Treatment of a Mature Landfill Leachate: Comparison between Homogeneous and Heterogeneous Photo-Fenton with Different Pretreatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Landfill Leachate (LL)
2.2. Chemicals
2.3. Coagulation
2.4. Photo-Fenton Process
2.5. Analytical Determinations
3. Results and Discussion
3.1. Coagulation: Effect of pH and Dosage of Coagulants.
3.2. Photo-Fenton Treatment
3.3. Economic Assesment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lema, J.M.; Mendez, R.; Blazquez, R. Characteristics of landfill leachates and alternatives for their treatment: A review. Water Air Soil Pollut. 1988, 40, 223–250. [Google Scholar]
- Bhagawan, D.; Poodari, S.; Chaitanya, N.; Ravi, S.; Rani, Y.M.; Himabindu, V.; Vidyavathi, S. Industrial solid waste landfill leachate treatment using electrocoagulation and biological methods. Desalin. Water Treat. 2017, 68, 137–142. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mukhopadhyay, S.; Hashim, M.A.; Sen Gupta, B. Contemporary Environmental Issues of Landfill Leachate: Assessment and Remedies. Crit. Rev. Environ. Sci. Technol. 2015, 45, 472–590. [Google Scholar] [CrossRef]
- Abbas, A.A.; Jingsong, G.; Ping, L.Z.; Ya, P.Y.; Al-Rekabi, W.S. Review on LandWll Leachate Treatments. J. Appl. Sci. Res. 2009, 5, 534–545. [Google Scholar]
- Justin, M.Z.; Zupančič, M. Combined purification and reuse of landfill leachate by constructed wetland and irrigation of grass and willows. Desalination 2009, 246, 157–168. [Google Scholar] [CrossRef]
- Biglarijoo, N.; Mirbagheri, S.A.; Ehteshami, M.; Ghaznavi, S.M. Optimization of Fenton process using response surface methodology and analytic hierarchy process for landfill leachate treatment. Process Saf. Environ. Prot. 2016, 104, 150–160. [Google Scholar] [CrossRef]
- Rodrı́guez, J.; Castrillón, L.; Marañón, E.; Sastre, H.; Fernández, E. Removal of non-biodegradable organic matter from landfill leachates by adsorption. Water Res. 2004, 38, 3297–3303. [Google Scholar] [CrossRef]
- Nanny, M.A.; Ratasuk, N. Characterization and comparison of hydrophobic neutral and hydrophobic acid dissolved organic carbon isolated from three municipal landfill leachates. Water Res. 2002, 36, 1572–1584. [Google Scholar] [CrossRef]
- Foo, K.; Hameed, B. An overview of landfill leachate treatment via activated carbon adsorption process. J. Hazard. Mater. 2009, 171, 54–60. [Google Scholar] [CrossRef]
- Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and long-term composition of MSW landfill leachate: A review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336. [Google Scholar] [CrossRef]
- Ahmed, F.N.; Lan, C.Q. Treatment of landfill leachate using membrane bioreactors: A review. Desalination 2012, 287, 41–54. [Google Scholar] [CrossRef]
- Bove, D.; Merello, S.; Frumento, D.; Al Arni, S.; Aliakbarian, B.; Converti, A. A Critical Review of Biological Processes and Technologies for Landfill Leachate Treatment. Chem. Eng. Technol. 2015, 38, 2115–2126. [Google Scholar] [CrossRef]
- Yalcuk, A.; Ugurlu, A. Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment. Bioresour. Technol. 2009, 100, 2521–2526. [Google Scholar] [CrossRef]
