Abstract
:1. Introduction
2. Methodology
2.1. Sensitivity Analysis
2.2. Study Area
2.3. The CAPRI-Water Model
3. Identification of Key Water Drivers
3.1. Drivers Selection and Definition
3.1.1. Water Availability for Irrigation
3.1.2. Irrigation Efficiency
3.1.3. Water Cost
3.2. Scenario Framework
4. Results
4.1. Scenario Results
4.2. Sensitivity Analysis
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture—Trends and Challenges; Food and Agriculture Organisation: Rome, Italy, 2017. [Google Scholar]
- Serraj, R.; Pingali, P.L. (Eds.) Agriculture & Food Systems to 2050: Global Trends, Challenges and Opportunities; World Scientific Publishing Company Pte. Limited: Singapore, 2019. [Google Scholar]
- Byers, E.; Gidden, M.; Leclère, D.; Balkovic, J.; Burek, P.; Ebi, K.; Greve, P.; Grey, D.; Havlik, P.; Hillers, A.; et al. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ. Res. Lett. 2018, 13, 055012. [Google Scholar] [CrossRef] [Green Version]
- Ciscar, J.C.; Ibarreta, D.; Soria, A.; Dosio, A.; Toreti, A.; Ceglar, A.; Fumagalli, D.; Dentener, F.; Lecerf, R.; Zucchini, A.; et al. Climate Impacts in Europe: Final Report of the JRC PESETA III Project, EUR 29427 EN; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- EEA. Water Use in Europe—Quantity and Quality Face Big Challenges; European Environmental Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- Walker, W.E.; Harremoës, P.; Rotmans, J.; van Der Sluijs, J.P.; van Asselt, M.B.A.; Janssen, P.; Krayer von Krauss, M.P. Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support. Integr. Assess. 2003, 4, 5–17. [Google Scholar] [CrossRef]
- Sauer, T.; Havlik, P.; Schneider, U.A.; Schmid, E.; Kindermann, G.; Obersteiner, M. Agriculture and resource availability in a changing world: The role of irrigation. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef] [Green Version]
- Sulser, T.B.; Ringler, C.; Zhu, T.J.; Msangi, S.; Bryan, E.; Rosegrant, M.W. Green and blue water accounting in the Ganges and Nile basins: Implications for food and agricultural policy. J. Hydrol. 2010, 384, 276–291. [Google Scholar] [CrossRef]
- Liu, J.; Hertel, T.W.; Taheripour, F.; Zhu, T.; Ringler, C. International trade buffers the impact of future irrigation shortfalls. Glob. Environ. Chang. 2014, 29, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Ward, F.A.; Pulido-Velázquez, M. Water conservation in irrigation can increase water use. Proc. Natl. Acad. Sci. USA 2008, 105, 18215–18220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berbel, J.; Gutiérrez-Martín, C.; Expósito, A. Impacts of irrigation efficiency improvement on water use, water consumption and response to water price at field level. Agric. Water Manag. 2018, 203, 423–429. [Google Scholar] [CrossRef]
- Blanco, M.; Ramos, F.; Van Doorslaer, B.; Martínez, P.; Fumagalli, D.; Ceglar, A.; Fernández, F.J. Climate change impacts on EU agriculture: A regionalized perspective taking into account market-driven adjustments. Agric. Syst. 2017, 156, 52–66. [Google Scholar] [CrossRef]
- Blanco, M.; Witzke, P.; Barreiro Hurle, J.; Martinez, P.; Salputra, G.; Hristov, J. CAPRI Water 2.0: An Upgraded and Updated CAPRI Water Module, EUR 29498 EN; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Blanco, M.; Witzke, P.; Pérez Domínguez, I.; Salputra, G.; Martínez, P. Extension of the CAPRI Model with an Irrigation Sub-Module, EUR 27737 EN; Publications Office of the European Union: Luxembourg, 2015. [Google Scholar] [CrossRef]
