Mining Rock Wastes for Water Treatment: Potential Reuse of Fe- and Mn-Rich Materials for Arsenic Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Rock Waste Characterization
2.1.1. X-Ray Diffraction (XRD)
2.1.2. X-Ray Fluorescence (XRF)
2.1.3. Spectral Characterization
2.3. Batch Tests for Arsenic Removal
2.4. Statistical Analysis
3. Results
3.1. Mineralogical and Chemical Composition of Rock Wastes
3.2. Arsenic Removal Capacity
3.3. Influence of Spectral, Chemical, and Mineralogical Parameters on As Adsorption
3.4. Predicting Arsenic Removal by Wastes Characteristics of Fe- and Mn-Rich Ores
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bian, Z.; Miao, X.; Lei, S.; Chen, S.; Wang, W.; Struthers, S. The Challenges of Reusing Mining and Mineral-Processing Wastes. Science 2012, 337, 702–703. [Google Scholar] [CrossRef]
- Lottermoser, B.G. Recycling, reuse and rehabilitation of mine wastes. Elements 2011, 7, 405–410. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A.; Jamieson, H.E.; Lottermoser, B.G. Mine wastes: Past, present, future. Elements 2011, 7, 375–380. [Google Scholar] [CrossRef]
- Ndlovu, S.; Simate, G.S.; Matinde, E.; Simate, G.S.; Matinde, E. Waste Production and Utilization in the Metal Extraction Industry; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Abington, Thames, UK, 2017; ISBN 9781315153896. [Google Scholar]
- Symonds Group Report to DG Environment, European Commission: A Study on the Costs of Improving the Management of Mining Waste; Symonds Group Ltd: East Grinstead, UK, 2001.
- Matinde, E.; Simate, G.S.; Ndlovu, S. Mining and metallurgical wastes: A review of recycling and re-use practices. J. South. Afr. Inst. Min. Metall. 2018, 118, 825–844. [Google Scholar] [CrossRef]
- Yellishetty, M.; Karpe, V.; Reddy, E.H.; Subhash, K.N.; Ranjith, P.G. Reuse of iron ore mineral wastes in civil engineering constructions: A case study. Resour. Conserv. Recycl. 2008, 52, 1283–1289. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U. Arsenic removal from water/wastewater using adsorbents-A critical review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef] [PubMed]
- Mondal, P.; Bhowmick, S.; Chatterjee, D.; Figoli, A.; Van der Bruggen, B. Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions. Chemosphere 2013, 92, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Giles, D.E.; Mohapatra, M.; Issa, T.B.; Anand, S.; Singh, P. Iron and aluminium based adsorption strategies for removing arsenic from water. J. Environ. Manag. 2011, 92, 3011–3022. [Google Scholar] [CrossRef] [PubMed]
- Cundy, A.B.; Hopkinson, L.; Whitby, R.L.D. Use of iron-based technologies in contaminated land and groundwater remediation: A review. Sci. Total Environ. 2008, 400, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Ladeira, A.C.; Ciminelli, V.S. Adsorption and desorption of arsenic on an oxisol and its constituents. Water Res. 2004, 38, 2087–2094. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.; Johnston, C.T. Mechanisms of Arsenic Adsorption on Amorphous Oxides Evaluated Using Macroscopic Measurements, Vibrational Spectroscopy, and Surface Complexation Modeling. J. Colloid Interface Sci. 2001, 234, 204–216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Liu, F.; Liu, H.; Qu, J.; Liu, R. Respective Role of Fe and Mn Oxide Contents for Arsenic Sorption in Iron and Manganese Binary Oxide: An X-ray Absorption Spectroscopy Investigation. Environ. Sci. Technol. 2014, 48, 10316–10322. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.; Hering, J. Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol. 2003, 37, 4182–4189. [Google Scholar] [CrossRef] [PubMed]
- Ladeira, A.C.Q.; Ciminelli, V.S.T.; Duarte, H.A.; Alves, M.C.M.; Ramos, A.Y. Mechanism of anion retention from EXAFS and density functional calculations: arsenic (V) adsorbed on gibbsite. Geochim. Cosmochim. Acta 2001, 65, 1211–1217. [Google Scholar] [CrossRef]
- Ouvrard, S.; Simonnot, M.O.; Sardin, M. Reactive Behavior of Natural Manganese Oxides toward the Adsorption of Phosphate and Arsenate. Ind. Eng. Chem. Res. 2002, 41, 2785–2791. [Google Scholar] [CrossRef]
- Jeong, Y.; Fan, M.; Singh, S.; Chuang, C.L.; Saha, B.; Hans van Leeuwen, J. Evaluation of iron oxide and aluminum oxide as potential arsenic(V) adsorbents. Chem. Eng. Process. Process Intensif. 2007, 46, 1030–1039. [Google Scholar] [CrossRef]