- Torretta, V.; Ferronato, N.; Katsoyiannis, I.A.; Tolkou, A.K.; Airoldi, M. Novel and conventional technologies for landfill leachates treatment: A review. Sustainability 2016, 9, 9. [Google Scholar] [CrossRef]
- Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent Advancement of Coagulation-Flocculation and Its Application in Wastewater Treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. [Google Scholar] [CrossRef]
- Latour, I.; Miranda, R.; Blanco, A. Silica removal from newsprint mill effluents with aluminum salts. Chem. Eng. J. 2013, 230, 522–531. [Google Scholar] [CrossRef] [Green Version]
- Kurniawan, T.; Lo, W.; Chan, G.Y.S. Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. J. Hazard. Mater. 2006, 129, 80–100. [Google Scholar] [CrossRef]
- Aziz, H.A.; Alias, S.; Adlan, M.N.; Faridah; Asaari, A.; Zahari, M.S. Colour removal from landfill leachate by coagulation and flocculation processes. Bioresour. Technol. 2007, 98, 218–220. [Google Scholar] [CrossRef]
- Amor, C.; De Torres-Socías, E.; Peres, J.A.; Maldonado, M.I.; Oller, I.; Malato, S.; Lucas, M.S. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. J. Hazard. Mater. 2015, 286, 261–268. [Google Scholar] [CrossRef]
- Silva, A.; Dezotti, M.; Sant’Anna, G., Jr. Treatment and detoxification of a sanitary landfill leachate. Chemosphere 2004, 55, 207–214. [Google Scholar] [CrossRef]
- Hermosilla, D.; Merayo, N.; Ordóñez, R.; Blanco, A. Optimization of conventional Fenton and ultraviolet-assisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill. Waste Manag. 2012, 32, 1236–1243. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.J.; Wu, C.-C.; Ma, H.-W.; Chang, C.-C. Treatment of landfill leachate by ozone-based advanced oxidation processes. Chemosphere 2004, 54, 997–1003. [Google Scholar] [CrossRef]
- Tizaoui, C.; Bouselmi, L.; Mansouri, L.; Ghrabi, A.; Bousselmi, L. Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. J. Hazard. Mater. 2007, 140, 316–324. [Google Scholar] [CrossRef]
- Yang, Y.; Jin, X.; Pan, Y.; Zuo, X. Study on Treatment of Landfill Leachate by Electrochemical, Flocculation and Photocatalysis. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Chongqing, China, 25–26 November 2017; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Jia, C.; Wang, Y.; Zhang, C.; Qin, Q. UV-TiO2 photocatalytic degradation of landfill leachate. Water Air Soil Pollut. 2011, 217, 375–385. [Google Scholar] [CrossRef]
- Anglada, A.; Urtiaga, A.; Ortiz, I. Pilot scale performance of the electro-oxidation of landfill leachate at boron-doped diamond anodes. Environ. Sci. Technol. 2009, 43, 2035–2040. [Google Scholar] [CrossRef]
- Turro, E.; Giannis, A.; Cossu, R.; Gidarakos, E.; Mantzavinos, D.; Katsaounis, A. Electrochemical oxidation of stabilized landfill leachate on DSA electrodes. J. Hazard. Mater. 2011, 190, 460–465. [Google Scholar] [CrossRef]
- Ertugay, N.; Kocakaplan, N.; Malkoc, E. Investigation of pH Effect with Fenton-Like Oxidation using ZVI in Treatment of the Landfill Leachate. Int. J. Min. Reclamat. Environ. 2017, 31, 404–411. [Google Scholar] [CrossRef]
