Runoff Harvesting Site Suitability Analysis for Wildlife in Sub-Desert Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Delineation
2.2. Criteria Selection for Suitability Assessment
2.3. Data Collection
2.4. Soil Conservation Service Curve Number (SCS-CN) Method
2.5. Fuzzification of Criteria Maps
2.6. Runoff Harvesting Potential Assessment
3. Results
3.1. Preparation of Precipitation Map
3.2. Preparation of Slope Map
3.3. Preparation of drainage network map
3.4. Soil Map and Soil Hydrological Groups
3.5. Constraining Factors
3.6. Runoff Coefficient and Runoff Potential Map
3.7. Land Suitability for Runoff Harvesting
3.8. Runoff Harvesting
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cahan, J. Water Security in the Middle East: Essays in Scientific and Social Cooperation; Anthem Press: London, UK, 2017; Volume 1, p. 211. [Google Scholar]
- Zereini, F.; Jaeschke, W. Water in the middle east and in north africa. Environ. Geol. 2004, 46, 1134–1135. [Google Scholar]
- Jafari Shalamzari, M.; Zhang, W.C. Assessing water scarcity using the water poverty index (wpi) in golestan province of Iran. Water 2018, 10, 1079. [Google Scholar] [CrossRef]
- Swain, A.; Jägerskog, A. Emerging Security Threats in the Middle East: The Impact of Climate Change and Globalization; Rowman & Littlefield: London, UK, 2016. [Google Scholar]
- Miller, G.T.; Spoolman, S. Sustaining the Earth; Cengage Learning: Stamford, CT, USA, 2014; 384p. [Google Scholar]
- Goudie, A.S. Human Impact on the Natural Environment; Wiley: Chennai, India, 2018. [Google Scholar]
- Adham, A.; Sayl, K.N.; Abed, R.; Abdeladhim, M.A.; Wesseling, J.G.; Riksen, M.l.; Fleskens, L.; Karim, U.; Ritsema, C.J. A gis-based approach for identifying potential sites for harvesting rainwater in the western desert of iraq. Int. Soil Water Conserv. Res. 2018, 6, 297–304. [Google Scholar] [CrossRef]
- Alazard, M.; Leduc, C.; Travi, Y.; Boulet, G.; Ben Salem, A. Estimating evaporation in semi-arid areas facing data scarcity: Example of the el haouareb dam (merguellil catchment, central tunisia). J. Hydrol.: Reg. Stud. 2015, 3, 265–284. [Google Scholar] [CrossRef]
- Saleem, M.; Hussain, A.; Mahmood, G. A systematic approach for design of rainwater harvesting system and groundwater aquifer modeling. Appl. Water Sci. 2018, 8, 137. [Google Scholar] [CrossRef]
- Zheng, H.; Gao, J.; Xie, G.; Jin, Y.; Zhang, B. Identifying important ecological areas for potential rainwater harvesting in the semi-arid area of chifeng, china. PLOS ONE 2018, 13, e0201132. [Google Scholar] [CrossRef] [PubMed]
- Anschütz, J.; Kome, A.; Nederlof, M.; Neef, R.D.; Ven, T.V.D. Water Harvesting and Soil Moisture Retention; Agromisa Foundation: Wageningen, The Netherlands, 2003; 95p. [Google Scholar]
- Jafari Shalamzari, M.; Gholami, A.; Khalighi Sigaroudi, S.; Alizadeh Shabani, A.; Arzani, H. Site selection for rainwater harvesting for wildlife using multi-criteria evaluation (mce) technique and gis in the kavir national park, iran. J. Rangel. Sci. 2018, 8, 77–92. [Google Scholar]
- Aryal, A.; Brunton, D.; Raubenheimer, D. Impact of climate change on human-wildlife-ecosystem interactions in the trans-himalaya region of nepal. Theor. Appl. Climatol. 2014, 115, 517–529. [Google Scholar] [CrossRef]
- Ogutu, J.O.; Reid, R.S.; Piepho, H.P.; Hobbs, N.T.; Rainy, M.E.; Kruska, R.L.; Worden, J.S.; Nyabenge, M. Large herbivore responses to surface water and land use in an east african savanna: Implications for conservation and human-wildlife conflicts. Biodivers. Conserv. 2014, 23, 573–596. [Google Scholar] [CrossRef]
