Preparation of Activated Biochar-Supported Magnetite Composite for Adsorption of Polychlorinated Phenols from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of AB, Fe3O4, and AB-Fe3O4
2.3. Characterization Methods
2.4. Adsorption Experiments
2.5. Data Analysis
3. Results and Discussion
3.1. Characterizations of Biochar, AB, Fe3O4, and AB-Fe3O4
3.2. Effect of Contact Time on Polychlorophenols Adsorption and Investigation of its Mechanism
3.3. Effect of Solution pH and Initial TeCP Concentration on TeCP Adsorption Performances
3.4. Adsorption Selectivity for TeCP over BPA and SMX
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Demey, H.; Tria, S.A.; Soleri, R.; Guiseppi-Elie, A.; Bazin, I. Sorption of his-tagged Protein G and Protein G onto chitosan/divalent metal ion sorbent used for detection of microcystin-LR. Environ. Sci. Pollut. R. 2017, 24, 15–24. [Google Scholar] [CrossRef]
- Han, S.-W.; Kim, W.; Lee, Y.; Jun, B.-M.; Kwon, Y.-N. Investigation of Hydrate-induced Ice Desalination (HIID) and its application to a pretreatment of reverse osmosis (RO) process. Desalination 2016, 395, 8–16. [Google Scholar] [CrossRef]
- Attar, K.; Bouazza, D.; Miloudi, H.; Tayeb, A.; Boos, A.; Sastre, A.M.; Demey, H. Cadmium removal by a low-cost magadiite-based material: Characterization and sorption applications. J. Environ. Chem. Eng. 2018, 6, 5351–5360. [Google Scholar] [CrossRef]
- Jun, B.-M.; Nguyen, T.P.N.; Kim, Y.-K.; Lee, H.K.; Kwon, Y.-N. Surface modification of TFC FO membrane using N-isopropylacrylamide (NIPAM) to enhance fouling resistance and cleaning efficiency. Desalin. Water Treat. 2017, 65, 11–21. [Google Scholar] [CrossRef]
- Demey, H.; Melkior, T.; Chatroux, A.; Attar, K.; Thiery, S.; Miller, H.; Grateau, M.; Sastre, A.M.; Marchand, M. Evaluation of torrefied poplar-biomass as a low-cost sorbent for lead and terbium removal from aqueous solutions and energy co-generation. Chem. Eng. J. 2019, 361, 839–852. [Google Scholar] [CrossRef]
- Fernández-Castro, P.; San Román, M.F.; Ortiz, I. Theoretical and experimental formation of low chlorinated dibenzo-p-dioxins and dibenzofurans in the Fenton oxidation of chlorophenol solutions. Chemosphere 2016, 161, 136–144. [Google Scholar] [CrossRef]
- Choi, J.-H.; Kim, Y.-H. Reduction of 2,4,6-trichlorophenol with zero-valent zinc and catalyzed zinc. J. Hazard. Mater. 2009, 166, 984–991. [Google Scholar] [CrossRef]
- Schmid, P.; Bogdal, C.; Wang, Z.; Azara, V.; Haag, R.; von Arx, U. Releases of chlorobenzenes, chlorophenols and dioxins during fireworks. Chemosphere 2014, 114, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-L.; Min, J.-Q.; Pan, S.-D.; Jin, M.-C. Surface core–shell magnetic polymer modified graphene oxide-based material for 2,4,6-trichlorophenol removal. RSC Adv. 2014, 4, 63494–63501. [Google Scholar] [CrossRef]
- Xiong, Z.; Xu, Y.; Zhu, L.; Zhao, J. Enhanced photodegradation of 2,4,6-trichlorophenol over palladium phthalocyaninesulfonate modified organobentonite. Langmuir 2005, 21, 10602–10607. [Google Scholar] [CrossRef]
- Liu, Q.-S.; Zheng, T.; Wang, P.; Jiang, J.-P.; Li, N. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 2010, 157, 348–356. [Google Scholar] [CrossRef]
- Kalderis, D.; Kayan, B.; Akay, S.; Kulaksız, E.; Gözmen, B. Adsorption of 2,4-dichlorophenol on paper sludge/wheat husk biochar: Process optimization and comparison with biochars prepared from wood chips, sewage sludge and hog fuel/demolition waste. J. Environ. Chem. Eng. 2017, 5, 2222–2231. [Google Scholar] [CrossRef]
- Wang, C.C.; Lee, C.M.; Lu, C.J.; Chuang, M.S.; Huang, C.Z. Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere 2000, 41, 1873–1879. [Google Scholar] [CrossRef]