- Hermosilla, D.; Cortijo, M.; Huang, C.P. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes. Sci. Total Environ. 2009, 407, 3473–3481. [Google Scholar] [CrossRef]
- Zhang, H.; Choi, H.J.; Huang, C.P. Treatment of landfill leachate by Fenton’s reagent in a continuous stirred tank reactor. J. Hazard. Mater. 2006, 136, 618–623. [Google Scholar] [CrossRef]
- Zhang, H.; Choi, H.J.; Huang, C.-P. Optimization of Fenton process for the treatment of landfill leachate. J. Hazard. Mater. 2005, 125, 166–174. [Google Scholar] [CrossRef]
- Silva, T.F.; Vieira, E.; Lopes, A.R.; Nunes, O.C.; Fonseca, A.; Saraiva, I.; Boaventura, R.A.; Vilar, V.J.; Silva, T.V. How the performance of a biological pre-oxidation step can affect a downstream photo-Fenton process on the remediation of mature landfill leachates: Assessment of kinetic parameters and characterization of the bacterial communities. Sep. Purif. Technol. 2017, 175, 274–286. [Google Scholar] [CrossRef]
- Umar, M.; Aziz, H.A.; Yusoff, M.S. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag. 2010, 30, 2113–2121. [Google Scholar] [CrossRef]
- Barndõk, H.; Merayo, N.; Blanco, L.; Hermosilla, D.; Blanco, Á. Application of on-line FTIR methodology to study the mechanisms of heterogeneous advanced oxidation processes. Appl. Catal. B Environ. 2016, 185, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, C.; Tezcan, H.; Sahinkaya, S.; Kalipci, E. Pretreatment of Olive Oil Mill Wastewater by Two Different Applications of Fenton Oxidation Processes. CLEAN-Soil Air Water 2010, 38, 1152–1158. [Google Scholar] [CrossRef]
- Lee, S.D.; Mallampati, S.R.; Lee, B.H. Hybrid zero valent iron (ZVI)/H2O2 oxidation process for landfill leachate treatment with novel nanosize metallic calcium/iron composite. J. Air Waste Manag. Assoc. 2017, 67, 475–487. [Google Scholar] [CrossRef]
- Martins, R.C.; Lopes, D.V.; Quina, M.J.; Quinta-Ferreira, R.M. Treatment improvement of urban landfill leachates by Fenton-like process using ZVI. Chem. Eng. J. 2012, 192, 219–225. [Google Scholar] [CrossRef]
- Bogacki, J.; Marcinowski, P.; El-Khozondar, B. Treatment of Landfill Leachates with Combined Acidification/Coagulation and The Fe0/H2O2 Process. Water 2019, 11, 194. [Google Scholar] [CrossRef]
- Lopez, A.; Pagano, M.; Volpe, A.; Di Pinto, A.C. Fenton’s pre-treatment of mature landfill leachate. Chemosphere 2004, 54, 1005–1010. [Google Scholar] [CrossRef]
- Chow, C.W.; Van Leeuwen, J.A.; Fabris, R.; Drikas, M. Optimised coagulation using aluminium sulfate for the removal of dissolved organic carbon. Desalination 2009, 245, 120–134. [Google Scholar] [CrossRef]
- Liang, X.; Zhu, X.; Butler, E.C. Comparison of four advanced oxidation processes for the removal of naphthenic acids from model oil sands process water. J. Hazard. Mater. 2011, 190, 168–176. [Google Scholar] [CrossRef]
- American Public Health Association; American Water Works Association; Water Pollution Control Federation; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater; APHA: Washington, DC, USA, 2005. [Google Scholar]
- Silva, J.O.; Silva, V.M.; Cardoso, V.L.; Machado, A.E.H.; Trovó, A.G. Treatment of Sanitary Landfill Leachate by Photo-Fenton Process: Effect of the Matrix Composition. J. Braz. Chem. Soc. 2016, 27, 2264–2272. [Google Scholar] [CrossRef]
