Wetland Roofs as an Attractive Option for Decentralized Water Management and Air Conditioning Enhancement in Growing Cities—A Review
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Construction of Wetland Roofs
3.1.1. Overview of Wetland Roof Design
3.1.2. Substrata Considerations
3.1.3. Vegetation Considerations
3.1.4. Suitability of Wetland Roof Implementation
3.2. Water Treatment
3.2.1. Greywater and Rainwater
3.2.2. Municipal Wastewater
3.2.3. Industrial (Waste) Water
3.3. Natural Climate Regulation for Buildings
3.3.1. Municipal Buildings
3.3.2. Industrial Buildings
3.3.3. Stable Buildings
3.3.4. Urban Microclimate
4. Conclusions and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision, 2018. Available online: https://esa.un.org/unpd/wup/Publications (accessed on 11 March 2019).
- Choi, J.; Maniquiz-Redillas, M.C.; Hong, J.; Kim, L.H. Selection of cost-effective Green Stormwater Infrastructure (GSI) applicable in highly impervious urban catchments. KSCE J. Civ. Eng. 2018, 22, 24–30. [Google Scholar] [CrossRef]
- Sakson, G.; Zawilski, M.; Brzezinska, A. Analysis of combined sewer flow storage scenarios prior to wastewater treatment plant. Ecol. Chem. Eng. 2018, 25, 619–630. [Google Scholar] [CrossRef]
- Zevenbergen, C.; Bahattacharya, B.; Wahaab, R.A.; Elbarki, W.A.I.; Busker, T.; Rodriguez, C.N.A. In the aftermath of the October 2015 Alexandria Flood Challenges of an Arab city to deal with extreme rainfall storms. Nat. Hazards 2017, 86, 901–917. [Google Scholar] [CrossRef]
- Otterpohl, R.; Grottker, M.; Lange, J. Sustainable water and waste management in urban areas. Water Sci. Technol. 1997, 35, 121–133. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for wastewater treatment: Five decades of experience. Environ. Sci. Technol. 2011, 45, 61–69. [Google Scholar] [CrossRef]
- Hickey, A.; Arnscheidt, J.; Joyce, E.; O’Toole, J.; Galvin, G.; O´Callaghan, M.; Conroy, K.; Killian, D.; Shryane, T.; Hughes, F.; et al. An assessment of the performance of municipal constructed wetlands in Ireland. J. Environ. Manag. 2018, 210, 263–272. [Google Scholar] [CrossRef]
- Nesbit, T.A.; Mitsch, W.J. Hurricane and seasonal effects on hydrology and water quality of a subtropical urban stormwater wetland. Ecol. Eng. 2018, 120, 134–145. [Google Scholar] [CrossRef]
- Zapater-Pereyra, M.; Lavrinc, S.; Van Dien, F.; Van Bruggen, J.J.A.; Lens, P.N.L. Constructed wetroofs: A novel approach for the treatment and reuse of domestic wastewater. Ecol. Eng. 2016, 94, 545–554. [Google Scholar] [CrossRef]
- Song, U.; Kim, E.; Bang, J.H.; Son, D.J.; Waldmann, B.; Lee, E.J. Wetlands are an effective green roof system. Build. Environ. 2013, 66, 141–147. [Google Scholar] [CrossRef]
- Zapater-Pereyra, M.; Van Dien, F.; Van Bruggen, J.J.A.; Lens, P.N.L. Material selection for a constructed wetroof receiving pre-treated high strength domestic wastewater. Water Sci. Technol. 2013, 68, 2264–2270. [Google Scholar] [CrossRef]
- Zehnsdorf, A.; Blumberg, M.; Müller, R.A. Helophyte mats (wetland roofs) with high evapotranspiration rates as a tool for decentralised rainwater management—Process stability improved by simultaneous greywater treatment. Water Sci. Technol. Water Supply 2019, 19, 808–814. [Google Scholar] [CrossRef]
- Wetland Roofs. Ingenieurburo Blumberg. Available online: https://blumberg-engineers.com/en/22/sumpfpflanzendaecherEN (accessed on 5 June 2019).