- Albert, D.P.; Gesler, W.M.; Levergood, B. Spatial Analysis, Gis and Remote Sensing: Applications in the Health Sciences; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Wang, X.; Xie, H. A Review on Applications of Remote Sensing and Geographic Information Systems (GIS) in Water Resources and Flood Risk Management. Water 2018, 10, 608. [Google Scholar] [CrossRef]
- Malczewski, J. Gis and Multicriteria Decision Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Singh, L.K.; Jha, M.K.; Chowdary, V.M. Multi-criteria analysis and gis modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply. J. Cleaner Prod. 2017, 142, 1436–1456. [Google Scholar] [CrossRef]
- Wu, R.S.; Molina, G.L.L.; Hussain, F. Optimal sites identification for rainwater harvesting in northeastern guatemala by analytical hierarchy process. Water Resour. Manage. 2018, 32, 4139–4153. [Google Scholar] [CrossRef]
- Bhagwat, T.N.; Hegde, V.S.; Shetty, A.J.S.W.R.M. Application of remote sensing and gis for identification of potential ground water recharge sites in semi-arid regions of hard-rock terrain, in north karnataka, south india. Sustain. Water Resour. Manag. 2018, 1–14. [Google Scholar] [CrossRef]
- Eshghizadeh, M.; Talebi, A.; Dastorani, M.T. A modified lapsus model to enhance the effective rainfall estimation by scs-cn method. Water Resour. Manage. 2018, 1–15. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.P. Soil Conservation Service Curve Number (Scs-cn) Methodology; Springer Science & Business Media: Dordrecht, The Netherlands, 2013; Volume 42, 516p. [Google Scholar]
- Singh, J.P.; Singh, D.; Litoria, P.K. Selection of suitable sites for water harvesting structures in soankhad watershed, punjab using remote sensing and geographical information system (rs&gis) approach—A case study. J. Indian Soc. Remote Sens. 2009, 37, 21–35. [Google Scholar]
- Jafari Shalamzari, M.; Khalighi Sigaroudi, S.; Gholami, A.; Alizadeh Shabani, A. Site selection for small-scale solar ponds to provide wildlife with fresh water using mce and gis. In Proceedings of the First Conference on the Application of Modern Sciences in Iran’s Geographical Research, Mashhad, Iran, 18 November 2015; p. 20. Available online: https://www.civilica.com/Paper-IGIS01-IGIS01_055.html (accessed on 17 September 2019).
- Acharyya, N.; Bandyopadhyay, J. Remote Sensing and Gis for Wildlife Management. In National Level Seminar on Defaunation and Conservation; Tucson Herpetological Society: Tuscon, AZ, USA, 2017; pp. 65–71. [Google Scholar]
- Mahajan, R.; Kumar, S.; KhitoIiya, R.K. Rain Water Harvesting: A Viable Solution To Conserve Water. In Proceedings of the Rainwater Harvesting and Water Management, Nagpur, India, 11–12 November 2006; pp. 123–128. [Google Scholar]
- Mbilinyi, B.P.; Tumbo, S.D.; Mahoo, H.F.; Mkiramwinyi, F.O. Gis-based decision support system for identifying potential sites for rainwater harvesting. Phys. Chem. Earth., Parts A/B/C 2007, 32, 1074–1081. [Google Scholar] [CrossRef]
- Munyao, J.N. Use of Satellite Products to Assess Water Harvesting Potential in Remote Areas of Africa. Master’s Thesis, International Institute of Geoinformation Science and Earth Observation, Enschede, The Netherlands, February 2010. [Google Scholar]
- Weerasinghe, H.; Schneider, U.A.; Löw, A. Water harvest- and storage- location assessment model using gis and remote sensing. Hydrol. Earth Syst. Sci. Discuss. 2011, 8, 3353–3381. [Google Scholar] [CrossRef]