- Saltelli, A. Sensitivity analysis for importance assessment. Risk Anal. 2002, 22, 579–590. [Google Scholar] [CrossRef]
- Borgonovo, E.; Plischke, E. Sensitivity analysis: A review of recent advances. Eur. J. Oper. Res. 2016, 248, 869–887. [Google Scholar] [CrossRef]
- Pianosi, F.; Beven, K.; Freer, J.; Hall, J.W.; Rougier, J.; Stephenso, D.B.; Wagener, T. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environ. Model. Softw. 2016, 79, 214–232. [Google Scholar] [CrossRef]
- EC. Better Regulation Guidelines; European Commission: Strasbourg, France, 2015. [Google Scholar]
- Gabbert, S.; Van Ittersum, M.; Kroeze, C.; Stalpers, S.; Ewert, F.; Olsson, J.A. Uncertainty analysis in integrated assessment: The users’ perspective. Reg. Environ. Chang. 2010, 10, 131–143. [Google Scholar] [CrossRef]
- Höllermann, B.; Evers, M. Perception and handling of uncertainties in water management—A study of practitioners’ and scientists’ perspectives on uncertainty in their daily decision-making. Environ. Sci. Policy 2017, 71, 9–18. [Google Scholar] [CrossRef]
- Martinez, P.; Blanco, M.; Castro-Campos, B. The Water–Energy–Food Nexus: A Fuzzy-Cognitive Mapping Approach to Support Nexus-Compliant Policies in Andalusia (Spain). Water 2018, 10, 664. [Google Scholar] [CrossRef]
- Tanasijevic, L.; Todorovic, M.; Pereira, L.S.; Pizzigalli, C.; Lionello, P. Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agric. Water Manag. 2014, 144, 54–68. [Google Scholar] [CrossRef]
- Saadi, S.; Todorovic, M.; Tanasijevic, L.; Pereira, L.S.; Pizzigalli, C.; Lionello, P. Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agric. Water Manag. 2015, 147, 103–115. [Google Scholar] [CrossRef]
- Zhao, G.; Webber, H.; Hoffmann, H.; Wolf, J.; Siebert, S.; Ewert, F. The implication of irrigation in climate change impact assessment: A European-wide study. Glob. Chang. Biol. 2015, 21, 4031–4048. [Google Scholar] [CrossRef]
- CEDEX. Evaluación del impacto del cambio climático en los recursos hídricos y sequías en España; Centro de Estudios y Experimentación en Obras Públicas; Ministerio de Fomento, Gobierno de España: Madrid, España, 2017.
- Garrote, L.; Iglesias, A.; Granados, A. Country-level assessment of future risk of water scarcity in Europe. Proc. Int. Assoc. Hydrol. Sci. 2018, 379, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Betts, R.A.; Alfieri, L.; Bradshaw, C.; Caesar, J.; Feyen, L.; Friedlingstein, P.; Gohar, L.; Koutroulis, A.; Lewis, K.; Morfopoulos, C.; et al. Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5 degrees C and 2 degrees C global warming with a higher-resolution global climate model. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2018, 376. [Google Scholar] [CrossRef]
- Bisselink, B.; Bernhard, J.; Gelati, E.; Adamovic, M.; Guenther, S.; Mentaschi, L.; De Roo, A. Impact of a Changing Climate, Land Use, and Water Usage on Europe’s Water Resources, EUR 29130 EN; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Garrote, L.; Iglesias, A.; Granados, A.; Mediero, L.; Martin-Carrasco, F. Quantitative assessment of climate change vulnerability of irrigation demands in Mediterranean Europe. Water Res. Manag. 2015, 29, 325–338. [Google Scholar] [CrossRef]
- Corominas, J. Análisis de las modernizaciones de regadíos en Andalucía; Consejería de Agricultura y Pesca, Junta de Andalucía: Sevilla, Spain, 2011.