- Giménez, J.; Martínez, M.; de Pablo, J.; Rovira, M.; Duro, L. Arsenic sorption onto natural hematite, magnetite, and goethite. J. Hazard. Mater. 2007, 141, 575–580. [Google Scholar] [CrossRef]
- Aredes, S.; Klein, B.; Pawlik, M. The removal of arsenic from water using natural iron oxide minerals. J. Clean. Prod. 2013, 60, 71–76. [Google Scholar] [CrossRef]
- Mamindy-Pajany, Y.; Hurel, C.; Marmier, N.; Roméo, M. Arsenic adsorption onto hematite and goethite. C. R. Chim. 2009, 12, 876–881. [Google Scholar] [CrossRef]
- Mamindy-Pajany, Y.; Hurel, C.; Marmier, N.; Roméo, M. Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility. Desalination 2011, 281, 93–99. [Google Scholar] [CrossRef]
- Singh, T.S.; Pant, K. Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Sep. Purif. Technol. 2004, 36, 139–147. [Google Scholar] [CrossRef]
- Lin, T.-F.; Wu, J.-K. Adsorption of Arsenite and Arsenate within Activated Alumina Grains: Equilibrium and Kinetics. Water Res. 2001, 35, 2049–2057. [Google Scholar] [CrossRef]
- Saada, A.; Breeze, D.; Crouzet, C.; Cornu, S.; Baranger, P. Adsorption of arsenic (V) on kaolinite and on kaolinite—Humic acid complexes. Chemosphere 2003, 51, 757–763. [Google Scholar] [CrossRef]
- Mohapatra, D.; Mishra, D.; Chaudhury, G.R.; Das, R.P. Arsenic(V) adsorption mechanism using kaolinite, montmorillonite and illite from aqueous medium. J. Environ. Sci. Health Part A 2007, 42, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Simsek, E.B.; Özdemir, E.; Beker, U. Zeolite supported mono- and bimetallic oxides: Promising adsorbents for removal of As(V) in aqueous solutions. Chem. Eng. J. 2013, 220, 402–411. [Google Scholar] [CrossRef]
- Shevade, S.; Ford, R.G. Zeolite Performance as an Anion Exchanger for Arsenic Sequestration in Water. In Advances in Arsenic Research; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2005; Volume 915, pp. 306–320. [Google Scholar]
- Chutia, P.; Kato, S.; Kojima, T.; Satokawa, S. Arsenic adsorption from aqueous solution on synthetic zeolites. J. Hazard. Mater. 2009, 162, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Jeon, C.S.; Baek, K.; Park, J.-K.; Oh, Y.-K.; Lee, S.-D. Adsorption characteristics of As(V) on iron-coated zeolite. J. Hazard. Mater. 2009, 163, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.V.; Nguyen, T.V.T.; Pham, T.L.; Vigneswaran, S.; Ngo, H.H.; Kandasamy, J.; Nguyen, H.K.; Nguyen, D.T. Adsorption and removal of arsenic from water by iron ore mining waste. Water Sci. Technol. 2009, 60, 2301–2308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Singh, P.; Paling, E.; Delides, S. Arsenic removal from contaminated water by natural iron ores. Miner. Eng. 2004, 17, 517–524. [Google Scholar] [CrossRef]
- Chakravarty, S.; Dureja, V.; Bhattacharyya, G.; Maity, S.; Bhattacharjee, S. Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Res. 2002, 36, 625–632. [Google Scholar] [CrossRef]
- Jamieson, H.E. Geochemistry and mineralogy of solid mine waste: Essential knowledge for predicting environmental impact. Elements 2011, 7, 381–386. [Google Scholar] [CrossRef]
- Lucas-Tooth, H.J.; Price, B.J. A Mathematical Method for the Investigation of Interelement Effects in X-Ray Fluorescence Analysis. Metallurgia 1961, 64, 149–152. [Google Scholar]
- Hammer, Ø.; HARPER, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Amalfitano, S.; Del Bon, A.; Zoppini, A.; Ghergo, S.; Fazi, S.; Parrone, D.; Casella, P.; Stano, F.; Preziosi, E. Groundwater geochemistry and microbial community structure in the aquifer transition from volcanic to alluvial areas. Water Res. 2014, 65, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Klovan, J.E.; Imbrie, J. An algorithm andFortran-iv program for large-scaleQ-mode factor analysis and calculation of factor scores. J. Int. Assoc. Math. Geol. 1971, 3, 61–77. [Google Scholar] [CrossRef]
- Hering, J.G. An end to waste? Science 2012, 337, 623. [Google Scholar] [CrossRef]
- Pappu, A.; Saxena, M.; Asolekar, S.R. Solid wastes generation in India and their recycling potential in building materials. Build. Environ. 2007, 42, 2311–2320. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Geochemical Atlas of Europe. Available online: http://www.gtk.fi/publ/foregsatlas/ (accessed on 29 August 2019).