- Kadam, A.K.; Kale, S.S.; Pande, N.N.; Pawar, N.J.; Sankhua, R.N. Identifying potential rainwater harvesting sites of a semi-arid, basaltic region of western india, using scs-cn method. Water Resour. Manage. 2012, 26, 2537–2554. [Google Scholar] [CrossRef]
- Jha, M.K.; Chowdary, V.M.; Kulkarni, Y.; Mal, B.C. Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis. Resour. Conserv. Recycl. 2014, 83, 96–111. [Google Scholar] [CrossRef]
- Krois, J.; Schulte, A. Gis-based multi-criteria evaluation to identify potential sites for soil and water conservation techniques in the ronquillo watershed, northern peru. Appl. Geogr. 2014, 51, 131–142. [Google Scholar] [CrossRef]
- Ochir, A.; Boldbaatar, D.; Zorigt, M.; Tsetsgee, S.; van Genderen, J.L. Site selection for water harvesting ponds using spatial multi-criteria analysis in a region with fluctuating climate. Geocarto Int. 2018, 33, 699–712. [Google Scholar] [CrossRef]
- Tiwari, K.; Goyal, R.; Sarkar, A. Gis-based methodology for identification of suitable locations for rainwater harvesting structures. Water Resour. Manage. 2018, 32, 1811–1825. [Google Scholar] [CrossRef]
- Zhang, F. A Particle-Set Distributed Hydrological Model for the Dynamic Simulation of Surface Runoff. Ph.D. Thesis, Hong Kong Baptist University, Hong Kong, China, 12 December 2017. [Google Scholar]
- Khakbaz, B.; Imam, B.; Hsu, K.; Sorooshian, S. From lumped to distributed via semi-distributed: Calibration strategies for semi-distributed hydrologic models. J. Hydrol. 2012, 418, 61–77. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- McMichael, C.E.; Hope, A.S.; Loaiciga, H.A. Distributed hydrological modelling in california semi-arid shrublands: Mike she model calibration and uncertainty estimation. J. Hydrol. 2006, 317, 307–324. [Google Scholar] [CrossRef]
- Ivanov, V.Y.; Vivoni, E.R.; Bras, R.L.; Entekhabi, D. Preserving high-resolution surface and rainfall data in operational-scale basin hydrology: A fully-distributed physically-based approach. J. Hydrol. 2004, 298, 80–111. [Google Scholar] [CrossRef]
- Croke, B.F.; Andrews, F.; Jakeman, A.J.; Cuddy, S.M.; Luddy, A.J.E.M. Software and Data News: IHACRES Classic Plus: A redesign of the IHACRES rainfall-runoff model. Environ. Modell. Softw. 2006, 21, 426–427. [Google Scholar] [CrossRef]
- Sitterson, J.; Knightes, C.; Parmar, R.; Wolfe, K.; Muche, M.; Avant, B. An Overview of Rainfall-Runoff Model Types; EPA/600/R-17/482; U.S. Environmental Protection Agency: Washington, DC, USA, 2017; pp. 0–29.
- Ibrahim-Bathis, K.; Ahmed, S.A. Rainfall-runoff modelling of doddahalla watershed—An application of hec-hms and scn-cn in ungauged agricultural watershed. Arabian J. Geosci. 2016, 9, 170. [Google Scholar] [CrossRef]
- Ebrahimian, M.; Nuruddin, A.A.B.; Mohd Soom, M.A.B.; Mohd Sood, A.; Neng, L.J. Runoff estimation in steep slope watershed with standard and slope-adjusted curve number methods. Pol. J. Environ. Stud. 2012, 21, 1191–1202. [Google Scholar]
- Ebrahimian, M. Application of nrcs-curve number method for runoff estimation in a mountainous watershed. CJES 2012, 10, 103. [Google Scholar]
- Soulis, K.X.; Valiantzas, J.D.; Dercas, N.; Londra, P.A. Investigation of the direct runoff generation mechanism for the analysis of the scs-cn method applicability to a partial area experimental watershed. Hydrol. Earth Syst. Sci. 2009, 13, 605–615. [Google Scholar] [CrossRef]
- Dixon, B.; Uddameri, V.; Ray, C. Gis and Geocomputation for Water Resource Science and Engineering; John Wiley & Sons: Chennai, India, 2015; 527p. [Google Scholar]
- NRCS. National Engineering Handbook: Part 630—Hydrology; USDA Soil Conservation Service: Washington, DC, USA, 2004.