- Thanh, B.X.; Van, P.T.H.; Tin, N.T.; Hien, V.T.D.; Dan, N.P.; Koottatep, T. Performance of wetland roof with Melampodium paludosum treating septic tank effluent. Desalin. Water Treat. 2013, 52, 1070–1076. [Google Scholar] [CrossRef]
- Ramprasad, C.; Smith, C.S.; Memon, F.A.; Philip, L. Removal of chemical and microbial contaminants from greywater using a novel constructed wetland: GROW. Ecol. Eng. 2017, 106, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Van, P.T.H.; Tin, N.T.; Hien, V.T.D.; Quan, T.M.; Thanh, B.X.; Hang, V.T.; Tuc, D.Q.; Dan, N.P.; Khoa, L.V.; Phu, V.L.; et al. Nutrient removal by different plants in wetland roof systems treating domestic wastewater. Desalin. Water Treat. 2014, 54, 1344–1352. [Google Scholar] [CrossRef]
- Hien, V.T.D.; Thanh, B.X. Green Infrastructure for Buildings in the Tropical Coupling with Domestic Wastewater Treatment. GMSARN Int. J. 2016, 10, 107–112. [Google Scholar]
- Xiao, M.; Lin, Y.; Han, J.; Zhang, G. A review of green roof research and development in China. Renew. Sustain. Energy Rev. 2014, 40, 633–648. [Google Scholar] [CrossRef]
- MacIvor, J.S.; Ranalli, M.A.; Lundholm, J.T. Performance of dryland and wetland plant species on extensive green roofs. Ann. Bot. 2011, 107, 671–679. [Google Scholar] [CrossRef] [Green Version]
- Seidel, K. Reinigung von Gewässern durch höhere Pflanzen. Naturwissenschaften 1966, 53, 289–297. (In German) [Google Scholar] [CrossRef]
- Seitz, P. Wasserreinigen mit Repositionspflanzen. Gärtenbörse Gartenwelt 1993, 93, 1895–1899. (In German) [Google Scholar]
- Thanh, B.X. Wetland Roof Technology for Treating Domestic Wastewater. U.S. Patent 2017113956A1, 27 April 2017. [Google Scholar]
- Thon, A. Shallow Constructed Roof Wetlands for Greywater Treatment—Intermittently Flushed Wetlands as Roof Gardens in Mediterranean Countries. Master’s Thesis, Hochschule Anhalt, Bernburg, Germany, 2009. [Google Scholar]
- Blumberg, M. Sumpfpflanzendächer, eine besonders vielseitige innovative Variante der Dachbegrünung. GWF Wasser Abwasser 2010, 151, 568–571. (In German) [Google Scholar]
- Zehnsdorf, A. Verdunstungsintensive Gründächer für das Regenwassermanagement—Sumpfpflanzen zur Dachbegrünung. GebäudeGrün 2018, 2, 19–22. (In German) [Google Scholar]
- Stock, N. Aufbau und Inbetriebnahme eines Energieautarken Sumpfpflanzendaches zur Grauwasserreinigung. Bachelor’s Thesis, HTWK, Leipzig, Germany, 2015. (In German). [Google Scholar]
- Wanke, S. Ecological Treatment of Waste Waters Using Wetland Roofs—Analysing the Cleaning Capacity and Efficiency of Constructed Wetland Roofs. Bachelor’s Thesis, HZ University of Applied Sciences, Vlissingen, The Netherlands, 2015. [Google Scholar]
- Zehnsdorf, A.; Stock, N.; Richter, J.; Blumberg, M.; Müller, R.A. Grauwasserreinigung mit einer Sumpfpflanzenmatte unter Praxisbedingungen. Chem. Ing. Tech. 2016, 88, 1138–1144. (In German) [Google Scholar] [CrossRef]
- Pradhan, S.; Al-Ghamdi, S.G.; Mackey, H.R. Greywater recycling in buildings using living walls and green roofs: A review of the applicability and challenges. Sci. Total Environ. 2019, 652, 330–344. [Google Scholar] [CrossRef]
- Steininger, T. Unser Gründach mit Pflanzenkläranlage. (In German). Available online: https://experimentselbstversorgung.net/unser-gruendach-mit-pflanzenklaeranlage/ (accessed on 14 January 2019).