- Roudi, A.M.; Akhlaghi, E.; Chelliapan, S.; Kaboli, A.; Aslani, H.; Selvam, S.B. Treatment of Landfill Leachate via Advanced Oxidation Process (AOPs)—A Review. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 260–271. [Google Scholar]
- Renou, S.; Givaudan, J.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 2008, 150, 468–493. [Google Scholar] [CrossRef]
- Zhao, R.; Jung, C.; Trzopek, A.; Torrens, K.; Deng, Y. Characterization of ultraviolet-quenching dissolved organic matter (DOM) in mature and young leachates before and after biological pre-treatment. Environ. Sci. Water Res. Technol. 2018, 4, 731–738. [Google Scholar] [CrossRef]
- Iskander, S.M.; Novak, J.T.; Brazil, B.; He, Z. Percarbonate oxidation of landfill leachates towards removal of ultraviolet quenchers. Environ. Sci. Water Res. Technol. 2017, 3, 1162–1170. [Google Scholar] [CrossRef]
- Iskander, S.M.; Zhao, R.; Pathak, A.; Gupta, A.; Pruden, A.; Novak, J.T.; He, Z. A review of landfill leachate induced ultraviolet quenching substances: Sources, characteristics, and treatment. Water Res. 2018, 145, 297–311. [Google Scholar] [CrossRef]
- Aguilar, M.I.; Saez, J.; Llorens, M.; Soler, A.; Ortuno, J.F. Nutrient removal and sludge production in the coagulation-flocculation process. Water Res. 2002, 36, 2910–2919. [Google Scholar] [CrossRef]
- Assou, M.; Madinzi, A.; Anouzla, A.; Aboulhassan, M.A.; Souabi, S.; Hafidi, M. Reducing pollution of stabilized landfill leachate by mixing of coagulants and flocculants: A comparative study. Int. J. Eng. Innov. Technol. 2014, 4, 20–25. [Google Scholar]
- Kochany, J.; Lipczynska-Kochany, E. Utilization of landfill leachate parameters for pretreatment by Fenton reaction and struvite precipitation—A comparative study. J. Hazard. Mater. 2009, 166, 248–254. [Google Scholar] [CrossRef]
- Blanco, L.; Hermosilla, D.; Merayo, N.; Blanco, Á. Assessing the use of zero-valent iron microspheres to catalyze Fenton treatment processes. J. Taiwan Inst. Chem. Eng. 2016, 69, 54–60. [Google Scholar] [CrossRef]
- Yong, Z.J.; Bashir, M.J.; Ng, C.A.; Sethupathi, S.; Lim, J.-W. A sequential treatment of intermediate tropical landfill leachate using a sequencing batch reactor (SBR) and coagulation. J. Environ. Manag. 2018, 205, 244–252. [Google Scholar] [CrossRef]
- De Morais, J.L.; Zamora, P.P. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates. J. Hazard. Mater. 2005, 123, 181–186. [Google Scholar] [CrossRef]
- Cortez, S.; Teixeira, P.; Oliveira, R.; Mota, M. Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments. J. Environ. Manag. 2011, 92, 749–755. [Google Scholar] [CrossRef]
- Li, H.-S.; Zhou, S.-Q.; Sun, Y.-B.; Feng, P.; Li, J.-D. Advanced treatment of landfill leachate by a new combination process in a full-scale plant. J. Hazard. Mater. 2009, 172, 408–415. [Google Scholar] [CrossRef]
- Xie, B.; Lv, Z.; Lv, B.; Gu, Y. Treatment of mature landfill leachate by biofilters and Fenton oxidation. Waste Manag. 2010, 30, 2108–2112. [Google Scholar] [CrossRef]
