground Water 2004, 42, 1021–1034. [Google Scholar] [CrossRef]
- Knee, K.L.; Street, J.H.; Grossman, E.E.; Boehm, A.B.; Paytan, A. Nutrient inputs to the coastal ocean from submarine groundwater discharge in a groundwater-dominated system: Relation to land use (Kona coast, Hawaii, U.S.A.). Limnol. Oceanogr. 2010, 55, 1105–1122. [Google Scholar] [CrossRef] [Green Version]
- Povinec, P.; Burnett, W.; Beck, A.; Bokuniewicz, H.; Charette, M.; Gonneea, M.; Groening, M.; Ishitobi, T.; Kontar, E.; Kwong, L.L.W.; et al. Isotopic, geophysical and biogeochemical investigation of submarine groundwater discharge: IAEA-UNESCO intercomparison exercise at Mauritius Island. J. Environ. Radioact. 2012, 104, 24–45. [Google Scholar] [CrossRef]
- Szymczycha, B.; Vogler, S.; Pempkowiak, J. Nutrient fluxes via submarine groundwater discharge to the Bay of Puck, southern Baltic Sea. Sci. Total Environ. 2012, 438, 86–93. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.; Barry, D. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Duque, C.; Haider, K.; Sebok, E.; Sonnenborg, T.O.; Engesgaard, P. A conceptual model for groundwater discharge to a coastal brackish lagoon based on seepage measurements (Ringkøbing Fjord, Denmark). Hydrol. Process. 2018, 32, 3352–3364. [Google Scholar] [CrossRef]
- Santos, I.R.; Eyre, B.D.; Huettel, M. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuar. Coast. Shelf Sci. 2012, 98, 1–15. [Google Scholar] [CrossRef]
- Slomp, C.P.; Van Cappellen, P. Nutrient inputs to the coastal ocean through submarine groundwater discharge: Controls and potential impact. J. Hydrol. 2004, 295, 64–86. [Google Scholar] [CrossRef]
- Spiteri, C.; Slomp, C.P.; Tuncay, K.; Meile, C. Modeling biogeochemical processes in subterranean estuaries: Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Rodellas, V.; Stieglitz, T.C.; Andrisoa, A.; Cook, P.G.; Raimbault, P.; Tamborski, J.J.; Van Beek, P.; Radakovitch, O. Groundwater-driven nutrient inputs to coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients. Sci. Total Environ. 2018, 642, 764–780. [Google Scholar] [CrossRef] [PubMed]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Barbieri, M. Isotopes in Hydrology and Hydrogeology. Water 2019, 11, 291. [Google Scholar] [CrossRef]
- Blasch, K.W.; Bryson, J.R. Distinguishing Sources of Ground Water Recharge by Using δ2H and δ18O. Ground Water 2007, 45, 294–308. [Google Scholar] [CrossRef]
- Duque, C.; Lopez-Chicano, M.; Calvache, M.L.; Martin-Rosales, W.; Gómez-Fontalva, J.M.; Crespo, F. Recharge sources and hydrogeological effects of irrigation and an influent river identified by stable isotopes in the Motril-Salobreña aquifer (Southern Spain). Hydrol. Process. 2011, 25, 2261–2274. [Google Scholar] [CrossRef]
- Barbieri, M.; Nigro, A.; Petitta, M. Groundwater mixing in the discharge area of San Vittorino Plain (Central Italy): Geochemical characterization and implication for drinking uses. Environ. Earth Sci. 2017, 76. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, G.; Sheng, Y.; Shi, Z.; Zhang, H. Isotopes in groundwater (2H, 18O, 14C) revealed the climate and groundwater recharge in the Northern China. Sci. Total Environ. 2019, 666, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Mayr, C.; Lücke, A.; Stichler, W.; Trimborn, P.; Ercolano, B.; Oliva, G.; Ohlendorf, C.; Soto, J.; Fey, M.; Haberzettl, T.; et al. Precipitation origin and evaporation of lakes in semi-arid Patagonia (Argentina) inferred from stable isotopes (δ18O, δ2H). J. Hydrol. 2007, 334, 53–63. [Google Scholar] [CrossRef]
- Battistel, M.; Hurwitz, S.; Evans, W.C.; Barbieri, M. The chemistry and isotopic composition of waters in the low-enthalpy geothermal system of Cimino-Vico Volcanic District, Italy. J. Volcanol. Geotherm. Res. 2016, 328, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Bolognesi, L.; D’Amore, F. Isotopic variation of the hydrothermal system on Vulcano Island, Italy. Geochim. Cosmochim. Acta 1993, 57, 2069–2082. [Google Scholar] [CrossRef]