- Norton, J. An introduction to sensitivity assessment of simulation models. Environ. Model. Softw. 2015, 69, 166–174. [Google Scholar] [CrossRef]
- Saltelli, A.; Annoni, P. How to avoid a perfunctory sensitivity analysis. Environ. Model. Softw. 2010, 25, 1508–1517. [Google Scholar] [CrossRef]
- Saltelli, A.; Aleksankina, K.; Becker, W.; Fennell, P.; Ferretti, F.; Holst, N.; Li, S.; Wu, Q. Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environ. Model. Softw. 2019, 114, 29–39. [Google Scholar] [CrossRef]
- Iooss, B.; Lemaître, P. A review on global sensitivity analysis methods. In Uncertainty Management in Simulation-Optimization of Complex Systems; Springer: Boston, MA, USA, 2015. [Google Scholar]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis: The Primer; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Borgonovo, E. Sensitivity analysis with finite changes: An application to modified EOQ models. Eur. J. Oper. Res. 2010, 200, 127–138. [Google Scholar] [CrossRef]
- Eschenbach, T.G. Spiderplots versus Tornado Diagrams for Sensitivity Analysis. Interfaces 2010, 22, 40–46. [Google Scholar] [CrossRef]
- Marangoni, G.; Tavoni, M.; Bosetti, V.; Borgonovo, E.; Capros, P.; Fricko, O.; Gernaat, D.E.H.J.; Guivarch, C.; Havlik, P.; Huppmann, D.; et al. Sensitivity of projected long-term CO2 emissions across the Shared Socioeconomic Pathways. Nat. Clim. Chang. 2017, 7, 113. [Google Scholar] [CrossRef]
- Borgonovo, E.; Smith, C.L. A study of interactions in the risk assessment of complex engineering systems: An application to space PSA. Oper. Res. 2011, 59, 1461–1476. [Google Scholar] [CrossRef]
- Borgonovo, E.; Peccati, L. Managerial insights from service industry models: A new scenario decomposition method. Ann. Oper. Res. 2011, 185, 161–179. [Google Scholar] [CrossRef]
- Junta de Andalucía. Informe Económico 2017; Consejería de Economía y Conocimiento, Junta de Andalucía: Seville, Spain, 2018. (In Spanish) [Google Scholar]
- Massot, A. Research for Agri-Comitee–Agriculture in Andalusia; European Parliament, Directorate General for Internal Policies: Brussels, Belgium, 2016. [Google Scholar] [CrossRef]
- Junta de Andalucía. Informe de Medio Ambiente de Andalucía 2017; Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía: Seville, Spain, 2018. (In Spanish) [Google Scholar]
- Berbel, J.; Pedraza, V.; Giannoccaro, G. The trajectory towards basin closure of a European river: Guadalquivir. Int. J. River Basin Manag. 2013, 11, 111–119. [Google Scholar] [CrossRef]
- Peña-Gallardo, M.; Gámiz-Fortís, S.R.; Castro-Diez, Y.; Esteban-Parra, M.J. Comparative analysis of drought indices in Andalusia during the period 1901–2012. Cuadernos de Investigacion Geográfica 2016, 42, 67–88. [Google Scholar] [CrossRef]
- MAPA. Plan Nacional de Regadíos Horizonte 2008; Ministerio de Agricultura, Pesca y Alimentación, Gobierno de España: Madrid, España, 2001. (In Spanish)
- Junta de Andalucía. Agenda Del Regadío Andaluz H-2015; Consejería De Agricultura, Pesca y Alimentación, Junta De Andalucía: Seville, Spain, 2011. (In Spanish) [Google Scholar]
- Berbel, J.; Expósito, A.; Gutiérrez-Martín, C.; Mateos, L. Effects of the Irrigation Modernization in Spain 2002–2015. Water Resour. Manag. 2019, 33, 1–15. [Google Scholar] [CrossRef]
