Measuring Streambank Erosion: A Comparison of Erosion Pins, Total Station, and Terrestrial Laser Scanner
Abstract
:1. Introduction
1.1. Streambank Erosion Measurement Techniques
1.2. Prior Comparison Studies
1.3. Objectives
2. Materials and Methods
2.1. Study Area
2.2. Site Design
2.3. Erosion Pins
2.4. Total Station
2.5. Terrestrial Laser Scanner
2.6. Statistical Comparisons and Visualization
2.7. Basin-Wide Estimates
3. Results
3.1. Site Conditions, Erosion, and Deposition
3.2. Statistical Comparisons between Techniques
3.3. Vegetation Filtering
3.4. Comparative Analyses of Techniques and Sites
3.5. Lower Watershed Sites (IMC7, IMC6, IMC5, and IMC4)
3.6. Upper Watershed Sites (IMC3, IMC2, and IMC1)
3.7. Tributary Sites (WD and BC)
3.8. Estimates of Error
3.9. Basin-Wide Estimates
4. Discussion
4.1. Comparison of Techniques
4.2. Spatial Distribution of Bank Erosion
4.3. Estimation of Sediment Loading
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Allan, J.D. Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.J.; Meyer, J.L. Streams in the Urban Landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Raleigh, R.F.; Zuckerman, L.D.; Nelson, P.C. Habitat Suitability Index Models and Instream Flow Suitability Curves: Brown Trout; Biological Report 82(10.124); US Department of the Interior, Fish and Wildlife Service: Washington, DC, USA, 1984. [Google Scholar]
- Fox, G.A.; Purvis, R.A.; Penn, C.J. Streambanks: A net source of sediment and phosphorus to streams and rivers. J. Environ. Manag. 2016, 181, 602–614. [Google Scholar] [CrossRef] [Green Version]
- Kiesel, J.; Schmalz, B.; Fohrer, N. SEPAL—A simple GIS-based tool to estimate sediment pathways in lowland catchments. Adv. Geosci. 2009, 21, 25–32. [Google Scholar] [CrossRef]
- Rosgen, D.L. A classification of natural rivers. Catena 1994, 22, 169–199. [Google Scholar] [CrossRef] [Green Version]
- Kronvang, B.; Grant, R.; Laubel, A. Sediment and Phosphorus Export from a Lowland Catchment: Quantification of Sources. Water Air Soil Pollut. 1997, 99, 465–476. [Google Scholar] [CrossRef]
- Pyle, C.J.; Richards, K.S.; Chandler, J.H. Digital Photogrammetric Monitoring of River Bank Erosion. Photogramm. Rec. 1997, 15, 753–764. [Google Scholar] [CrossRef]
- Resop, J.P.; Hession, W.C. Terrestrial Laser Scanning for Monitoring Streambank Retreat: Comparison with Traditional Surveying Techniques. J. Hydraul. Eng. 2010, 136, 794–798. [Google Scholar] [CrossRef]
- Evans, B.F.; Townsend, C.R.; Crowl, T.A. Distribution and abundance of coarse woody debris in some southern New Zealand streams from contrasting forest catchments. N. Z. J. Mar. Freshw. Res. 1993, 27, 227–239. [Google Scholar] [CrossRef]
- Lawler, D.M.; Lawler, D. The measurement of river bank erosion and lateral channel change: A review. Earth Surf. Process. Landf. 1993, 18, 777–821. [Google Scholar] [CrossRef]
- Hooke, J. An analysis of the processes of river bank erosion. J. Hydrol. 1979, 42, 39–62. [Google Scholar] [CrossRef]
- Keim, R.F.; Skaugset, A.E.; Bateman, D.S. Digital terrain modeling of small stream channels with a total-station theodolite. Adv. Water Resour. 1999, 23, 41–48. [Google Scholar] [CrossRef]
- Plenner, S.; Eichinger, W.E.; Bettis, E.A. Simple Terrestrial Laser Scanner for Measuring Streambank Retreat. J. Hydraul. Eng. 2016, 142, 6016015. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, X.; Flener, C.; Kukko, A.; Kaartinen, H.; Kurkela, M.; Vaaja, M.; Hyyppä, H.; Alho, P. 3D Modeling of Coarse Fluvial Sediments Based on Mobile Laser Scanning Data. Remote Sens. 2013, 5, 4571–4592. [Google Scholar] [CrossRef] [Green Version]
- Alho, P.; Kukko, A.; Hyyppä, H.; Kaartinen, H.; Hyyppä, J.; Jaakkola, A. Application of boat-based laser scanning for river survey. Earth Surf. Process. Landf. 2009, 34, 1831–1838. [Google Scholar] [CrossRef]
- Day, S.S. Anthropogenically-Intensified Erosion in Incising River Systems. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2012. [Google Scholar]