- Kirkegaard, C.; Sonnenborg, T.O.; Auken, E.; Jørgensen, F. Salinity Distribution in Heterogeneous Coastal Aquifers Mapped by Airborne Electromagnetics. Vadose Zone J. 2011, 10, 125. [Google Scholar] [CrossRef]
- Haider, K.; Engesgaard, P.; Sonnenborg, T.O.; Kirkegaard, C. Numerical modeling of salinity distribution and submarine groundwater discharge to a coastal lagoon in Denmark based on airborne electromagnetic data. Hydrogeol. J. 2014, 23, 217–233. [Google Scholar] [CrossRef]
- Müller, S.; Jessen, S.; Duque, C.; Sebok, E.; Neilson, B.; Engesgaard, P. Assessing seasonal flow dynamics at a lagoon saltwater–freshwater interface using a dual tracer approach. J. Hydrol. Reg. Stud. 2018, 17, 24–35. [Google Scholar] [CrossRef]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Boil. Sci. 2013, 368, 20130164. [Google Scholar] [CrossRef]
- Robertson, W.D. Development of steady-state phosphate concentrations in septic system plumes. J. Contam. Hydrol. 1995, 19, 289–305. [Google Scholar] [CrossRef]
- Håkanson, L.; Bryhn, A.C. Modeling the foodweb in coastal areas: A case study of Ringkøbing Fjord, Denmark. Ecol. Res. 2007, 23, 421–444. [Google Scholar] [CrossRef]
- Håkanson, L.; Bryhn, A.C.; Eklund, J.M. Modelling phosphorus and suspended particulate matter in Ringkøbing Fjord in order to understand regime shifts. J. Mar. Syst. 2007, 68, 65–90. [Google Scholar] [CrossRef]
- Håkanson, L.; Bryhn, A.C. Goals and remedial strategies for water quality and wildlife management in a coastal lagoon—A case-study of Ringkøbing Fjord, Denmark. J. Environ. Manag. 2008, 86, 498–519. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.K.; Hansen, J.W.; Laursen, M.B.; Clausen, P.; Carstensen, J.; Conley, D.J. Regime shift in a coastal marine ecosystem. Ecol. Appl. 2008, 18, 497–510. [Google Scholar] [CrossRef]
- Tirado-Conde, J.; Engesgaard, P.; Karan, S.; Müller, S.; Duque, C. Evaluation of Temperature Profiling and Seepage Meter Methods for Quantifying Submarine Groundwater Discharge to Coastal Lagoons: Impacts of Saltwater Intrusion and the Associated Thermal Regime. Water 2019, 11, 1648. [Google Scholar] [CrossRef]
- Lee, D.R. A device for measuring seepage flux in lakes and estuaries. Limnol. Oceanogr. 1977, 22, 140–147. [Google Scholar] [CrossRef]
- Rosenberry, D.O.; Toran, L.; Nyquist, J.E. Effect of surficial disturbance on exchange between groundwater and surface water in nearshore margins. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Butler, J., Jr. The Design, Performance, and Analysis of Slug Tests; Lewis Publication: Boca Raton, FL, USA, 1998. [Google Scholar]
- Rosenberry, D.O. Integrating seepage heterogeneity with the use of ganged seepage meters. Limnol. Oceanogr. Methods 2005, 3, 131–142. [Google Scholar] [CrossRef]
- Müller, S.; Stumpp, C.; Sørensen, J.H.; Jessen, S. Spatiotemporal variation of stable isotopic composition in precipitation: Post-condensational effects in a humid area. Hydrol. Process. 2017, 31, 3146–3159. [Google Scholar] [CrossRef]
- Karan, S.; Kidmose, J.; Engesgaard, P.; Nilsson, B.; Frandsen, M.; Ommen, D.; Flindt, M.R.; Andersen, F. Østergaard; Pedersen, O. Role of a groundwater–lake interface in controlling seepage of water and nitrate. J. Hydrol. 2014, 517, 791–802. [Google Scholar] [CrossRef]
- Kidmose, J.; Engesgaard, P.; Nilsson, B.; Laier, T.; Looms, M.C. Spatial Distribution of Seepage at a Flow-Through Lake: Lake Hampen, Western Denmark. Vadose Zone J. 2011, 10, 110. [Google Scholar] [CrossRef]
- Hajati, M.-C.; Frandsen, M.; Pedersen, O.; Nilsson, B.; Duque, C.; Engesgaard, P. Flow reversals in groundwater–lake interactions: A natural tracer study using δ18O. Limnologica 2018, 68, 26–35. [Google Scholar] [CrossRef]
- Younger, P.L. Submarine groundwater discharge. Nature 1996, 382, 121–122. [Google Scholar] [CrossRef]