- Mallari, N.A. The Hanalei Plantation Resort Development Green Design Guidelines for the Hanalei River Ridge. Master’s Thesis, Duke University, Durham, NC, USA, May 2014. [Google Scholar]
- Cirkel, D.G.; Voortman, B.R.; van Veen, T.; Bartholomeus, R. Evaporation from (Blue-)Green Roofs: Assessing the Benefits of a Storage and Capillary Irrigation System Based on Measurements and Modeling. Water 2018, 10, 1253. [Google Scholar] [CrossRef]
- Li, S.X.; Qin, H.P.; Peng, Y.N.; Khu, S.T. Modelling the combined effects of runoff reduction and increase in evapotranspiration for green roofs with a storage layer. Ecol. Eng. 2019, 127, 302–311. [Google Scholar] [CrossRef]
- Colmer, T.D. Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 2003, 26, 17–36. [Google Scholar] [CrossRef]
- Thanh, B.X.; Hien, V.T.D.; Dan, N.P.; Van, P.T.H.; Tin, N.T. Performance of Wetland Roof Treating Domestic Wastewater in the Tropic Urban Area. J. Water Sustain. 2012, 2, 79–86. [Google Scholar]
- Vo, T.D.H.; Do, T.B.N.; Bui, X.T.; Nguyen, V.T.; Nguyen, D.D.; Sthiannopkao, S.; Lin, C. Improvement of septic tank effluent and green coverage by shallow bed wetland roof system. Int. Biodeter. Biodegr. 2017, 124, 138–145. [Google Scholar] [CrossRef]
- Vo, T.D.H.; Bui, X.T.; Nguyen, D.D.; Nguyen, V.T.; Ngo, H.H.; Guo, W.; Nguyan, P.D.; Nguyen, C.N.; Lin, C. Wastewater treatment and biomass growth of eight plants for shallow bed wetland roofs. Bioresour. Technol. 2018, 247, 992–998. [Google Scholar] [CrossRef] [Green Version]
- Zapater Pereyra, M. Design and Development of Two Novel Constructed Wetlands: The Duplex-Constructed Wetland and the Constructed Wetroof. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2015. [Google Scholar]
- Simantke, E. Abwasserentsorgung—Öko-Dach klärt Wasser ohne Chemie. Handelsblatt. 24 February 2010. (In German). Available online: https://www.handelsblatt.com/technik/energie-umwelt/abwasserentsorgung-oeko-dach-klaert-wasser-ohne-chemie/3376706-all.html (accessed on 14 January 2019).