- Eker, S.; Kargi, F. Biological treatment of 2,4,6-trichlorophenol (TCP) containing wastewater in a hybrid bioreactor system with effluent recycle. J. Environ. Manag. 2009, 90, 692–698. [Google Scholar] [CrossRef]
- Jun, B.-M.; Kim, S.; Kim, Y.; Her, N.; Heo, J.; Han, J.; Jang, M.; Park, C.M.; Yoon, Y. Comprehensive evaluation on removal of lead by graphene oxide and metal organic framework. Chemosphere 2019, 231, 82–92. [Google Scholar] [CrossRef]
- Han, J.; Jun, B.-M.; Heo, J.; Lee, G.; Yoon, Y.; Park, C.M. Highly efficient organic dye removal from waters by magnetically recoverable La2O2CO3/ZnFe2O4-reduced graphene oxide nanohybrid. Ceram. Int. 2019, 45, 19247–19256. [Google Scholar] [CrossRef]
- Park, C.M.; Kim, Y.M.; Kim, K.-H.; Wang, D.; Su, C.; Yoon, Y. Potential utility of graphene-based nano spinel ferrites as adsorbent and photocatalyst for removing organic/inorganic contaminants from aqueous solutions: A mini review. Chemosphere 2019, 221, 392–402. [Google Scholar] [CrossRef]
- Su, C. Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature. J. Hazard. Mater. 2017, 322, 48–84. [Google Scholar] [CrossRef]
- Maziarz, P.; Matusik, J.; Leiviskä, T.; Strączek, T.; Kapusta, C.; Marek Woch, W.; Tokarz, W.; Górniak, K. Toward highly effective and easily separable halloysite-containing adsorbents: The effect of iron oxide particles impregnation and new insight into As(V) removal mechanisms. Sep. Purif. Technol. 2019, 210, 390–401. [Google Scholar] [CrossRef]
- Maziarz, P.; Matusik, J.; Strączek, T.; Kapusta, C.; Woch, W.M.; Tokarz, W.; Radziszewska, A.; Leiviskä, T. Highly effective magnet-responsive LDH-Fe oxide composite adsorbents for As(V) removal. Chem. Eng. J. 2019, 362, 207–216. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, B.; Zimmerman, A.R.; Chen, H.; Zhang, M.; Cao, X. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour. Technol. 2014, 152, 538–542. [Google Scholar] [CrossRef]
- Devi, P.; Saroha, A.K. Simultaneous adsorption and dechlorination of pentachlorophenol from effluent by Ni–ZVI magnetic biochar composites synthesized from paper mill sludge. Chem. Eng. J. 2015, 271, 195–203. [Google Scholar] [CrossRef]
- Tan, X.-F.; Liu, S.-B.; Liu, Y.-G.; Gu, Y.-L.; Zeng, G.-M.; Hu, X.-J.; Wang, X.; Liu, S.-H.; Jiang, L.-H. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresour. Technol. 2017, 227, 359–372. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, J.; He, T.; Wu, J. Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor. Bioresour. Technol. 2014, 167, 551–554. [Google Scholar] [CrossRef]
- Ma, J.-W.; Wang, H.; Wang, F.-Y.; Huang, Z.-H. Adsorption of 2,4-dichlorophenol from aqueous solution by a new low-cost adsorbent—Activated bamboo charcoal. Sep. Sci. Technol. 2010, 45, 2329–2336. [Google Scholar] [CrossRef]
- Park, C.M.; Heo, J.; Wang, D.; Su, C.; Yoon, Y. Heterogeneous activation of persulfate by reduced graphene oxide–elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine disrupting compounds in water. Appl. Catal. B 2018, 225, 91–99. [Google Scholar] [CrossRef]
- Janoš, P.; Kormunda, M.; Životský, O.; Pilařová, V. Composite Fe3O4/humic acid magnetic sorbent and its sorption ability for chlorophenols and some other aromatic compounds. Sep. Sci. Technol. 2013, 48, 2028–2035. [Google Scholar] [CrossRef]
- Jiang, W.; Cai, Q.; Xu, W.; Yang, M.; Cai, Y.; Dionysiou, D.D.; O’Shea, K.E. Cr(VI) adsorption and reduction by humic acid coated on magnetite. Environ. Sci. Technol. 2014, 48, 8078–8085. [Google Scholar] [CrossRef]