- Silveira, L.; Charbonnier, F.; Genta, J.L. The antecedent soil moisture condition of the curve number procedure. Hydrol. Sci. J. 2000, 45, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Saranya, C.; Manikandan, G. Technology. A study on normalization techniques for privacy preserving data mining. Int. J. Eng. Technol. 2013, 5, 2701–2704. [Google Scholar]
- Wang, Y.-M.; Elhag, T.M.S. On the normalization of interval and fuzzy weights. Fuzzy Sets Syst. 2006, 157, 2456–2471. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.S.; Wang, M.J. A fuzzy multi-criteria decision-making method for facility site selection. Int. J. Prod. Res. 1991, 29, 2313–2330. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making—The analytic hierarchy and network processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 1–35. [Google Scholar] [CrossRef]
- Görener, A. Comparing AHP and ANP: An application of strategic decisions making in a manufacturing company. IJBSS 2012, 3, 194–208. [Google Scholar]
- Finan, J.S.; Hurley, W.J. The analytic hierarchy process: Does adjusting a pairwise comparison matrix to improve the consistency ratio help? Comput. Oper. Res. 1997, 24, 749–755. [Google Scholar] [CrossRef]
- Quan, C.; Han, S.; Utescher, T.; Zhang, C.; Liu, Y.-S. Validation of temperature–precipitation based aridity index: Paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 386, 86–95. [Google Scholar] [CrossRef]
- Młyński, D.; Wałęga, A.; Petroselli, A.; Tauro, F.; Cebulska, M.J.A. Estimating maximum daily precipitation in the upper vistula basin, poland. Atmosphere 2019, 10, 43. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, Y.; Chen, L.; Wang, Z.; Zhu, H.; Li, B. Inter-Comparison and Evaluation of Remote Sensing Precipitation Products over China from 2005 to 2013. Remote Sens. 2018, 10, 168. [Google Scholar] [CrossRef]
- Mateo-Sagasta, J.; Zadeh, S.M.; Turral, H. More People, More Food, Worse Water?: A Global Review of Water Pollution from Agriculture; FAO Colombo: Rome, Italy; International Water Management Institute (IWMI): Colombo, Sri Lanka; CGIAR Research Program on Water, Land and Ecosystems (WLE): Montpellier, France, 2018. [Google Scholar]
- Fotovatikhah, F.; Herrera, M.; Shamshirband, S.; Chau, K.-w.; Faizollahzadeh Ardabili, S.; Piran, M.J. Survey of computational intelligence as basis to big flood management: Challenges, research directions and future work. Eng. Appl. Comput. Fluid Mech. 2018, 12, 411–437. [Google Scholar] [CrossRef]
- Wang, W.-C.; Chau, K.-W.; Qiu, L.; Chen, Y.-B. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on eemd decomposition. Environ. Res. 2015, 139, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Jasrotia, A.S.; Majhi, A.; Singh, S. Water balance approach for rainwater harvesting using remote sensing and gis techniques, jammu himalaya, india. Water Resour. Manage. 2009, 23, 3035–3055. [Google Scholar] [CrossRef]
- Singh, L.K.; Jha, M.K.; Chowdary, V.M. Assessing the accuracy of gis-based multi-criteria decision analysis approaches for mapping groundwater potential. Ecol. Indic. 2018, 91, 24–37. [Google Scholar] [CrossRef]
- Moazenzadeh, R.; Mohammadi, B.; Shamshirband, S.; Chau, K.-w. Coupling a firefly algorithm with support vector regression to predict evaporation in northern iran. Eng. Appl. Comput. Fluid Mech. 2018, 12, 584–597. [Google Scholar] [CrossRef]
- Ghorbani, M.; Kazempour, R.; Chau, K.-W.; Shamshirband, S.; Taherei Ghazvinei, P. Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: A case study in talesh, northern iran. Eng. Appl. Comput. Fluid Mech. 2018, 12, 724–737. [Google Scholar] [CrossRef]