- Fernández García, I.; Rodriguez Díaz, J.; Camacho Poyato, E.; Montesinos, P.; Berbel, J. Effects of modernization and medium term perspectives on water and energy use in irrigation districts. Agric. Syst. 2014, 131, 56–63. [Google Scholar] [CrossRef]
- García-Vila, M.; Lorite, I.J.; Soriano, M.A.; Fereres, E. Management trends and responses to water scarcity in an irrigation scheme of Southern Spain. Agric. Water Manag. 2008, 95, 458–468. [Google Scholar] [CrossRef]
- Lopez-Gunn, E.; Zorrilla, P.; Prieto, F.; Llamas, M.R. Lost in translation? Water efficiency in Spanish agriculture. Agric. Water Manag. 2012, 108, 83–95. [Google Scholar] [CrossRef]
- EC. Report from the Commission to the European Parliament and the Council on the Implementation of the Water Framework Directive (2000/60/EC) and the Floods Directive (2007/60/EC), Second River Basin Management Plans, First Flood Risk Management Plans; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Corominas, J. Agua y energía en el riego en la época de la sostenibilidad. Ingeniería del Agua 2010, 17, 219–233. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, J.A.; Pérez-Urrestarazu, L.; Camacho-Poyato, E.; Montesino, P. The paradox of irrigation scheme modernization: More efficient water use linked to higher energy demand. Span. J. Agric. Res. 2011, 9, 1000–1008. [Google Scholar] [CrossRef]
- Britz, W.; Witzke, H.P. CAPRI Model Documentation, 2014. University of Bonn, 2014. Available online: http://www.capri-model.org/docs/capri_documentation.pdf (accessed on 10 May 2019).
- Shrestha, S.; Ciaian, P.; Himics, M.; Van Doorslaer, B. Impacts of Climate Change on EU Agriculture. Rev. Agric. Appl. Econ. 2013, 16, 24–39. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F.D., Qin, G.K., Plattner, M., Tignor, S.K., Allen, J., Boschung, A., Nauels, Y., Xia, V., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Brouwer, C.; Prins, K.; Heibloem, M. Irrigation water management: Irrigation scheduling. Train. Man. 1989, 4, 66. [Google Scholar]
- EC. EU Agricultural Outlook for the Agricultural Markets and Income 2017–2030; European Commission, DG Agriculture and Rural Development: Brussels, Belgium, 2017. [Google Scholar]
- Van Meijl, H.; Havlik, P.; Lotze-Campen, H.; Stehfest, E.; Witzke, P.; Domínguez, I.P.; Bodirsky, B.L.; van Dijk, M.; Doelman, J.; Fellmann, T.; et al. Comparing impacts of climate change and mitigation on global agriculture by 2050. Environ. Res. Lett. 2018, 13, 064021. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [PubMed]
- OECD. Water and Climate Change Adaptation: Policies to Navigate Uncharted Waters, OECD Studies on Water; OECD Publishing: Paris, France, 2013. [Google Scholar]
- Roudier, P.; Andersson, J.C.; Donnelly, C.; Feyen, L.; Greuell, W.; Ludwig, F. Projections of future floods and hydrological droughts in Europe under a+ 2 C global warming. Clim. Chang. 2016, 135, 341–355. [Google Scholar] [CrossRef]
- Donnelly, C.; Greuell, W.; Andersson, J.; Gerten, D.; Pisacane, G.; Roudier, P.; Ludwig, F. Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim. Chang. 2017, 143, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Seckler, D.; Molden, D.; Sakthivadivel, R. The concept of efficiency in water resources management and policy. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; Kijne, J.W., Barker, R., Molden, D., Eds.; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2003; pp. 37–51. [Google Scholar]