- Qian, L.; Chen, B. Interactions of aluminum with biochars and oxidized biochars: Implications for the biochar aging process. J. Agric. Food Chem. 2014, 62, 373–380. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, H.; Yu, Y.; He, N. Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction. J. Magn. Magn. Mater. 2006, 302, 397–404. [Google Scholar] [CrossRef]
- Liu, H.; Ruan, X.; Zhao, D.; Fan, X.; Feng, T. Enhanced adsorption of 2,4-dichlorophenol by nanoscale zero-valent iron loaded on bentonite and modified with a cationic surfactant. Ind. Eng. Chem. Res. 2017, 56, 191–197. [Google Scholar] [CrossRef]
- Khenifi, A.; Zohra, B.; Kahina, B.; Houari, H.; Zoubir, D. Removal of 2,4-DCP from wastewater by CTAB/bentonite using one-step and two-step methods: A comparative study. Chem. Eng. J. 2009, 146, 345–354. [Google Scholar] [CrossRef]
- Jun, B.-M.; Kim, S.H.; Kwak, S.K.; Kwon, Y.-N. Effect of acidic aqueous solution on chemical and physical properties of polyamide NF membranes. Appl. Surf. Sci. 2018, 444, 387–398. [Google Scholar] [CrossRef]
- Wang, L.; Gan, K.; Lu, D.; Zhang, J. Hydrophilic Fe3O4@C for high-capacity adsorption of 2,4-dichlorophenol. Eur. J. Inorg. Chem. 2016, 2016, 890–896. [Google Scholar] [CrossRef]
- Hadjittofi, L.; Prodromou, M.; Pashalidis, I. Activated biochar derived from cactus fibres—Preparation, characterization and application on Cu(II) removal from aqueous solutions. Bioresour. Technol. 2014, 159, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Dik, P.P.; Klimov, O.V.; Danilova, I.G.; Leonova, K.A.; Pereyma, V.Y.; Budukva, S.V.; Uvarkina, D.D.; Kazakov, M.O.; Noskov, A.S. Hydroprocessing of hydrocracker bottom on Pd containing bifunctional catalysts. Catal. Today 2016, 271, 154–162. [Google Scholar] [CrossRef]
- Pei, Z.; Li, L.; Sun, L.; Zhang, S.; Shan, X.-Q.; Yang, S.; Wen, B. Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon 2013, 51, 156–163. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, J.; Zhang, C.; Ren, L.; Shi, Q. Adsorption of 2,4,6-trichlorophenol from aqueous solution onto activated carbon derived from loosestrife. Desalination 2011, 267, 139–146. [Google Scholar] [CrossRef]
- Liu, J.-F.; Zhao, Z.-S.; Jiang, G.-B. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 2008, 42, 6949–6954. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chang, Q.; Ding, Y.; Han, X.; Tang, H. Catalytic oxidative removal of 2,4-dichlorophenol by simultaneous use of horseradish peroxidase and graphene oxide/Fe3O4 as catalyst. Chem. Eng. J. 2014, 254, 434–442. [Google Scholar] [CrossRef]
- Hasan, Z.; Jhung, S.H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mater. 2015, 283, 329–339. [Google Scholar] [CrossRef]
- Ren, L.; Zhang, J.; Li, Y.; Zhang, C. Preparation and evaluation of cattail fiber-based activated carbon for 2,4-dichlorophenol and 2,4,6-trichlorophenol removal. Chem. Eng. J. 2011, 168, 553–561. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.-M.; Jang, M.; Park, C.M.; Muñoz-Senmache, J.C.; Hernández-Maldonado, A.J.; Heyden, A.; Yu, M.; Yoon, Y. Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: A review. Chem. Eng. J. 2019, 369, 928–946. [Google Scholar] [CrossRef]
- Heo, J.; Yoon, Y.; Lee, G.; Kim, Y.; Han, J.; Park, C.M. Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar composite. Bioresour. Technol. 2019, 281, 179–187. [Google Scholar] [CrossRef]
- Jun, B.-M.; Lee, H.K.; Kwon, Y.-N. Acid-catalyzed hydrolysis of semi-aromatic polyamide NF membrane and its application to water softening and antibiotics enrichment. Chem. Eng. J. 2018, 332, 419–430. [Google Scholar] [CrossRef]
- Alam, Z.; Muyibi, S.A.; Toramae, J. Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches. J. Environ. Sci. 2007, 19, 674–677. [Google Scholar] [CrossRef]