- James, L.A.; Watson, D.G.; Hansen, W.F.; James, A. Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA. Catena 2007, 71, 132–144. [Google Scholar] [CrossRef]
- Lisenby, P.E.; Slattery, M.C.; Wasklewicz, T.A. Morphological organization of a steep, tropical headwater stream: The aspect of channel bifurcation. Geomorphology 2014, 214, 245–260. [Google Scholar] [CrossRef]
- Milan, D.J.; Heritage, G.L.; Hetherington, D. Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river. Earth Surf. Process. Landf. 2007, 32, 1657–1674. [Google Scholar] [CrossRef]
- Heritage, G.L.; Hetherington, D. Towards a protocol for laser scanning in fluvial geomorphology. Earth Surf. Process. Landf. 2007, 32, 66–74. [Google Scholar] [CrossRef]
- Brodu, N.; Lague, D. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology. ISPRS J. Photogramm. Remote Sens. 2012, 68, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Day, S.S.; Gran, K.B.; Belmont, P.; Wawrzyniec, T. Measuring bluff erosion part 2: Pairing aerial photographs and terrestrial laser scanning to create a watershed scale sediment budget. Earth Surf. Process. Landf. 2013, 38, 1068–1082. [Google Scholar] [CrossRef]
- Eltner, A.; Mulsow, C.; Maas, H. Quantitative Measurement of Soil Erosion from TLS and UAV Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-1/W2, 119–124. [Google Scholar] [CrossRef]
- Omernik, J.M. Map Supplement: Ecoregions of the Conterminous United States. Ann. Assoc. Am. Geogr. 1987, 77, 118–125. [Google Scholar] [CrossRef]
- LGROW. Lower Grand River Watershed Management Plan; Lower Grand River Organization of Watersheds: Grand Rapids, MI, USA, 2011; Available online: www.lgrow.org (accessed on 3 September 2019).
- Laubel, A.; Svendsen, L.M.; Kronvang, B.; Larsen, S.E. Bank erosion in a Danish lowland stream system. Hydrobiologia 1999, 410, 279–285. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: www.R-project.org (accessed on 3 September 2019).
- Palmer, J.A. An Assessment of Riparian Land-Use and Channel Condition Impacts on Streambank Eroding Lengths and Recession Rates in Two Third Order Rural Watersheds in Central Iowa. Master’s Thesis, Iowa State University, Ames, IA, USA, 2008. [Google Scholar]
- Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M.; Mickelson, S.K.; Kovar, J.L.; Russell, J.R.; Powers, W.P. Stream bank erosion under different riparian land-use practices in northeast Iowa. In Proceedings of the 9 th North American Agroforestry Conference, Saint Paul, MN, USA, 12–15 June 2005. [Google Scholar]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Purvis, R.A.; Fox, G.A. Streambank sediment loading rates at the watershed scale and the benefit of riparian protection. Earth Surf. Process. Landf. 2016, 41, 1327–1336. [Google Scholar] [CrossRef]
- Evans, B.M.; Sheeder, S.A.; Lehning, D.W. A spatial technique for estimating streambank erosion based on watershed characteristics. J. Spat. Hydrol. 2003, 3, 1–13. [Google Scholar]
- Lane, E.W. The importance of fluvial morphology in hydraulic engineering. Am. Soc. Civ. Eng. Proc. 1955, 81, 1–17. [Google Scholar] [CrossRef]
- Dust, D.; Wohl, E. Conceptual model for complex river responses using an expanded Lane’s relation. Geomorphology 2012, 139, 109–121. [Google Scholar] [CrossRef]
- Goddard, A.J. Streambank Erosion along Two Rivers in Iowa. Water Resour. Res. 1087, 23, 1225–1236. [Google Scholar] [CrossRef]
- Henshaw, A.J.; Thorne, C.R.; Clifford, N.J. Identifying causes and controls of river bank erosion in a British upland catchment. Catena 2012, 100, 107–119. [Google Scholar] [CrossRef]
- Kessler, A.C.; Gupta, S.C.; Brown, M.K. Assessment of river bank erosion in Southern Minnesota rivers post European settlement. Geomorphology 2013, 201, 312–322. [Google Scholar] [CrossRef]
- Goodwin, K.; Noffke, S.; Smith, J. Water Quality and Pollution Control in Michigan. Sections 303(d), 305(b), and 314 Integrated Report MI/DEQ/WRD-16/001; Michigan Department of Environment, Great Lakes, and Energy: Lansing, MI, USA, 2016. Available online: https://www.michigan.gov/egle/0,9429,7-135-3313_3681_3686_3728-12711--,00.html (accessed on 15 August 2019).