- Ziem, K. Pflanzenkläranlage mit Köpfchen. SHB-Absolvent entwickelt umweltfreundliche Abwasserentsorgungsanlage. Transf. Das Steinbeis Mag. 2010, 2, 8–9. (In German) [Google Scholar]
- Bauer, H. Plant-Based Sewage Treatment System for Purifying Wastewater. U.S. Patent 7,754,079B2, 13 July 2010. [Google Scholar]
- Franck, V.M. The Roof Water-Farm, Stormwater Management Concept, Retention via Evapotranspiration. Master’s Thesis, Technische Universität Berlin, Berlin, Germany, 2018. [Google Scholar]
- Ziepke, S. Ein Pflanzendach zur Wasserkühlung (A plant roof for water cooling). Landschaftsarchitektur 1992, 6, 18–20. (In German) [Google Scholar]
- Ludwig, K.H.C. Apfelwein und Regenwasser. Garten Landschaft 1994, 10, 37. (In German) [Google Scholar]
- Gotta, F. Der “Possmann” in Frankfurt—Eine erzählte Unternehmensgeschichte; Verlag Sellner Podprint: Frankfurt, Germany, 2012. (In German) [Google Scholar]
- Blumberg, M. Sumpfpflanzendächer als Variante der Dachbegrünung. In Regenwasserbewirtschaftung—GWF Praxiswissen; Ziegler, C., Ed.; Deutscher Industrieverlag: Munich, Germany, 2011; pp. 189–196. (In German) [Google Scholar]
- Georg, H. Green Roofing against Dairy Cow Summer Heat Stress. Landtechnik 2007, 5, 346–347. [Google Scholar]
- Georg, H. Verminderung der Hitzebelastung in einem Milchviehstall durch ein Sumpfpflanzendach. In Proceedings of the Tagung Bau, Technik und Umwelt in der landwirtschaftlichen Nutztierhaltung, Bonn, Germany, 8–10 October 2007; pp. 423–427. (In German). [Google Scholar]
- Thon, A.; Kircher, W.; Thon, I. Constructed Wetlands on Roofs as a Module of Sanitary Environmental Engeneering to Improve Urban Climate and Benefit of the On Site Thermal Effects. Miestu Zeldynu Formavimas 2010, 1, 191–196. [Google Scholar]
- Banya, B.; Techato, K.; Ghimire, S.; Chhipi-Shrestha, G. A Review of Green Roofs to Mitigate Urban Heat Island and Kathmandu Valley in Nepal. Appl. Ecol. Environ. Sci. 2018, 6, 137–152. [Google Scholar] [CrossRef]
- Dolan, B.; Bovard, B.; Foht, E. Comparison of Heat Flux Reduction in a Wetland Modular Rooftop Garden System and a Xeric Rooftop Garden System in Southwest Florida. In Proceedings of the 12th International Symposium on Biogeochemistry of Wetlands, Coral Springs, FL, USA, 23–26 April 2018; p. 70. [Google Scholar]
- Cascone, S.; Coma, J.; Gagliano, A.; Pérez, G. The evapotranspiration process in green roofs: A review. Build. Environ. 2019, 147, 337–355. [Google Scholar] [CrossRef]
- LANUV. Arbeitsblatt 29 Kühlleistung von Böden: Leitfaden zur Einbindung in stadtklimatische Konzepte in NRW Landesamt für Natur; Umwelt und Verbraucherschutz Nordrhein-Westfalen: Recklinghausen, Germany, 2015. (In German) [Google Scholar]
- Siegl, A.; Christoph, V. Einsatz von Vegetation zur Klimaregulation—Klimagarten Pillnitz; HWT Dresden: Dresden, Germany, 2006. (In German) [Google Scholar]
- Huang, Y.; Chen, C.; Tsai, Y. Reduction of temperatures and temperature fluctuations by hydroponic green roofs in a subtropical urban climate. Energy Build. 2016, 129, 174–185. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kawashima, S.; Hama, T.; Nakamura, K. Thermal mitigation of hydroponic green roof based on heat balance. Urban For. Urban Green. 2017, 24, 92–100. [Google Scholar] [CrossRef]
- Katsoulas, N.; Antoniadis, D.; Tsirogiannis, L.L.; Labraki, E.; Bartzanas, T.; Kittas, C. Microclimate effects of planted hydroponic structures in urban environment: Measurement and simulations. Int. J. Biometeorol. 2017, 61, 943–956. [Google Scholar] [CrossRef]