- Sathishkumar, M.; Binupriya, A.R.; Kavitha, D.; Yun, S.E. Kinetic and isothermal studies on liquid-phase adsorption of 2,4-dichlorophenol by palm pith carbon. Bioresour. Technol. 2007, 98, 866–873. [Google Scholar] [CrossRef]
- Radhika, M.; Palanivelu, K. Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent—Kinetics and isotherm analysis. J. Hazard. Mater. 2006, 138, 116–124. [Google Scholar] [CrossRef] [PubMed]
Compound [Full name] | Formula | MW (g/mol) | pKa | Water Solubility (M) | log Kow | Molecular Structure |
---|---|---|---|---|---|---|
2,3,4,6-Tetrachlorophenol | C6H2Cl4O | 231.9 | 5.22 | 9.92 × 10−5 | 4.45 | |
2,4,6-Trichlorophenol | C6H3Cl3O | 197.4 | 6.23 | 2.78 × 10−2 | 3.69 | |
2,4-Dichlorophenol | C6H4Cl2O | 162.9 | 7.89 | 3.01 × 10−2 | 3.06 | |
Bisphenol A [2,2-bis(4-hydroxyphenyl) propane; 4,4′-dihydroxy-2,2-diphenylpropane] | C15H16O2 | 228.3 | 9.6 | 5.26 × 10−4 | 3.32 | |
Sulfamethoxazole [4-amino-N-(5-methyl-1,2-oxazol-3-yl) benzenesulfonamide] | C10H11N3O3S | 253.3 | 1.6, 5.7 | 3.21 × 10−2(37 °C) | 0.89 |
Sample | AB | Fe3O4 | AB-Fe3O4 |
---|---|---|---|
Specific surface area (m2/g) | 2.06 | 9.29 | 2.89 |
Total pore volume (cm3/g) | 6.13 × 10−3 | 5.58 × 10−1 | 1.43 × 10−2 |
Adsorbate/Adsorbent | TeCP/AB | TCP/AB | DCP/AB | TeCP/AB-Fe3O4 | TCP/AB-Fe3O4 | DCP/AB-Fe3O4 |
---|---|---|---|---|---|---|
Pseudo-first-order | ||||||
qe (mg/g) | 1.0743 | 1.0730 | 1.0278 | 1.0668 | 1.0857 | 1.6195 |
k1 (min−1) | 0.0174 | 0.0202 | 0.0221 | 0.0261 | 0.0260 | 0.0188 |
R2 | 0.9417 | 0.9586 | 0.9874 | 0.9968 | 0.9848 | 0.9676 |
Pseudo-second-order | ||||||
qe (mg/g) | 2.4820 | 1.5649 | 1.1216 | 4.5126 | 3.0600 | 2.2242 |
k2 (g mg-min−1) | 0.0346 | 0.0250 | 0.0262 | 0.0535 | 0.0483 | 0.0769 |
R2 | 0.9998 | 0.9929 | 0.9951 | 0.9999 | 0.9988 | 0.9998 |
Adsorbent | Polychlorinated Compounds | Experimental Conditions | qmax (mg/g) | Reference |
---|---|---|---|---|
Cattail fiber-based activated carbon | DCP | 200 mg/L adsorbate using 100 mg/L adsorbent | 142.8 | [42] |
Oil palm empty fruit bunch carbon | DCP | 250 mg/L adsorbate using 5 mg/L adsorbent | 27.3 | [46] |
Palm pith carbon | DCP | 40 mg/L adsorbate using 2000 mg/L adsorbent | 19.2 | [47] |
Coconut shell-based activated carbon | TCP | 100 mg/L adsorbate using 5000 mg/L adsorbent | 122.3 | [48] |
Activated carbon | TCP | 100 mg/L adsorbate using 5000 mg/L adsorbent | 112.4 | [48] |
AB | TeCP | 200 mg/L adsorbate using 1000 mg/L adsorbent | 34.8 | This study |
AB-Fe3O4 | TeCP | 200 mg/L adsorbate using 1000 mg/L adsorbent | 149.8 | This study |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jun, B.-M.; Kim, Y.; Han, J.; Yoon, Y.; Kim, J.; Park, C.M. Preparation of Activated Biochar-Supported Magnetite Composite for Adsorption of Polychlorinated Phenols from Aqueous Solutions. Water 2019, 11, 1899. https://doi.org/10.3390/w11091899
Jun B-M, Kim Y, Han J, Yoon Y, Kim J, Park CM. Preparation of Activated Biochar-Supported Magnetite Composite for Adsorption of Polychlorinated Phenols from Aqueous Solutions. Water. 2019; 11(9):1899. https://doi.org/10.3390/w11091899
Chicago/Turabian StyleJun, Byung-Moon, Yejin Kim, Jonghun Han, Yeomin Yoon, Jeonggwan Kim, and Chang Min Park. 2019. "Preparation of Activated Biochar-Supported Magnetite Composite for Adsorption of Polychlorinated Phenols from Aqueous Solutions" Water 11, no. 9: 1899. https://doi.org/10.3390/w11091899
APA StyleJun, B. -M., Kim, Y., Han, J., Yoon, Y., Kim, J., & Park, C. M. (2019). Preparation of Activated Biochar-Supported Magnetite Composite for Adsorption of Polychlorinated Phenols from Aqueous Solutions. Water, 11(9), 1899. https://doi.org/10.3390/w11091899