- Perry, C. Efficient irrigation; inefficient communication; flawed recommendations. Irrig. Drain. 2007, 56, 367–378. [Google Scholar] [CrossRef]
- EC. A Blueprint to Safeguard Europe’s Water Resources; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Morillo, J.G.; Martín, M.; Camacho, E.; Díaz, J.R.; Montesinos, P. Toward precision irrigation for intensive strawberry cultivation. Agric. Water Manag. 2015, 151, 43–51. [Google Scholar] [CrossRef]
- González Perea, R.; García, I.F.; Arroyo, M.M.; Díaz, J.R.; Poyato, E.C.; Montesinos, P. Multiplatform application for precision irrigation scheduling in strawberries. Agric. Water Manag. 2017, 183, 194–201. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Alarcón, J. El riego de precisión. El nuevo desafío de los regadíos modernizados. In Efectos de la Modernización de Regadío en España; Berbel, J., Gutiérrez-Martin, C., Eds.; Cajamar Caja Rural: Almería, Spain, 2017; pp. 273–308. (In Spanish) [Google Scholar]
- Fischer, G.; Tubiello, F.N.; Van Velthuizen, H.; Wiberg, D.A. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Chang. 2007, 74, 1083–1107. [Google Scholar] [CrossRef]
- Schmitz, C.; Lotze-Campen, H.; Gerten, D.; Dietrich, J.P.; Bodirsky, B.; Biewald, A.; Popp, A. Blue water scarcity and the economic impacts of future agricultural trade and demand. Water Resour. Res. 2013, 49, 3601–3617. [Google Scholar] [CrossRef]
- Wada, Y.; Flörke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; van Vliet, M.T.H.; Yillia, P.; Ringler, C.; et al. Modeling global water use for the 21st century: Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model. Dev. 2016, 9, 175–222. [Google Scholar] [CrossRef]
- Tramberend, S.; Wiberg, D.; Wada, Y.; Flörke, M.; Fischer, G.; Satoh, Y.; Yillia, P.; van Vliet, M.; Hizsnyik, E.; Nava, L.F.; Blokker, M.; Hanasaki, N. Building Global Water Use Scenarios. Interim Report IR-15-014; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2015. [Google Scholar]
- Hanasaki, N.; Fujimori, S.; Yamamoto, T.; Yoshikawa, S.; Masaki, Y.; Hijioka, Y.; Kainuma, M.; Kanamori, Y.; Masui, T.; Takahashi, K.; et al. A global water scarcity assessment under Shared Socio-economic Pathways–Part 1: Water use. Hydrol. Earth Syst. Sci. 2013, 17, 2375–2391. [Google Scholar] [CrossRef]
- Bijl, D.L.; Biemans, H.; Bogaart, P.W.; Dekker, S.C.; Doelman, J.C.; Stehfest, E.; van Vuuren, D.P. A global analysis of future water deficit based on different allocation mechanisms. Water Resour. Res. 2018, 54, 5803–5824. [Google Scholar] [CrossRef]
- Doelman, J.C.; Stehfest, E.; Tabeau, A.; van Meijl, H.; Lassaletta, L.; Gernaat, D.E.; Hermans, K.; Harmsen, M.; Daioglou, V.; et al. Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Glob. Environ. Chang. 2018, 48, 119–135. [Google Scholar] [CrossRef] [Green Version]
- Calatrava, J.; García-Valiñas, M.; Garrido, A.; González-Gómez, F. Water pricing in Spain: Following the footsteps of somber climate change projections. In Water Pricing Experiences and Innovations; Springer: Cham, Germany, 2015; pp. 313–340. [Google Scholar]
- Rodríguez-Díaz, J.A.; Camacho-Poyato, E.; Blanco-Pérez, M. Evaluation of water and energy use in pressurized irrigation networks in Southern Spain. J. Irrig. Drain. Eng. 2011, 137, 644–650. [Google Scholar] [CrossRef]