- Clark, R.N. Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy. In Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences; Sons, J.W., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1999; pp. 3–58. [Google Scholar]
- Shi, C.; Ding, X.; Liu, Y.; Zhou, X. Reflectance Spectral Features and Significant Minerals in Kaishantun Ophiolite Suite, Jilin Province, NE China. Minerals 2018, 8, 100. [Google Scholar] [CrossRef]
- Pallottino, F.; Stazi, S.R.; D’Annibale, A.; Marabottini, R.; Allevato, E.; Antonucci, F.; Costa, C.; Moscatelli, M.C.; Menesatti, P. Rapid assessment of As and other elements in naturally-contaminated calcareous soil through hyperspectral VIS-NIR analysis. Talanta 2018, 190, 167–173. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, H.; Qu, J.; Jefferson, W. Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe–Mn binary oxides: Influence of Mn/Fe ratio, pH, Ca2+, and humic acid. J. Colloid Interface Sci. 2012, 366, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Oscarson, D.W.; Huang, P.M.; Liaw, W.K.; Hammer, U.T. Kinetics of Oxidation of Arsenite by Various Manganese Dioxides1. Soil Sci. Soc. Am. J. 1983, 47, 644. [Google Scholar] [CrossRef]
- Tufano, K.J.; Fendorf, S. Confounding Impacts of Iron Reduction on Arsenic Retention. Environ. Sci. Technol. 2008, 42, 4777–4783. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, H.D.; Postma, D.; Jakobsen, R. Release of arsenic associated with the reduction and transformation of iron oxides. Geochim. Cosmochim. Acta 2006, 70, 4116–4129. [Google Scholar] [CrossRef]
- Pigna, M.; Krishnamurti, G.S.R.; Violante, A. Kinetics of Arsenate Sorption–Desorption from Metal Oxides. Soil Sci. Soc. Am. J. 2006, 70, 2017. [Google Scholar] [CrossRef]
- Post, J.E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA 1999, 96, 3447–3454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, R.J. Charge Reversal of Kaolinite by Hydrolyzable Metal Ions: An Electroacoustic Study. Clays Clay Miner. 1992, 40, 644–649. [Google Scholar] [CrossRef]
- Mary Ugwu, I.; Anthony Igbokwe, O. Sorption of Heavy Metals on Clay Minerals and Oxides: A Review. In Advanced Sorption Process Applications; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar] [Green Version]
- Ding, M.; de Jong, B.H.W.S.; Roosendaal, S.J.; Vredenberg, A. XPS studies on the electronic structure of bonding between solid and solutes: Adsorption of arsenate, chromate, phosphate, Pb2+, and Zn2+ ions on amorphous black ferric oxyhydroxide. Geochim. Cosmochim. Acta 2000, 64, 1209–1219. [Google Scholar] [CrossRef]
- Sun, X.; Doner, H.E. Adsorption and oxidation of arsenic on goethite. Soil Sci. 1998, 163, 278–287. [Google Scholar] [CrossRef]