- Sekely, A.C.; Mulla, D.J.; Bauer, D.W. Streambank slumping and its contribution to the phosphorus and suspended sediment loads of the Blue Earth River, Minnesota. J. Soil Water Conserv. 2002, 57, 243–250. [Google Scholar]
- Beck, W.; Isenhart, T.; Moore, P.; Schilling, K.; Schultz, R.; Tomer, M. Streambank alluvial unit contributions to suspended sediment and total phosphorus loads, walnut Creek, Iowa, USA. Water 2018, 10, 111. [Google Scholar] [CrossRef]
Location | Conditions | Volume Change (m3 m−1 year−1) * | Coverage | |||
---|---|---|---|---|---|---|
Site (Bank) | Undercut Banks | Heavy Vegetation | Erosion Pins | Total Station | Laser Scanner | Laser (%) |
IMC7 (L) | No | No | 0.081 | 0.264 | 0.015 | 21.4% |
IMC7 (R) | No | No | 0.027 | 0.081 | 0.022 | 29.8% |
IMC6 (L) | Yes | No | −0.004 | −0.065 | NA | NA |
IMC6 (R) | Yes | No | −0.082 | −0.111 | 0.155 | 60.1% |
IMC5 (L) | Yes | No | −0.105 | −0.078 | 0.004 | 24.4% |
IMC5 (R) | Yes | No | −0.065 | 0.098 | 0.008 | 38.6% |
IMC4 (L) | Yes | Yes | −0.034 | 0.047 | −0.001 | 0.5% |
IMC4 (R) | No | No | 0.078 | 0.424 | NA | NA |
IMC3 (L) | No | No | −0.070 | NA | NA | NA |
IMC3 (R) | No | No | −0.048 | NA | NA | NA |
IMC2 (L) | No | Yes | −0.003 | −0.018 | 0.001 | 5.6% |
IMC2 (R) | Yes | No | −0.066 | −0.111 | NA | NA |
IMC1 (L) | Yes | Yes | −0.034 | −0.055 | NA | NA |
IMC1 (R) | Yes | Yes | −0.052 | −0.273 | −0.036 | 11.9% |
WD (L) | No | Yes | 0.003 | 0.046 | NA | NA |
WD (R) | Yes | Yes | −0.024 | −0.186 | −0.008 | 29.0% |
BC (L) | No | No | −0.016 | 0.100 | NA | NA |
BC (R) | Yes | No | −0.011 | 0.383 | 0.033 | 20.5% |
Site (Bank) | Erosion Pins and Total Station | Laser Scanner and Erosion Pins | Laser Scanner and Total Station |
---|---|---|---|
IMC7 (L) | 226% | 449% | 1692% |
IMC7 (R) | 205% | 22% | 271% |
IMC6 (R) | 35% | 153% | 171% |
IMC5 (L) | 26% | 3003% | 2260% |
IMC5 (R) | 251% | 904% | 1111% |
IMC4 (L) | 238% | 2511% | 3715% |
IMC2 (L) | 448% | 466% | 2106% |
IMC1 (R) | 430% | 43% | 661% |
WD (R) | 668% | 191% | 2136% |
BC (R) | 3559% | 134% | 1070% |
Location | Checkpoint Error 2017 (m) | Checkpoint Error 2018 (m) | Target Alignment Error (m) | ||||||
---|---|---|---|---|---|---|---|---|---|
Site | Northing | Easting | Elevation | Northing | Easting | Elevation | 1 | 2 | 3 |
IMC7 | 0.008 | 0.006 | 0.064 | 0.009 | 0.011 | −0.006 | 0.008 | 0.010 | 0.002 |
IMC6 | 0.004 | 0.001 | −0.004 | 0.392 | −0.016 | −0.005 | 0.006 | 0.004 | 0.009 |
IMC5 | No data | No data | No data | −0.242 | −0.356 | −0.008 | 0.005 | 0.009 | 0.002 |
IMC4 | −0.012 | 0.021 | −0.001 | 0.006 | 0.038 | −0.577 | 0.005 | 0.011 | 0.006 |
IMC2 | −0.002 | −0.012 | −0.007 | −0.023 | −0.023 | −0.021 | 0.002 | 0.002 | 0.002 |
IMC1 | 0.004 | −0.001 | 0.004 | 0.020 | −0.050 | 0.084 | 0.013 | 0.004 | 0.011 |
WD | 0.022 | 0.022 | −0.014 | −0.034 | −0.012 | 0.024 | 0.014 | 0.012 | 0.011 |
BC | No data | No data | No data | 0.054 | −0.018 | −0.051 | 0.011 | 0.011 | 0.011 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myers, D.T.; Rediske, R.R.; McNair, J.N. Measuring Streambank Erosion: A Comparison of Erosion Pins, Total Station, and Terrestrial Laser Scanner. Water 2019, 11, 1846. https://doi.org/10.3390/w11091846
Myers DT, Rediske RR, McNair JN. Measuring Streambank Erosion: A Comparison of Erosion Pins, Total Station, and Terrestrial Laser Scanner. Water. 2019; 11(9):1846. https://doi.org/10.3390/w11091846
Chicago/Turabian StyleMyers, Daniel T., Richard R. Rediske, and James N. McNair. 2019. "Measuring Streambank Erosion: A Comparison of Erosion Pins, Total Station, and Terrestrial Laser Scanner" Water 11, no. 9: 1846. https://doi.org/10.3390/w11091846
APA StyleMyers, D. T., Rediske, R. R., & McNair, J. N. (2019). Measuring Streambank Erosion: A Comparison of Erosion Pins, Total Station, and Terrestrial Laser Scanner. Water, 11(9), 1846. https://doi.org/10.3390/w11091846