Patent Number | Title | Applicant | Priority Date | Status |
---|---|---|---|---|
CN108640290 (A) | Roof wetland structure applicable to southern China | Univ. of Electronic Science and Technology of China, Zhongshan Institute | 20 July 2018 | In examination. Publication date 12 October 2018 |
US2017113956 (A1); US9884780 (B2) | Wetland roof technology for treating domestic wastewater | Bui Thanh Xuan (VN); Ton Duc Thang Univ. | 21 October 2015 | Granting USA 06 February 2019 |
CZ20150423 (A3) | A roof wetland purifier | Liko-S A S (CZ) | 13 June 2015 | In examination. Publication date 25 January 2017 |
CN204588825 (U) | Constructed wetland device for roof | Duan Lipeng | 26 March 2015 | Publication date 11 March 2015 |
CN204198545 (U) | Roof landscape wetland device capable of purifying and recycling sewage | Li Yingjun | 25 July 2014 | Publication date 11 August 2015 |
CN202391027 (U) | Roof wetland system | Dehua Ecological Technology Company LTD | 24 November 2011 | Publication date 22 August 2012 |
US2008245714 (A1) | Plant-based sewage treatment system for purifying wastewater | Deere & Company | 7 May 2004 | Granted EP 14 January 2015 Patent March 2015 US 13 July 2010 |
GB2375761 (A)(B) | Green roof water recycling system—GROW | Christopher Jon Shirley-Smith | 7 April 2001 | Granted 23 June 2004 |
DE19630830 C2 | Dachbegrünung und Verfahren zur Herstellung (Roof greening and installation procedures) | Heinrich Dernbach, Mühlheim | 31 July 1996 | Granted 7 March 2002 Expired August 2016 |
Component | Purpose | Implementations | Reference(s) |
---|---|---|---|
Non-permeable root barrier | Protect the roof structure from excess moisture and root infringement | Ethylene propylene diene monomer liner | [10] |
Bituminous waterproofing membrane | [9] | ||
Substratum | Provides storage depth, hydrolysis, growing media for vegetation and biofilm, and appropriate hydraulic residence time | Gravel, soil, sand, polylactic acid (PLA) beads | [11] |
Water Retention | Provides water storage, can act as growing media | Polyethersulfone water storage mat (Repotex D) | [12] |
Physical substratum bed depth | [11] | ||
Vegetation | Increase the rate of evapotranspiration for flood control and temperature reductions | Carex acutiformis Juncus inflexus Juncus effuses Lythrum salicaria | [12] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zehnsdorf, A.; Willebrand, K.C.U.; Trabitzsch, R.; Knechtel, S.; Blumberg, M.; Müller, R.A. Wetland Roofs as an Attractive Option for Decentralized Water Management and Air Conditioning Enhancement in Growing Cities—A Review. Water 2019, 11, 1845. https://doi.org/10.3390/w11091845
Zehnsdorf A, Willebrand KCU, Trabitzsch R, Knechtel S, Blumberg M, Müller RA. Wetland Roofs as an Attractive Option for Decentralized Water Management and Air Conditioning Enhancement in Growing Cities—A Review. Water. 2019; 11(9):1845. https://doi.org/10.3390/w11091845
Chicago/Turabian StyleZehnsdorf, Andreas, Keani C. U. Willebrand, Ralf Trabitzsch, Sarah Knechtel, Michael Blumberg, and Roland A. Müller. 2019. "Wetland Roofs as an Attractive Option for Decentralized Water Management and Air Conditioning Enhancement in Growing Cities—A Review" Water 11, no. 9: 1845. https://doi.org/10.3390/w11091845
APA StyleZehnsdorf, A., Willebrand, K. C. U., Trabitzsch, R., Knechtel, S., Blumberg, M., & Müller, R. A. (2019). Wetland Roofs as an Attractive Option for Decentralized Water Management and Air Conditioning Enhancement in Growing Cities—A Review. Water, 11(9), 1845. https://doi.org/10.3390/w11091845