- Mohapatra, M.; Sahoo, S.K.; Anand, S.; Das, R.P. Removal of As(V) by Cu(II)-, Ni(II)-, or Co(II)-doped goethite samples. J. Colloid Interface Sci. 2006, 298, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Hu, S.; Wang, Z.; Ding, Y.; Lu, G.; Lin, Z.; Dang, Z.; Shi, Z. Ferrihydrite transformation under the impact of humic acid and Pb: Kinetics, nanoscale mechanisms, and implications for C and Pb dynamics. Environ. Sci. Nano 2019, 6, 747–762. [Google Scholar] [CrossRef]
- Srinivasan, R. Advances in Application of Natural Clay and Its Composites in Removal of Biological, Organic, and Inorganic Contaminants from Drinking Water. Adv. Mater. Sci. Eng. 2011, 2011, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Gupta, S. Sen Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci. 2008, 140, 114–131. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, R.; Manjaiah, K.M.; Datta, S.C.; Yadav, R.K.; Sarkar, B. Inorganically modified clay minerals: Preparation, characterization, and arsenic adsorption in contaminated water and soil. Appl. Clay Sci. 2017, 147, 1–10. [Google Scholar] [CrossRef]
- Lenoble, V.; Bouras, O.; Deluchat, V.; Serpaud, B.; Bollinger, J.-C. Arsenic Adsorption onto Pillared Clays and Iron Oxides. J. Colloid Interface Sci. 2002, 255, 52–58. [Google Scholar] [CrossRef]
- Na, P.; Jia, X.; Yuan, B.; Li, Y.; Na, J.; Chen, Y.; Wang, L. Arsenic adsorption on Ti-pillared montmorillonite. J. Chem. Technol. Biotechnol. 2010, 85, 708–714. [Google Scholar] [CrossRef]
- Doušová, B.; Fuitová, L.; Grygar, T.; Machovič, V.; Koloušek, D.; Herzogová, L.; Lhotka, M. Modified aluminosilicates as low-cost sorbents of As(III) from anoxic groundwater. J. Hazard. Mater. 2009, 165, 134–140. [Google Scholar] [CrossRef]
- Raichur, A.M.; Panvekar, V. Removal of As(V) by adsorption onto mixed rare earth oxides. Sep. Sci. Technol. 2002, 37, 1095–1108. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, M.; Dou, X.; He, H.; Wang, D.-S. Arsenate Adsorption on an Fe−Ce Bimetal Oxide Adsorbent: Role of Surface Properties. Environ. Sci. Technol. 2005, 39, 7246–7253. [Google Scholar] [CrossRef]
- Dong, S.; Wang, Y. Characterization and adsorption properties of a lanthanum-loaded magnetic cationic hydrogel composite for fluoride removal. Water Res. 2016, 88, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Jais, F.M.; Ibrahim, S.; Yoon, Y.; Jang, M. Enhanced arsenate removal by lanthanum and nano—magnetite composite incorporated palm shell waste—based activated carbon. Sep. Purif. Technol. 2016, 169, 93–102. [Google Scholar] [CrossRef]
- Emsbo, P.; McLaughlin, P.I.; Breit, G.N.; du Bray, E.A.; Koenig, A.E. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis? Gondwana Res. 2015, 27, 776–785. [Google Scholar] [CrossRef] [Green Version]