- Tabari, H.; Aeini, A.; Talaee, P.H.; Some’e, B.S. Spatial distribution and temporal variation of reference evapotranspiration in arid and semi-arid regions of iran. Hydrol. Processes 2012, 26, 500–512. [Google Scholar] [CrossRef]
- Mafakheri, O.; Salighe, M.; Alijani, B.; Akbari, M. Identification and zonation of temporal and homogeneity of precipitation in Iran (In Persian). Iranian J. Res. Nat. Geogr. 2016, 49, 191–205. [Google Scholar]
- Yu, B. Theoretical justification of scs method for runoff estimation. J. Irrig. Drain. Eng. 1998, 124, 306–310. [Google Scholar] [CrossRef]
- Al-Rukaibi, D.; Abdullah, W.; Al-Fares, R.; Hussain, M. Site suitability index (ssi) model to delineate and assess suitability of rainwater runoff basins in jal alzor heights, kuwait. Jordan J. Civ. Eng. 2017, 11, 386–397. [Google Scholar]
- Mahmoud, S.H.; Alazba, A.A. The potential of in situ rainwater harvesting in arid regions: Developing a methodology to identify suitable areas using gis-based decision support system. Arabian J. Geosci. 2015, 8, 5167–5179. [Google Scholar] [CrossRef]
- Mahmoud, S.H. Delineation of potential sites for groundwater recharge using a gis-based decision support system. Environ. Earth Sci. 2014, 72, 3429–3442. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Tang, X. Monitoring prospective sites for rainwater harvesting and stormwater management in the united kingdom using a gis-based decision support system. Environ. Earth Sci. 2015, 73, 8621–8638. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Alazba, A.A.; Adamowski, J.; El-Gindy, A.M. Gis methods for sustainable stormwater harvesting and storage using remote sensing for land cover data-location assessment. Environ. Monit. Assess. 2015, 187, 598. [Google Scholar] [CrossRef]
- Prasad, H.C.; Bhalla, P.; Palria, S. Site suitability analysis of water harvesting structures using remote sensing and gis-a case study of pisangan watershed, ajmer district, rajasthan. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-8 2014, 40, 1471–1482. [Google Scholar] [CrossRef]
- Rosenstock, S.S.; Bleich, V.C.; Rabe, M.J.; Reggiardo, C. Water Quality at Wildlife Water Sources in the Sonoran Desert, United States. Rangeland Ecol. Manage. 2005, 58, 623–627. [Google Scholar] [CrossRef]
- Bedan, E.S.; Clausen, J.C. Stormwater runoff quality and quantity from traditional and low impact development watersheds1. J. Am. Water Resour. Assoc. 2009, 45, 998–1008. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Joshi, U.M.; Balasubramanian, R. A field study to evaluate runoff quality from green roofs. Water Res. 2012, 46, 1337–1345. [Google Scholar] [CrossRef] [PubMed]
- Al-Amoush, H.; Al-Ayyash, S.; Shdeifat, A. Harvested rain water quality of different roofing material types in water harvesting system at al al-bayt university/jordan. Jordan J. Civ. Eng. 2018, 12, 228–244. [Google Scholar]
- Hemami, M.R. A predictive diagnostic model for wild sheep (ovis orientalis) habitat suitability in iran. J. Nat. Conserv. 2013, 21, 319–325. [Google Scholar]
- Mendelssohn, H.; Yom-Tov, Y.; Colin, P.G. Gazella gazella. Mamm. Species 1995, 490, 1–7. [Google Scholar] [CrossRef]
- Robbins, C. Wildlife Feeding and Nutrition; Elsevier Science: London, UK, 2012; 356p. [Google Scholar]
- Embry, L.B.; Hoelscher, M.A.; Wahlstrom, R.C.; Carlson, C.W. Salinity and Livestock Water Quality; Bulletins Number: 481; South Dakota Experiment Station, South Dakota State College of Agriculture and Mechanical Arts: Brookings, SD, USA, 1959; pp. 1–11. [Google Scholar]
Reference | Criteria |
---|---|