- Anfruns, A.; Gabarró, J.; Olmos, R.G.; Puig, S.; Balaguer, M.D.; Colprim, J. Coupling anammox and advanced oxidation-based technologies for mature landfill leachate treatment. J. Hazard. Mater. 2013, 258, 27–34. [Google Scholar] [CrossRef]
- Cortez, S.; Teixeira, P.; Oliveira, R.; Mota, M. Ozonation as polishing treatment of mature landfill leachate. J. Hazard. Mater. 2010, 182, 730–734. [Google Scholar] [CrossRef]
- Rivas, F.J.; Beltran, F.; Gimeno, O.; Carvalho, F. Fenton-like oxidation of landfill leachate. J. Environ. Sci. Health Part A Environ. Sci. Eng. 2003, 38, 371–379. [Google Scholar] [CrossRef]
- De Torres-Socías, E.; Prieto-Rodríguez, L.; Zapata, A.; Fernández-Calderero, I.; Oller, I.; Malato, S. Detailed treatment line for a specific landfill leachate remediation. Brief economic assessment. Chem. Eng. J. 2015, 261, 60–66. [Google Scholar] [CrossRef]
- Silva, T.F.; Fonseca, A.; Saraiva, I.; Boaventura, R.A.; Vilar, V.J.; Silva, T.V. Scale-up and cost analysis of a photo-Fenton system for sanitary landfill leachate treatment. Chem. Eng. J. 2016, 283, 76–88. [Google Scholar] [CrossRef]
- Wu, L.N.; Liang, D.W.; Xu, Y.Y.; Liu, T.; Peng, Y.Z.; Zhang, J. A robust and cost-effective integrated process for nitrogen and bio-refractory organics removal from landfill leachate via short-cut nitrification, anaerobic ammonium oxidation in tandem with electrochemical oxidation. Bioresour. Technol. 2016, 212, 296–301. [Google Scholar] [CrossRef]
- Climate and Clean Air Coalition. Municipal Solid Waste Initiative. Leachate Management Costs; Climate and Clean Air Coalition: Paris, France, 2013. [Google Scholar]
- Brennan, R.B.; Healy, M.G.; Morrison, L.; Hynes, S.; Norton, D.; Clifford, E. Sustainability of Municipal Wastewater Treatment Plants for the Treatment of Landfill Leachate; Report No. 214. 2017; Environmental Protection Agency: Wexford, Ireland, 2017; ISBN 978-1-84095-711-2. [Google Scholar]
- Brennan, R.B.; Healy, M.G.; Morrison, L.; Hynes, S.; Norton, D.; Clifford, E. Management of landfill leachate: The legacy of European Union Directives. Waste Manag. 2016, 55, 355–363. [Google Scholar] [CrossRef]
Type of Leachate | |||
---|---|---|---|
Young | Intermediate | Old | |
Age (years) | 0–10 | 10–20 | >20 |
pH | <6.5 | 6.5–7.5 | >7.5 |
BOD5/COD | 0.5–1.0 | 0.1–0.5 | <0.1 |
BOD5 (mgO2/L) | >4000 | 1000–4000 | <400 |
COD (mgO2/L) | >10,000 | 4000–10,000 | <4000 |
TOC (mg/L) | >2500 | 1000–2500 | <1000 |
N-NH3 (mg/L) | <400 | - | >400 |
Heavy metals | Low-medium | Low | Low |
Recommended treatment | Biological | - | Physico-chemical |
Composition | VFA (80%) | VFA (5–30%), HA, FA | HA and FA (80%) |
Parameters (Raw Leachate) | Value | Parameters (Dissolved Fraction) | Values |
---|---|---|---|
pH | 8.2 ± 0.1 | Chlorides (mg L−1) | 3000 ± 137 |
Conductivity (mS cm−1) | 17.3 ± 0.1 | Sulphates (mg L−1) | 125 ± 23 |
UV-254 (cm−1) | 27.5 ± 0.1 | Aluminium (mg L−1) | 5.50 ± 0.03 |
Color (mg Pt L−1) | 17,300 ± 200 | Iron (mg L−1) | 8.50 ± 0.015 |
COD (mg O2 L−1) | 4961 ± 496 | Chromium (mg L−1) | 1.90 ± 0.05 |
BOD5 (mg O2 L−1) | 150 ± 50 | Sodium (mg L−1) | 2152 ± 215 |
BOD5/COD | 0.03 ± 0.01 | Potassium (mg L−1) | 1219 ± 122 |
TOC (mg C L−1) | 2000 ± 100 | Magnesium (mg L−1) | 98 ± 6 |