- Innocenzi, V.; De Michelis, I.; Kopacek, B.; Vegliò, F. Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes. Waste Manag. 2014, 34, 1237–1250. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Ghosh, U.C. Arsenic removal using hydrous nanostructure iron(III)-titanium(IV) binary mixed oxide from aqueous solution. J. Hazard. Mater. 2009, 161, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Brunsting, J.H.; McBean, E.A. Phosphate interference during in situ treatment for arsenic in groundwater. J. Environ. Sci. Health Part A 2014, 49, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Violante, A.; Pigna, M. Competitive Sorption of Arsenate and Phosphate on Different Clay Minerals and Soils. Soil Sci. Soc. Am. J. 2002, 66, 1788. [Google Scholar] [CrossRef]
- O’Reilly, S.E.; Strawn, D.G.; Sparks, D.L. Residence Time Effects on Arsenate Adsorption/Desorption Mechanisms on Goethite. Soil Sci. Soc. Am. J. 2001, 65, 67. [Google Scholar] [CrossRef]
- Lalley, J.; Han, C.; Li, X.; Dionysiou, D.D.; Nadagouda, M.N. Phosphate adsorption using modified iron oxide-based sorbents in lake water: Kinetics, equilibrium, and column tests. Chem. Eng. J. 2016, 284, 1386–1396. [Google Scholar] [CrossRef]
- De-Bashan, L.E.; Bashan, Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res. 2004, 38, 4222–4246. [Google Scholar] [CrossRef]
Mineral Properties | Red Band Reflectance | Crystallinity Index | Hematite (α-Fe2O3) | Goethite (α-FeOOH) | Kaolinite (Al2Si2O5(OH)4) | Pyrolusite (MnO2) | Quartz (SiO2) |
---|---|---|---|---|---|---|---|
Mean | 0.14 | 3015 | 37.4 | 11.2 | 10.7 | 4.5 | 19.0 |
Median | 0.13 | 2000 | 41.4 | 8.0 | 0.0 | 0.0 | 10.7 |
Std Dev. | 0.07 | 3219 | 20.1 | 9.7 | 15.3 | 10.4 | 23.2 |
Min | 0.07 | 800 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Max | 0.38 | 13000 | 81.5 | 34.1 | 53.4 | 57.6 | 87.8 |
Major Elements (%) | Al | Fe | Mn | Ca | K | Mg | Si | Ti |
---|---|---|---|---|---|---|---|---|
Mean | 6.0 | 51.3 | 14.3 | 0.10 | 1.1 | 0.15 | 9.7 | 0.42 |
Median | 5.3 | 54.8 | 5.1 | 0.10 | 0.7 | 0.07 | 6.4 | 0.34 |
Std Dev. | 3.5 | 22.2 | 18.1 | 0.05 | 1.2 | 0.28 | 9.6 | 0.29 |
Min | 0.5 | 8.9 | 0.4 | 0.02 | 0.1 | 0.01 | 0.8 | 0.04 |
Max | 17.2 | 87.4 | 75.8 | 0.24 | 5.5 | 1.39 | 40.5 | 1.33 |
Minor Elements (mg/kg) | As | Ce | Cr | Cu | La | Mo | Ni | P | Pb | Rb | S | Y | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 36.2 | 49.6 | 290.5 | 28.5 | 46.6 | 65.8 | 221.2 | 350.1 | 272.7 | 42.8 | 140.9 | 44.3 | 162.8 |
Median | 32.7 | 38.0 | 241.9 | 24.6 | 34.1 | 33.1 | 171.0 | 350.7 | 231.0 | 41.8 | 109.8 | 32.8 | 150.4 |
Std Dev. | 34.7 | 41.5 | 191.3 | 14.9 | 51.9 | 65.1 | 293.2 | 114.5 | 260.1 | 14.2 | 101.5 | 38.6 | 90.9 |
Min | 2.8 | 1.5 | 52.6 | 8.1 | 1.5 | 0.2 | 0.8 | 93.3 | 0.3 | 18.4 | 26.6 | 1.1 | 29.4 |
Max | 139.8 | 175.9 | 846.2 | 82.4 | 284.2 | 263.0 | 1914 | 678.8 | 1360 | 112.6 | 473.5 | 192.7 | 432.6 |
Mineral Phases | Contrib | Mean Values | ||
---|---|---|---|---|
% of Total Weight | % | (-) | (+) | (++) |
Kaolinite | 10.1 | 2.9 | 16.6 | 18.2 |
Goethite | 8.4 | 8.8 | 14.2 | 9.7 |
Quartz | 7.3 | 28.3 | 11.3 | 11.7 |
Muscovite | 6.3 | 5.9 | 2.1 | 0.0 |
Hematite | 5.9 | 32.8 | 41.6 | 39.6 |
Zanazziite | 5.5 | 1.1 | 0.5 | 0.0 |
Staurolite | 4.7 | 4.3 | 1.6 | 0.0 |
Clinochlore | 4.7 | 2.9 | 1.1 | 0.0 |
