Improving Flows in Misaligned Culverts
Abstract
:1. Introduction
2. Methods
2.1. Geometry Setup
2.2. Simulation Setup
2.3. Experimental Setup
3. Results and Discussion
3.1. Simulation Results
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Allen, D.; Arthur, S.; Haynes, H.; Wallis, S.G.; Wallerstein, N. Influences and drivers of woody debris movement in urban watercourses. Sci. China Technol. Sci. 2014, 57, 1512–1521. [Google Scholar] [CrossRef] [Green Version]
- Kang, N.; Kim, S.; Kim, Y.; Noh, H.; Hong, S.; Kim, H. Urban Drainage System Improvement for Climate Change Adaptation. Water 2016, 8, 268. [Google Scholar] [CrossRef]
- French, R.; Jones, M. Design for culvert blockage: The ARR 2016 guidelines. Aust. J. Water Resour. 2018, 22, 84–87. [Google Scholar] [CrossRef]
- Kolerski, T.; Wielgat, P. Velocity field characteristics at the inlet to a pipe culvert. Arch. Hydroeng. Environ. Mech. 2014, 61, 127–140. [Google Scholar] [CrossRef]
- Rowley, K.J.; Hotchkiss, R.H. Sediment Transport Conditions Near Culverts. Master’s Thesis, Brigham Young University, Provo, UT, USA, 2014. [Google Scholar]
- Kim, Y.; Paik, J. Depositional characteristics of debris flows in a rectangular channel with an abrupt change in slope. J. Hydro Environ. Res. 2015, 9, 420–428. [Google Scholar] [CrossRef]
- Schall, J.D.; Thompson, P.L.; Zerges, S.M.; Kilgore, R.T.; Morris, J.L. Hydraulic Design of Highway Culverts, 3rd ed.; Hydraulic Design Series; U.S. Dept. of Transportation, Federal Highway Administration: Washington, DC, USA, 2012; Volume 5.
- UDFCD. Urban Storm Drainage Criteria Manual Volume 2: Structures, Storage and Recreation; Urban Storm Drainage Criteria Manual; Urban Drainage and Flood Control District: Denver, CO, USA, 2016. [Google Scholar]
- Spalart, P. Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 2000, 21, 252–263. [Google Scholar] [CrossRef]
- Frisch, U.; Kolmogorov, A.N. Turbulence: The Legacy of A.N. Kolmogorov/Uriel Frisch; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Richardson, L.F. Weather Prediction by Numerical Process; Hardpress Publishing: Los Angeles, CA, USA, 2012. [Google Scholar]
- ANSYS Fluent. Theory Guide; Ansys Inc.: Canonsburg, PA, USA, 2015. [Google Scholar]
- Shih, T.H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-epsilon eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Von Kármán, T. Mechanische ÄHnlichkeit Und Turbulenz. In Sonderdrucke Aus Den Nachrichten von der Gesellschaft der Wissenschaften zu GöTtingen: Mathematisch-Physische Klasse; Fachgruppe 1, Nr 5 u. Fachgruppe 2, Nr 1; Weidmannsche Buchh: Berlin, Germany, 1930; Volume 1930. [Google Scholar]
- Hager, W.H.; Del Giudice, G. Generalized culvert design diagram. J. Irrig. Drain. Eng. 1998, 124, 271–274. [Google Scholar] [CrossRef]
- Harrison, L.J. Hydraulic Design of Improved Inlets for Culverts; United States Federal Highway Administration Hydraulic Engineering Circular; U.S. Federal Highway Administration: Washington, DC, USA, 1972; Volume 13.
- Jones, J.S.; Kerenyi, K.; Stein, S. Effects of Inlet Geometry on Hydraulic Performance of Box Culverts: Laboratory Report; U.S. Dept. of Transportation, Federal Highway Administration, Turner-Fairbank Highway Research Center: McLean, VA, USA, 2004.
Step | Geometry | Method |
---|---|---|
1 | Outlet, l = 1.5 m | |
2 | Culvert walls, l = 10 m, | |
3 | Headwalls, l = 1.5 m, | |
4 | Sidewall (headwater body), l = 10 m, | |
5 | Inlet, l = 4.5 m, | |
6 | ⊥ | |
7 | ⊥ | |
8 | ||
9 |
Parameter | Configuration |
---|---|
Geometry | Planar 2D |
Inlet boundary condition | Velocity inlet, 1 ms |
Outlet boundary condition | Pressure outlet, 0 |
Turbulence model | Realizable with scalable wall functions |
Solver | Pressure-based SIMPLE scheme |
Time step size |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaeger, R.; Jacobs, C.; Tondera, K.; Tindale, N. Improving Flows in Misaligned Culverts. Water 2019, 11, 1932. https://doi.org/10.3390/w11091932
Jaeger R, Jacobs C, Tondera K, Tindale N. Improving Flows in Misaligned Culverts. Water. 2019; 11(9):1932. https://doi.org/10.3390/w11091932
Chicago/Turabian StyleJaeger, Rick, Carolyn Jacobs, Katharina Tondera, and Neil Tindale. 2019. "Improving Flows in Misaligned Culverts" Water 11, no. 9: 1932. https://doi.org/10.3390/w11091932
APA StyleJaeger, R., Jacobs, C., Tondera, K., & Tindale, N. (2019). Improving Flows in Misaligned Culverts. Water, 11(9), 1932. https://doi.org/10.3390/w11091932