- Berbel, J.; Schellekens, J.; Expósito, A.; Borrego, M.; & Montilla-Lopez, N. Review of Alternative Water Allocation Options. Deliverable to Task A4B of the BLUE2 Project. Study on EU Integrated Policy Assessment for the Freshwater and Marine Environment, on the Economic Benefits of EU Water Policy and on the Costs of Its Non-Implementation. Report to Directorate General for the Environment of the European Commission; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Esteve, P.; Varela-Ortega, C.; Blanco-Gutiérrez, I.; Downing, T.E. A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecol. Econ. 2015, 120, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Expósito, A.; Berbel, J. Why is water pricing ineffective for deficit irrigation schemes? A case study in southern Spain. Water Resour. Manag. 2017, 31, 1047–1059. [Google Scholar] [CrossRef]
- Gutierrez-Martin, C.; Gomez, C.G. Assessing irrigation efficiency improvements by using a preference revelation model. Span. J. Agric. Res. 2011, 9, 1009–1020. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Blanco, C.D.; Delacámara, G.; Gómez, C.M. Water charging and water saving in agriculture. Insights from a Revealed Preference Model in a Mediterranean basin. Environ. Model. Softw. 2015, 69, 90–100. [Google Scholar] [CrossRef]
- Fernández García, I.; Montesinos, P.; Poyato, E.C.; Díaz, J.R. Energy cost optimization in pressurized irrigation networks. Irrig. Sci. 2016, 34, 1–13. [Google Scholar] [CrossRef]
- Rocamora, C.; Vera, J.; Abadía, R. Strategy for efficient energy management to solve energy problems in modernized irrigation: Analysis of the Spanish case. Irrig. Sci. 2013, 31, 1139–1158. [Google Scholar] [CrossRef]
- Tarjuelo, J.M.; Rodriguez-Diaz, J.A.; Abadía, R.; Camacho, E.; Rocamora, C.; Moreno, M.A. Efficient water and energy use in irrigation modernization: Lessons from Spanish case studies. Agric. Water Manag. 2015, 162, 67–77. [Google Scholar] [CrossRef]
- Carrillo-Cobo, M.T.; Camacho-Poyato, E.; Montesinos, P.; Díaz, J.A.R. Assessing the potential of solar energy in pressurized irrigation networks. The case of Bembézar MI irrigation district (Spain). Span. J. Agric. Res. 2014, 12, 838–849. [Google Scholar] [CrossRef]
- Perry, C.; Steduto, P.; Allen, R.G.; Burt, C.M. Increasing productivity in irrigated agriculture: Agronomic constraints and hydrological realities. Agric. Water Manag. 2009, 96, 1517–1524. [Google Scholar] [CrossRef] [Green Version]
- Gómez Gómez, C.M.; Pérez-Blanco, C.D.; Adamson, D.; Loch, A. Managing water scarcity at a river basin scale with economic instruments. Water Econ. Policy 2018, 4, 1750004. [Google Scholar] [CrossRef]
- Fader, M.; Shi, S.; Bloh, W.V.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973. [Google Scholar] [CrossRef]
- Perry, C.; Steduto, P.; Karajeh, F. Does Improved Irrigation Technology Save Water? Food and Agriculture Organization: Rome, Italy, 2017. [Google Scholar]
- Berbel, J.; Gutiérrez-Martín, C.; Rodríguez-Díaz, J.A.; Camacho, E.; Montesinos, P. Literature review on rebound effect of water saving measures and analysis of a Spanish case study. Water Resour. Manag. 2015, 29, 663–678. [Google Scholar] [CrossRef]
- Alarcón, J.; Garrido, A.; Juana, L. Modernization of irrigation systems in Spain: Review and analysis for decision making. Int. J. Water Resour. Dev. 2016, 32, 442–458. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Williams, J.; Perry, C.J.; Molle, F.; Ringler, C.; Steduto, P.; Udall, B.; Wheeler, S.A.; Wang, Y.; Garrick, D.; et al. The paradox of irrigation efficiency. Science 2018, 361, 748–750. [Google Scholar] [CrossRef] [Green Version]