Gjerdingenite-Fe | 4.4 | 1.6 | 0.8 | 0.0 |
Gibbsite | 3.7 | 0.8 | 4.1 | 7.9 |
Birnessite | 3.6 | 1.4 | 0.9 | 1.3 |
Krettnichite | 3.5 | 0.0 | 0.2 | 1.6 |
Ellenbergerite | 3.2 | 0.0 | 0.0 | 3.4 |
Ferrierite-Na | 3.2 | 0.0 | 0.0 | 2.5 |
Hopeite | 3.2 | 0.0 | 0.0 | 1.3 |
Pyrolusite | 3.1 | 6.1 | 3.4 | 2.9 |
Siderite | 2.8 | 0.0 | 0.6 | 0.0 |
Gehlenite | 2.1 | 0.0 | 0.2 | 0.0 |
Inesite | 2.1 | 0.0 | 0.4 | 0.0 |
Kogarkoite | 2.1 | 0.0 | 0.4 | 0.0 |
Berlinite | 2.0 | 0.3 | 0.0 | 0.0 |
Chalcophanite | 2.0 | 0.2 | 0.0 | 0.0 |
Lazurite | 2.0 | 0.8 | 0.0 | 0.0 |
Magnesiochromite | 2.0 | 0.3 | 0.0 | 0.0 |
Pyroxene-ideal | 2.0 | 1.3 | 0.0 | 0.0 |
Major Elements % | Contrib % | (-) | (+) | (++) |
---|---|---|---|---|
cryst-Al | 10.8 | 2.4 | 4.2 | 5.7 |
am-Fe | 10.2 | 17.4 | 17.7 | 18.6 |
am-Al | 9.7 | 2.8 | 2.4 | 1.3 |
Fe | 9.4 | 46.6 | 56.0 | 52.4 |
Mn | 6.8 | 17.8 | 10.3 | 15.2 |
Si | 6.8 | 11.8 | 8.3 | 7.0 |
cryst-Fe | 6.8 | 21.8 | 15.2 | 21.0 |
K | 6.7 | 1.6 | 0.8 | 0.6 |
am-Mn | 6.7 | 13.4 | 7.7 | 12.4 |
Ca | 6.3 | 0.1 | 0.1 | 0.1 |
Ti | 5.9 | 0.4 | 0.4 | 0.4 |
Al | 5.4 | 5.1 | 6.5 | 6.9 |
Mg | 5.0 | 0.2 | 0.1 | 0.1 |
cryst-Mn | 3.6 | 4.7 | 2.8 | 2.7 |
Minor Elements mg/kg | Contrib % | (-) | (+) | (++) |
---|---|---|---|---|
As | 10.7 | 26.1 | 39.5 | 60.6 |
Ce | 10.5 | 38.4 | 52.8 | 78.1 |
Mo | 9.7 | 72.5 | 54.0 | 81.9 |
Cr | 9.2 | 312.0 | 258.0 | 321.0 |
Zn | 8.8 | 155.0 | 159.0 | 205.0 |
S | 8.7 | 130.0 | 151.0 | 143.0 |
Cu | 7.1 | 24.3 | 30.7 | 36.1 |
P | 6.8 | 394.0 | 305.0 | 347.0 |
La | 6.8 | 34.8 | 46.8 | 86.8 |
Y | 6.6 | 54.6 | 41.0 | 19.6 |
Pb | 6.4 | 187.0 | 291.0 | 510.0 |
Ni | 5.2 | 187.0 | 175.0 | 494.0 |
Rb | 3.6 | 43.0 | 42.8 | 41.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casentini, B.; Lazzazzara, M.; Amalfitano, S.; Salvatori, R.; Guglietta, D.; Passeri, D.; Belardi, G.; Trapasso, F. Mining Rock Wastes for Water Treatment: Potential Reuse of Fe- and Mn-Rich Materials for Arsenic Removal. Water 2019, 11, 1897. https://doi.org/10.3390/w11091897
Casentini B, Lazzazzara M, Amalfitano S, Salvatori R, Guglietta D, Passeri D, Belardi G, Trapasso F. Mining Rock Wastes for Water Treatment: Potential Reuse of Fe- and Mn-Rich Materials for Arsenic Removal. Water. 2019; 11(9):1897. https://doi.org/10.3390/w11091897
Chicago/Turabian StyleCasentini, Barbara, Marco Lazzazzara, Stefano Amalfitano, Rosamaria Salvatori, Daniela Guglietta, Daniele Passeri, Girolamo Belardi, and Francesca Trapasso. 2019. "Mining Rock Wastes for Water Treatment: Potential Reuse of Fe- and Mn-Rich Materials for Arsenic Removal" Water 11, no. 9: 1897. https://doi.org/10.3390/w11091897
APA StyleCasentini, B., Lazzazzara, M., Amalfitano, S., Salvatori, R., Guglietta, D., Passeri, D., Belardi, G., & Trapasso, F. (2019). Mining Rock Wastes for Water Treatment: Potential Reuse of Fe- and Mn-Rich Materials for Arsenic Removal. Water, 11(9), 1897. https://doi.org/10.3390/w11091897