Rishab Mahajan and Khitoliya [26] | Rainfall duration and intensity, vegetation cover, land-use, slope gradient, evapotranspiration, ecological consideration |
Mbilinyi et al. [27] | Rainfall, soil depth and texture, land cover, vegetation cover, drainage network |
Munyao [28] | Slope, land cover, runoff coefficient, soil texture, distance to road and buildings |
Weerasinghe et al. [29] | Soil depth, soil texture, land cover, monthly precipitation |
Kadam et al. [30] | Land cover, slope, soil texture, rainfall, drainage density, residential areas |
Jha et al. [31] | Land cover, soil texture, daily rainfall data, slope, drainage density, runoff coefficient |
Krois and Schulte [32] | Climate, hydrology, topography, agronomy, soils, and socioeconomic aspects |
Ochir et al. [33] | Land cover, rainfall, slope, soil type, distance to roads |
Tiwari et al. [34] | Drainage network, rainfall data, soil texture, land cover |
Wu [19] | Slope, land cover, distance from field and road, runoff coefficient, soil texture |
Scores | Importance |
---|---|
1 | Equally important |
3 | Moderately more important |
5 | Strongly more important |
7 | Very strongly more important |
9 | Extremely more important |
2,4,6,8 | Intermediate values between two levels of importance |
Rain Gauges | Elevation | Distance (km) | Annual Prec. (mm) | Aridity Index | Mean Seasonal Prec. (mm) | Maximum Daily Rainfall (mm) | EPMDR * | Data Record (years) | ||
---|---|---|---|---|---|---|---|---|---|---|
Abardej | 900 | 73 | 19.6 | 124.3 | 2.4 | 118.6 | 13.8 | 36 | 26.5 | 13 |
Aminabad | 1000 | 93 | 16.2 | 194.8 | 4.0 | 175.2 | 11.4 | 50 | 26 | 44 |
Badroud | 1056 | 143 | 18 | 110.2 | 2.2 | 102.9 | 12.1 | 70 | 25 | 34 |
Hamand | 1800 | 81 | 16 | 337.4 | 6.9 | 287.6 | 5.7 | 55 | 35.5 | 43 |
Mamazan | 1021 | 73 | 18.3 | 147.2 | 2.9 | 135.3 | 12.7 | 38 | 23.5 | 26 |
Abali | 2465.2 | 96 | 10.3 | 537.9 | 12.4 | 473.8 | 3.5 | 91 | 46 | 27 |
Firouzkouh Pol | 2985.7 | 95 | 10.4 | 399.7 | 9.2 | 315.4 | 0 | 38 | 33 | 16 |
Firouzkouh | 1975.6 | 124 | 10.2 | 289.3 | 6.7 | 225.6 | 5.1 | 40 | 33 | 16 |
Garmsar | 825.2 | 34 | 19.7 | 121.7 | 2.3 | 112.4 | 14.3 | 38 | 20 | 21 |
Kashan | 982.3 | 67 | 19.7 | 128.4 | 2.4 | 118.0 | 13.9 | 58 | 24 | 48 |
Natanz | 1684.9 | 88 | 16.4 | 198.1 | 4.0 | 189.1 | 10.9 | 50 | 29 | 14 |
Semnan | 1684.9 | 93 | 18.7 | 143.4 | 2.8 | 127.5 | 12.4 | 41 | 22 | 45 |
Check Dam Code | Collectible Runoff (m3) | Upstream Area (km2) | Ranking |
---|---|---|---|
A | 0.26 | 72.8 | 11 |
B | 1.53 | 32.7 | 9 |
C | 1.59 | 37.9 | 8 |
D | 18.34 | 225.1 | 1 |
E | 5.27 | 118.6 | 2 |
F | 7.92 | 96.9 | 3 |
G | 3.29 | 45.7 | 6 |
H | 4.22 | 41.8 | 5 |
I | 1.09 | 45.5 | 10 |
J | 5.09 | 77.1 | 4 |
K | 2.98 | 38.4 | 7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jafari Shalamzari, M.; Zhang, W.; Gholami, A.; Zhang, Z. Runoff Harvesting Site Suitability Analysis for Wildlife in Sub-Desert Regions. Water 2019, 11, 1944. https://doi.org/10.3390/w11091944
Jafari Shalamzari M, Zhang W, Gholami A, Zhang Z. Runoff Harvesting Site Suitability Analysis for Wildlife in Sub-Desert Regions. Water. 2019; 11(9):1944. https://doi.org/10.3390/w11091944
Chicago/Turabian StyleJafari Shalamzari, Masoud, Wanchang Zhang, Atefeh Gholami, and Zhijie Zhang. 2019. "Runoff Harvesting Site Suitability Analysis for Wildlife in Sub-Desert Regions" Water 11, no. 9: 1944. https://doi.org/10.3390/w11091944
APA StyleJafari Shalamzari, M., Zhang, W., Gholami, A., & Zhang, Z. (2019). Runoff Harvesting Site Suitability Analysis for Wildlife in Sub-Desert Regions. Water, 11(9), 1944. https://doi.org/10.3390/w11091944