TS (mg L−1) | 21,290 ± 1030 | Calcium (mg L−1) | 134 ± 4 |
TSS (mg L−1) | 1370 ± 20 | Silicon (mg L−1) | 15 ± 1 |
TDS (mg L−1) | 18,970 ± 230 | Zinc (mg L−1) | 0.61 ± 0.06 |
Alkalinity (mg CaCO3 L−1) | 13,244 ± 100 | Nickel (mg L−1) | 0.26 ± 0.03 |
TNb (mg N L−1) | 1600 ± 10 | Copper (mg L−1) | 0.030 ± 0.003 |
TP (mg P L−1) | 10 ± 2 |
Initial pH | Final pH | Conductivity, mS/cm | COD, mg O2/L (% Removal) | Color, mg Pt/L (% Removal) | UV-254, cm−1 (% Removal) | |
---|---|---|---|---|---|---|
Raw leachate | 8.2 | - | 17.3 ± 0.1 | 4961 ± 461 | 17,300 ± 100 | 27.5 ± 1 |
5 g/L alum | 7.0 | 6.7 | 17.1 ± 0.1 | 1786 ± 232 (64%) | 2250 ± 50 (87%) | 12.4 ± 1 (55%) |
2 g/L ferric chloride | 5.0 | 2.8 | 22.5 ± 0.1 | 1588 ± 226 (68%) | 520 ± 15 (97%) | 4.7 ± 1 (83%) |
Ferric Chloride + Homogeneous Photo-Fenton (Acidic pH) | Alum + Heterogeneous ZVI Photo-Fenton (Neutral pH) | |||||
---|---|---|---|---|---|---|
Initial pH (before coagulation) | 5.0 | 7.0 | ||||
[H2SO4], g/L | 7.2 | 1.0 | ||||
[Coagulant], g/L | 2.0 | 5.0 | ||||
COD after coagulation, mg O2/L (% removal) | 1588 ± 226 (68%) | 1786 ± 232 (64%) | ||||
H2O2/COD ratio | 2.125 | 1.063 | 0.531 | 2.125 | 1.063 | 0.531 |
Final pH after coagulation | 2.8 ± 0.1 | 2.8 ± 0.1 | 2.8 ± 0.1 | 6.7 ± 0.1 | 6.7 ± 0.1 | 6.7 ± 0.1 |
Conductivity, mS/cm | 22.5 ± 0.2 | 22.5 ± 0.2 | 22.5 ± 0.2 | 17.1 ± 0.2 | 17.1 ± 0.2 | 17.1 ± 0.2 |
UV irradiation time, min | 30 | 15 | 10 | 150 | 120 | 60 |
% COD removal (after oxidation) | 70% | 48% | 24% | 62% | 39% | 5% |
Final COD, mg O2/L | 476 ± 5 | 826 ± 8 | 1207 ± 12 | 679 ± 7 | 1089 ± 11 | 1697 ± 17 |
BOD5/COD | 0.51 | 0.32 | 0.25 | 0.25 | 0.18 | 0.15 |
Treatment Costs | FeCl3 | Alum |
---|---|---|
Sulphuric acid/€/m3 | 0.94 | 0.13 |
Coagulant/€/m3 | 1.00 | 0.90 |
Hydrogen peroxide/€/m3 | 1.18 | 1.33 |
Power consumption/€/m3 | 3.32 | 26.08 |
Total cost/€/m3 | 6.44 | 28.44 |
Photo-Fenton/€/kg COD removed | 8.45 | 40.80 |
Coagulation + Photo-Fenton/€/kg COD removed | 1.56 | 7.34 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tejera, J.; Miranda, R.; Hermosilla, D.; Urra, I.; Negro, C.; Blanco, Á. Treatment of a Mature Landfill Leachate: Comparison between Homogeneous and Heterogeneous Photo-Fenton with Different Pretreatments. Water 2019, 11, 1849. https://doi.org/10.3390/w11091849
Tejera J, Miranda R, Hermosilla D, Urra I, Negro C, Blanco Á. Treatment of a Mature Landfill Leachate: Comparison between Homogeneous and Heterogeneous Photo-Fenton with Different Pretreatments. Water. 2019; 11(9):1849. https://doi.org/10.3390/w11091849
Chicago/Turabian StyleTejera, Javier, Ruben Miranda, Daphne Hermosilla, Iñigo Urra, Carlos Negro, and Ángeles Blanco. 2019. "Treatment of a Mature Landfill Leachate: Comparison between Homogeneous and Heterogeneous Photo-Fenton with Different Pretreatments" Water 11, no. 9: 1849. https://doi.org/10.3390/w11091849
APA StyleTejera, J., Miranda, R., Hermosilla, D., Urra, I., Negro, C., & Blanco, Á. (2019). Treatment of a Mature Landfill Leachate: Comparison between Homogeneous and Heterogeneous Photo-Fenton with Different Pretreatments. Water, 11(9), 1849. https://doi.org/10.3390/w11091849