- Blanco, M.; Viladrich-Grau, M. La creación de un centro de intercambio de derechos de agua en la Cuenca del Segre y la contribución de los flujos de retorno. Inf. Tec. Econ. Agrar. 2014, 4, 374–399. [Google Scholar] [CrossRef]
- Foster, S.S.D.; Perry, C.J. Improving groundwater resource accounting in irrigated areas: A prerequisite for promoting sustainable use. Hydrogeol. J. 2010, 18, 291–294. [Google Scholar] [CrossRef]
- Jiménez-Martínez, J.; Candela, L.; Molinero, J.; Tamoh, K. Groundwater recharge in irrigated semi-arid areas: Quantitative hydrological modelling and sensitivity analysis. Hydrogeol. J. 2010, 18, 1811–1824. [Google Scholar] [CrossRef]
Driver | Reference Scenario (X0) | Worst-Case Scenario (X1) | Best-Case Scenario (X2) |
---|---|---|---|
Water availability for agriculture | Average reduction of 10% in 2050 on CEDEX (2017) | Reduction of 20% in 2050 | Reduction of 2% in 2050 |
Irrigation efficiency | Increase of 0.05% y−1 up to 2050 according to OECD (2013) | No change in irrigation efficiency | Increase of 0.10% y−1 up to 2050 |
Irrigation cost | Increase of EUR 0.01 per m3 in 2050. | Increase of EUR 0.02 per m3 in 2050. | No change in water cost in 2050 |
Simulated Scenarios | ||||
---|---|---|---|---|
Reference (X0) | Worst-Case (X1) | Best-Case (X2) | ||
Utilized agricultural area | Rain−fed land | 4054.9 | 2.3 | −3.1 |
Irrigated land | 849.0 | −10.4 | 14.1 | |
Irrigation water use | 2938.8 | −5.5 | 8.3 | |
Income | 7297.93 | −1.1 | 1.2 | |
Cereals | Rain−fed land | 467.0 | 1.4 | −10.1 |
Irrigated land | 13.0 | −48.9 | 340.2 | |
Irrigation water use | 49.3 | −28.4 | 268.5 | |
Income | 286.53 | −0.9 | 4.7 | |
Oilseeds | Rain−fed land | 225.3 | 1.4 | −1.2 |
Irrigated land | 26.6 | −9.8 | 8.9 | |
Irrigation water use | 117.57 | −6.7 | 5.1 | |
Income | 177.55 | −1.9 | 1.8 | |
Vegetables | Rain−fed land | − | − | − |
Irrigated land | 59.39 | −0.1 | 0.1 | |
Irrigation water use | 371.44 | 4.1 | −4.0 | |
Income | 1707.60 | −0.1 | 0.1 | |
Citrus Fruits | Rain−fed land | 30.2 | 9.9 | −9.2 |
Irrigated land | 74.6 | −4.3 | 4.0 | |
Irrigation water use | 535.91 | −0.6 | 0.0 | |
Income | 412.46 | −3.3 | 3.1 | |
Other fruits | Rain−fed land | 69.93 | 0.0 | 0.0 |
Irrigated land | 14.32 | −1.0 | 0.8 | |
Irrigation water use | 89.22 | 3.2 | −3.2 | |
Income | 744.24 | −0.3 | 0.3 | |
Olives for oil | Rain−fed land | 1496.1 | 5.1 | −4.7 |
Irrigated land | 613.6 | −12.0 | 11.1 | |
Irrigation water use | 1605.98 | −9.2 | 7.3 | |
Income | 1646.03 | −3.2 | 2.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, P.; Blanco, M. Sensitivity of Agricultural Development to Water-Related Drivers: The Case of Andalusia (Spain). Water 2019, 11, 1854. https://doi.org/10.3390/w11091854
Martinez P, Blanco M. Sensitivity of Agricultural Development to Water-Related Drivers: The Case of Andalusia (Spain). Water. 2019; 11(9):1854. https://doi.org/10.3390/w11091854
Chicago/Turabian StyleMartinez, Pilar, and Maria Blanco. 2019. "Sensitivity of Agricultural Development to Water-Related Drivers: The Case of Andalusia (Spain)" Water 11, no. 9: 1854. https://doi.org/10.3390/w11091854
APA StyleMartinez, P., & Blanco, M. (2019). Sensitivity of Agricultural Development to Water-Related Drivers: The Case of Andalusia (Spain). Water, 11(9), 1854. https://doi.org/10.3390/w11091854