- Kroeger, K.D.; Charette, M. Nitrogen Biogeochemistry of Submarine Groundwater Discharge. Limnol. Oceanogr. 2008, 53, 1025–1039. [Google Scholar] [CrossRef]
- Sadat-Noori, M.; Santos, I.R.; Tait, D.R.; Maher, D.T. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary. Sci. Total Environ. 2016, 566, 1440–1453. [Google Scholar] [CrossRef] [PubMed]
- Tamborski, J.J.; Cochran, J.K.; Bokuniewicz, H.J. Application of 224Ra and 222Rn for evaluating seawater residence times in a tidal subterranean estuary. Mar. Chem. 2017, 189, 32–45. [Google Scholar] [CrossRef]
- Miljøstyrelsen. Basisanalyse del I: Karakterisering af Vandforekomster og Opgørelse af Påvirkninger; Miljøministeriet Departementet: Copenhagen, Denmark, 2004. [Google Scholar]
- Belanger, T.; Mikutel, D.; Churchill, P. Groundwater seepage nutrient loading in a Florida Lake. Water Res. 1985, 19, 773–781. [Google Scholar] [CrossRef]
- Nyvang, V. Redox Processes at the Salt-/Freshwater Interface in an Anaerobic Aquifer. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 2003. [Google Scholar]
- Price, R.M.; Savabi, M.R.; Jolicoeur, J.L.; Roy, S. Adsorption and desorption of phosphate on limestone in experiments simulating seawater intrusion. Appl. Geochem. 2010, 25, 1085–1091. [Google Scholar] [CrossRef] [Green Version]
- Boehm, A.B.; Paytan, A.; Shellenbarger, G.G.; Davis, K.A. Composition and flux of groundwater from a California beach aquifer: Implications for nutrient supply to the surf zone. Cont. Shelf Res. 2006, 26, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Ullman, W.J.; Chang, B.; Miller, D.C.; Madsen, J.A. Groundwater mixing, nutrient diagenesis, and discharges across a sandy beachface, Cape Henlopen, Delaware (USA). Estuar. Coast. Shelf Sci. 2003, 57, 539–552. [Google Scholar] [CrossRef]
- Søndergaard, M.; Jensen, J.P.; Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 2003, 506, 135–145. [Google Scholar] [CrossRef]
- Daunys, D.; Petkuviene, J.; Zilius, M.; Bartoli, M. Sediment-water oxygen, ammonium and soluble reactive phosphorus fluxes in a turbid freshwater estuary (Curonian lagoon, Lithuania): Evidences of benthic microalgal activity. J. Limnol. 2012, 71, 33. [Google Scholar]
- Petkuviene, J.; Zilius, M.; Lubiene, I.; Ruginis, T.; Giordani, G.; Razinkovas-Baziukas, A.; Bartoli, M. Phosphorus Cycling in a Freshwater Estuary Impacted by Cyanobacterial Blooms. Chesap. Sci. 2016, 39, 1386–1402. [Google Scholar] [CrossRef]
- Heiss, J.W.; Michael, H.A. Saltwater-freshwater mixing dynamics in a sandy beach aquifer over tidal, spring-neap, and seasonal cycles. Water Resour. Res. 2014, 50, 6747–6766. [Google Scholar] [CrossRef]
- Duque, C.; Müller, S.; Sebok, E.; Haider, K.; Engesgaard, P. Estimating groundwater discharge to surface waters using heat as a tracer in low flux environments: The role of thermal conductivity. Hydrol. Process. 2016, 30, 383–395. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duque, C.; Jessen, S.; Tirado-Conde, J.; Karan, S.; Engesgaard, P. Application of Stable Isotopes of Water to Study Coupled Submarine Groundwater Discharge and Nutrient Delivery. Water 2019, 11, 1842. https://doi.org/10.3390/w11091842
Duque C, Jessen S, Tirado-Conde J, Karan S, Engesgaard P. Application of Stable Isotopes of Water to Study Coupled Submarine Groundwater Discharge and Nutrient Delivery. Water. 2019; 11(9):1842. https://doi.org/10.3390/w11091842
Chicago/Turabian StyleDuque, Carlos, Søren Jessen, Joel Tirado-Conde, Sachin Karan, and Peter Engesgaard. 2019. "Application of Stable Isotopes of Water to Study Coupled Submarine Groundwater Discharge and Nutrient Delivery" Water 11, no. 9: 1842. https://doi.org/10.3390/w11091842
APA StyleDuque, C., Jessen, S., Tirado-Conde, J., Karan, S., & Engesgaard, P. (2019). Application of Stable Isotopes of Water to Study Coupled Submarine Groundwater Discharge and Nutrient Delivery. Water, 11(9), 1842. https://doi.org/10.3390/w11091842